Joint‐Learning: A Robust Segmentation Method for 3D Point Clouds Under Label Noise
ABSTRACT Most of point cloud segmentation methods are based on clean datasets and are easily affected by label noise. We present a novel method called Joint‐learning, which is the first attempt to apply a dual‐network framework to point cloud segmentation with noisy labels. Two networks are trained...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Most of point cloud segmentation methods are based on clean datasets and are easily affected by label noise. We present a novel method called Joint‐learning, which is the first attempt to apply a dual‐network framework to point cloud segmentation with noisy labels. Two networks are trained simultaneously, and each network selects clean samples to update its peer network. The communication between two networks is able to exchange the knowledge they learned, possessing good robustness and generalization ability. Subsequently, adaptive sample selection is proposed to maximize the learning capacity. When the accuracies of both networks are no longer improving, the selection rate is reduced, which results in cleaner selected samples. To further reduce the impact of noisy labels, for unselected samples, we provide a joint label correction algorithm to rectify their labels via two networks' predictions. We conduct various experiments on S3DIS and ScanNet‐v2 datasets under different types and rates of noises. Both quantitative and qualitative results verify the reasonableness and effectiveness of the proposed method. By comparison, our method is substantially superior to the state‐of‐the‐art methods and achieves the best results in all noise settings. The average performance improvement is more than 7.43%, with a maximum of 11.42%.
We propose a novel method to deal with point cloud segmentation with noisy labels, which consists of dual‐network framework, adaptive sample selection, and joint label correction. |
---|---|
AbstractList | Most of point cloud segmentation methods are based on clean datasets and are easily affected by label noise. We present a novel method called Joint‐learning, which is the first attempt to apply a dual‐network framework to point cloud segmentation with noisy labels. Two networks are trained simultaneously, and each network selects clean samples to update its peer network. The communication between two networks is able to exchange the knowledge they learned, possessing good robustness and generalization ability. Subsequently, adaptive sample selection is proposed to maximize the learning capacity. When the accuracies of both networks are no longer improving, the selection rate is reduced, which results in cleaner selected samples. To further reduce the impact of noisy labels, for unselected samples, we provide a joint label correction algorithm to rectify their labels via two networks' predictions. We conduct various experiments on S3DIS and ScanNet‐v2 datasets under different types and rates of noises. Both quantitative and qualitative results verify the reasonableness and effectiveness of the proposed method. By comparison, our method is substantially superior to the state‐of‐the‐art methods and achieves the best results in all noise settings. The average performance improvement is more than 7.43%, with a maximum of 11.42%. ABSTRACT Most of point cloud segmentation methods are based on clean datasets and are easily affected by label noise. We present a novel method called Joint‐learning, which is the first attempt to apply a dual‐network framework to point cloud segmentation with noisy labels. Two networks are trained simultaneously, and each network selects clean samples to update its peer network. The communication between two networks is able to exchange the knowledge they learned, possessing good robustness and generalization ability. Subsequently, adaptive sample selection is proposed to maximize the learning capacity. When the accuracies of both networks are no longer improving, the selection rate is reduced, which results in cleaner selected samples. To further reduce the impact of noisy labels, for unselected samples, we provide a joint label correction algorithm to rectify their labels via two networks' predictions. We conduct various experiments on S3DIS and ScanNet‐v2 datasets under different types and rates of noises. Both quantitative and qualitative results verify the reasonableness and effectiveness of the proposed method. By comparison, our method is substantially superior to the state‐of‐the‐art methods and achieves the best results in all noise settings. The average performance improvement is more than 7.43%, with a maximum of 11.42%. We propose a novel method to deal with point cloud segmentation with noisy labels, which consists of dual‐network framework, adaptive sample selection, and joint label correction. |
Author | Zhou, Jie Zhao, Yong Zhang, Mengyao Miao, Tingyun Zhang, Jingliang Si, Xin |
Author_xml | – sequence: 1 givenname: Mengyao surname: Zhang fullname: Zhang, Mengyao organization: Ocean University of China – sequence: 2 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: Ocean University of China – sequence: 3 givenname: Tingyun surname: Miao fullname: Miao, Tingyun organization: Ocean University of China – sequence: 4 givenname: Yong orcidid: 0009-0002-0232-2284 surname: Zhao fullname: Zhao, Yong email: zhaoyong@ouc.edu.cn organization: Ocean University of China – sequence: 5 givenname: Xin surname: Si fullname: Si, Xin organization: Xiamen University of Technology – sequence: 6 givenname: Jingliang surname: Zhang fullname: Zhang, Jingliang organization: Ocean University of China |
BookMark | eNp10LlOw0AQBuAVChJJoOANVqKiSLKXL7rI3DKHIEF01tqeDY6c3bBrg9LxCDwjT4KDER3VTPH9M9I_QD1tNCB0SMmYEsImuXwbB4TwcAf1qSf8kWDBc-9v9-keGji3bKnPKOmj2bUpdf318ZmAtLrUixM8xQ8ma1yNH2GxAl3LujQa30D9YgqsjMX8FN9vUziuTFM4PNcFWJzIDCp8a0oH-2hXycrBwe8covn52Sy-HCV3F1fxNBnlzIvCUU59kUUgpSBAWMipECA9GXpAgkKQXHiMS6Ii3_NUBCqThVIhFZmknHPJKB-io-7u2prXBlydLk1jdfsy5YyFURj4gWjVcadya5yzoNK1LVfSblJK0m1paVta-lNaayedfS8r2PwP03j61CW-AZkdbxw |
Cites_doi | 10.1109/CVPR.2017.261 10.1109/CVPR52733.2024.01979 10.1145/3326362 10.1109/CVPR.2016.170 10.1109/CVPR42600.2020.01372 10.1109/CVPR46437.2021.00081 10.1109/ICCV48922.2021.00638 10.24963/ijcai.2023/494 10.1109/CVPR42600.2020.01374 10.1109/CVPR52733.2024.01676 10.1109/TGRS.2024.3416219 10.1109/CVPR52733.2024.00357 10.1109/CVPR52733.2024.00463 10.1609/aaai.v38i5.28237 10.1109/ICCV.2019.00651 10.1145/3503161.3547984 10.1109/CVPR52729.2023.00126 10.1109/TPAMI.2022.3225323 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70038 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70038 CAV70038 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62172005 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2018MF006 – fundername: Open Project of the State Key Lab of CAD&CG, Zhejiang University funderid: A2228 – fundername: Qingdao Natural Science Foundation funderid: 23‐2‐1‐158‐zyyd‐jch |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2598-c164b9eaa40e0283144ea5a85e07d40c4523a0f9655f9efbadff814ba1333a213 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 13:08:30 EDT 2025 Thu Jul 03 08:36:26 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2598-c164b9eaa40e0283144ea5a85e07d40c4523a0f9655f9efbadff814ba1333a213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-0232-2284 |
PQID | 3228987674 |
PQPubID | 2034909 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3228987674 crossref_primary_10_1002_cav_70038 wiley_primary_10_1002_cav_70038_CAV70038 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 45 2023 2022 2021 2020 2019 2019; 38 2024; 62 2018 2017 2016 2024 2024; 38 e_1_2_9_31_1 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_13_1 Arpit D. (e_1_2_9_33_1) 2017 e_1_2_9_12_1 Bekker A. J. (e_1_2_9_19_1) 2016 Cheng D. (e_1_2_9_26_1) 2022 Han B. (e_1_2_9_21_1) 2018 Qi C. R. (e_1_2_9_5_1) 2017 Hu Q. (e_1_2_9_11_1) 2020 Xia X. (e_1_2_9_32_1) 2022 Qi C. R. (e_1_2_9_4_1) 2017 e_1_2_9_17_1 Xu Z. (e_1_2_9_16_1) 2023 e_1_2_9_18_1 Yao B. (e_1_2_9_15_1) 2024; 62 Jiang L. (e_1_2_9_30_1) 2018 Chen F. (e_1_2_9_29_1) 2024 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_3_1 Cheng M. (e_1_2_9_14_1) 2021 e_1_2_9_2_1 Xiang P. (e_1_2_9_10_1) 2023 e_1_2_9_9_1 Huang Q. (e_1_2_9_24_1) 2024 e_1_2_9_25_1 Yu X. (e_1_2_9_22_1) 2019 e_1_2_9_28_1 e_1_2_9_27_1 Malach E. (e_1_2_9_20_1) 2017 |
References_xml | – start-page: 4840 year: 2024 end-page: 4851 – start-page: 4442 year: 2023 end-page: 4450 – start-page: 16630 year: 2022 end-page: 16639 – start-page: 11105 year: 2020 end-page: 11114 – start-page: 8536 year: 2018 end-page: 8546 – start-page: 13703 year: 2020 end-page: 13712 – start-page: 6423 year: 2021 end-page: 6432 – start-page: 77 year: 2017 end-page: 85 – volume: 38 start-page: 4397 issue: 5 year: 2024 end-page: 4405 article-title: Less Is More: Label Recommendation for Weakly Supervised Point Cloud Semantic Segmentation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 6410 year: 2019 end-page: 6419 – start-page: 2682 year: 2016 end-page: 2686 – start-page: 178 year: 2024 end-page: 195 – start-page: 17700 year: 2024 end-page: 17709 – start-page: 5105 year: 2017 end-page: 5114 – start-page: 20943 year: 2024 end-page: 20953 – start-page: 4635 year: 2022 end-page: 4644 – volume: 62 start-page: 1 year: 2024 end-page: 13 article-title: Uncertainty‐Guided Contrastive Learning for Weakly Supervised Point Cloud Segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 38 start-page: 146:1 issue: 5 year: 2019 end-page: 146:12 article-title: Dynamic Graph CNN for Learning on Point Clouds publication-title: ACM Transactions on Graphics – start-page: 3721 year: 2024 end-page: 3731 – start-page: 752 year: 2021 end-page: 761 – start-page: 18052 year: 2023 end-page: 18062 – start-page: 2304 year: 2018 end-page: 2313 – year: 2022 – start-page: 2432 year: 2017 end-page: 2443 – start-page: 1244 year: 2023 end-page: 1254 – start-page: 961 year: 2017 end-page: 971 – start-page: 7164 year: 2019 end-page: 7173 – volume: 45 start-page: 7696 issue: 6 year: 2023 end-page: 7710 article-title: Robust Point Cloud Segmentation With Noisy Annotations publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1140 year: 2021 end-page: 1147 – start-page: 233 year: 2017 end-page: 242 – start-page: 1534 year: 2016 end-page: 1543 – start-page: 17780 year: 2023 end-page: 17792 – start-page: 876 year: 2024 end-page: 885 – start-page: 13723 year: 2020 end-page: 13732 – start-page: 77 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: e_1_2_9_4_1 – ident: e_1_2_9_35_1 doi: 10.1109/CVPR.2017.261 – ident: e_1_2_9_7_1 doi: 10.1109/CVPR52733.2024.01979 – start-page: 16630 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2022 ident: e_1_2_9_26_1 – ident: e_1_2_9_8_1 doi: 10.1145/3326362 – start-page: 17780 volume-title: Proceedings of the International Conference on Computer Vision year: 2023 ident: e_1_2_9_10_1 – ident: e_1_2_9_34_1 doi: 10.1109/CVPR.2016.170 – start-page: 11105 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2020 ident: e_1_2_9_11_1 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR42600.2020.01372 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR46437.2021.00081 – start-page: 5105 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_9_5_1 – ident: e_1_2_9_2_1 doi: 10.1109/ICCV48922.2021.00638 – ident: e_1_2_9_25_1 doi: 10.24963/ijcai.2023/494 – start-page: 7164 volume-title: Proceedings of the International Conference on Machine Learning year: 2019 ident: e_1_2_9_22_1 – start-page: 2304 volume-title: Proceedings of the International Conference on Machine Learning year: 2018 ident: e_1_2_9_30_1 – ident: e_1_2_9_31_1 doi: 10.1109/CVPR42600.2020.01374 – start-page: 961 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_9_20_1 – start-page: 178 volume-title: Proceedings of the European Conference on Computer Vision year: 2024 ident: e_1_2_9_24_1 – ident: e_1_2_9_28_1 doi: 10.1109/CVPR52733.2024.01676 – volume: 62 start-page: 1 year: 2024 ident: e_1_2_9_15_1 article-title: Uncertainty‐Guided Contrastive Learning for Weakly Supervised Point Cloud Segmentation publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2024.3416219 – start-page: 2682 volume-title: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing year: 2016 ident: e_1_2_9_19_1 – ident: e_1_2_9_17_1 doi: 10.1109/CVPR52733.2024.00357 – start-page: 233 volume-title: Proceedings of the International Conference on Machine Learning year: 2017 ident: e_1_2_9_33_1 – ident: e_1_2_9_12_1 doi: 10.1109/CVPR52733.2024.00463 – ident: e_1_2_9_18_1 doi: 10.1609/aaai.v38i5.28237 – ident: e_1_2_9_6_1 doi: 10.1109/ICCV.2019.00651 – ident: e_1_2_9_27_1 doi: 10.1145/3503161.3547984 – start-page: 876 volume-title: Proceedings of the ACM International Conference on Multimedia year: 2024 ident: e_1_2_9_29_1 – start-page: 8536 volume-title: Advances in Neural Information Processing Systems year: 2018 ident: e_1_2_9_21_1 – ident: e_1_2_9_9_1 doi: 10.1109/CVPR52729.2023.00126 – start-page: 18052 volume-title: Proceedings of the International Conference on Computer Vision year: 2023 ident: e_1_2_9_16_1 – start-page: 1140 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2021 ident: e_1_2_9_14_1 – volume-title: Proceedings of the International Conference on Learning Representations year: 2022 ident: e_1_2_9_32_1 – ident: e_1_2_9_3_1 doi: 10.1109/TPAMI.2022.3225323 |
SSID | ssj0026210 |
Score | 2.37162 |
Snippet | ABSTRACT
Most of point cloud segmentation methods are based on clean datasets and are easily affected by label noise. We present a novel method called... Most of point cloud segmentation methods are based on clean datasets and are easily affected by label noise. We present a novel method called Joint‐learning,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | adaptive sample selection Adaptive sampling Datasets dual‐network framework Image segmentation joint label correction label noise Labels Learning Networks Noise point cloud segmentation Three dimensional models |
Title | Joint‐Learning: A Robust Segmentation Method for 3D Point Clouds Under Label Noise |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70038 https://www.proquest.com/docview/3228987674 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jJz34W5xOCeLBS7e0TbtWT2M6ZOiQuY0dhJKkyRjOVmzrwZN_gn-jf4lJ2m4qCOKllNKUNsl7-b70ve8BcCINjDBTSG5iktDANqMGpciWB4dQKvxQ6KSwm757NcK9iTOpgPMyFybXh1hsuCnL0P5aGTihSXMpGsrIS6OlfmxJ_6titRQgGiykoyzXypUIHOwaiiaUqkLIai5afl-LlgDzK0zV60x3HdyXb5iHlzw0spQ22OsP8cZ_fsIGWCvwJ2znE2YTVHi0BVbHsyTLrybbYNiLZ1H68fZeaK9Oz2AbDmKaJSm849PHIlspgje6-jSUsBfaF_BWtYKdeZyFCdTllOA1oXwO-_Es4Ttg1L0cdq6MoviCwSQj8gwmeRT1OSEYcYVBJPHixCGew1ErxIhhyWAJEr7rOMLngpJQCM_ElEjSaxPLtHdBNYojvgegKSTOEchnzPUwRczzGGYhF7bwEZH4rQaOy2EInnKNjSBXU7YC2UWB7qIaqJcDFBRmlgTSG3m-p_SIauBU9_TvDwg67bE-2f_7rQdgxVL1fnWAYx1U0-eMH0oQktIjPds-AZtd1_A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH7q4LBxYMBAFDpmIQ5cUpzESZNpl6qj6kpbTaxUvUyR7dioGkumJeHAiZ-w37hfMttJWkCahLhEVmRHybOf_X2O3_cATpSDUW5LxU1sGlvE5cxiDLvq4lHGZBhLExQ2nviDKzKce_MGfKpjYUp9iOWGm_YMM19rB9cb0mcr1VBOb9sd_WfrFazrjN6GUF0uxaMc3ym1CDziW5oo1LpC2DlbNn28Gq0g5kOgalaa_lv4Xr9jecDkR7vIWZvfPZFvfOlHbMFmBUFRtxwz29AQyQ5szBZZUd7N3sF0mC6S_O_9n0p-9foj6qLLlBVZjr6J659VwFKCxiYBNVLIF7mf0VfdCvVu0iLOkMmohEaUiRs0SReZ2IWr_vm0N7Cq_AsWV6QosLiiUiwUlBIsNAxR3EtQjwaewJ2YYE4UiaVYhr7nyVBIRmMpA5swqnivSx3b3YO1JE3EPiBbKqgjcci5HxCGeRBwwmMhXRliqiBcE47rfoh-lTIbUSmo7ETKRJExURNadQ9FladlkZqQgjDQkkRNODWm_v8Dol53ZgoHz6_6AV4PpuNRNPoyuTiEN45O_2vOO7ZgLf9diPcKk-TsyAy9fySh3As |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BVkL0AIWCWEqLhTj0ksVJnKxTTqvdrvhcIQqIA1JkO_ZqVUgQSXrgxE_ob-SXYDvJ0iIhIS5RFMVRMp6x33M8bwC2dYAx4SrNTVyWOMQX3OEc-_oQMM5VlCibFHY8CvfOycFlcDkDu00uTKUPMV1wM5Fhx2sT4LeJ2nkWDRXsT6drfmzNwgcSYmpcenA61Y7yQq-SIghI6Bie0MgKYW9n2vT_yegZYf6LU-1EM1yEq-YVq_0lvztlwTvi_oV64zu_4RMs1AAU9SqPWYIZmS7Dx4tJXlZX889wdpBN0uLx4W8tvjr-gXroNONlXqBfcnxTpyul6NiWn0Ya9yJ_gE5MK9S_zsokR7aeEjpiXF6jUTbJ5QqcD3-e9fecuvqCIzQloo7QRIpHkjGCpQEhmnlJFjAaSNxNCBZEU1iGVRQGgYqk4ixRirqEM816fea5_iq00iyVa4BcpYGOwpEQISUcC0oFEYlUvoow0wCuDVtNN8S3lchGXMkpe7E2UWxN1IaNpoPiOs7yWA9HNKJGkKgN362lX39A3O9d2JP1t9-6CXMng2F8tD86_ALznqn9azc7bkCruCvlVw1ICv7NOt4TyQHaww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint%E2%80%90Learning%3A+A+Robust+Segmentation+Method+for+3D+Point+Clouds+Under+Label+Noise&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Mengyao&rft.au=Zhou%2C+Jie&rft.au=Miao%2C+Tingyun&rft.au=Zhao%2C+Yong&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70038&rft.externalDBID=10.1002%252Fcav.70038&rft.externalDocID=CAV70038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |