Sustainable LiFePO4 and LiMnxFe1-xPO4 (x=0.1–1) cathode materials for lithium-ion batteries: A systematic review from mine to chassis
We conducted a comprehensive literature review of LiFePO4 (LFP) and LiMnxFe1-xPO4 (x=0.1–1) (LMFP)-based lithium-ion batteries (LIBs), focusing mostly on electric vehicles (EVs) as a primary application of LIBs. Although numerous individual research studies exist, a unified and coordinated review co...
Saved in:
Published in | Materials science & engineering. R, Reports : a review journal Vol. 159; p. 100797 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We conducted a comprehensive literature review of LiFePO4 (LFP) and LiMnxFe1-xPO4 (x=0.1–1) (LMFP)-based lithium-ion batteries (LIBs), focusing mostly on electric vehicles (EVs) as a primary application of LIBs. Although numerous individual research studies exist, a unified and coordinated review covering the subject from mine to chassis has not yet been presented. Accordingly, our review encompasses the entire LIB development process. I) Initial resources, including lithium, iron, manganese, and phosphorous; their global reserves; mining procedures; and the demand for LIB production. II) The main Fe- and Mn-containing precursors, Fe0, FexOy, FePO4, FeSO4, and MnSO4, focusing on their preparation methods, use in LIBs, and their effect on the electrochemical performance of the final active cathode materials. III) Use of the precursors in the synthesis of active cathode materials and pioneering synthesis methods for olivine production lines, particularly hydrothermal liquid-state synthesis, molten-state synthesis, and solid-state synthesis. IV) Electrode engineering and the design and optimization of electrolytes. V) Production of cells, modules, and packs. (VI) Highlights of the challenges associated with the widespread utilization of olivines in LIBs, emphasizing their safety, cost, energy efficiency, and carbon emissions. In conclusion, our review offers a comprehensive overview of the entire process involved in the fabrication of LFP/LMFP-based LIBs, from the initial elements in the mine to the assembly of the final packs that power EVs.
[Display omitted] |
---|---|
AbstractList | We conducted a comprehensive literature review of LiFePO4 (LFP) and LiMnxFe1-xPO4 (x=0.1–1) (LMFP)-based lithium-ion batteries (LIBs), focusing mostly on electric vehicles (EVs) as a primary application of LIBs. Although numerous individual research studies exist, a unified and coordinated review covering the subject from mine to chassis has not yet been presented. Accordingly, our review encompasses the entire LIB development process. I) Initial resources, including lithium, iron, manganese, and phosphorous; their global reserves; mining procedures; and the demand for LIB production. II) The main Fe- and Mn-containing precursors, Fe0, FexOy, FePO4, FeSO4, and MnSO4, focusing on their preparation methods, use in LIBs, and their effect on the electrochemical performance of the final active cathode materials. III) Use of the precursors in the synthesis of active cathode materials and pioneering synthesis methods for olivine production lines, particularly hydrothermal liquid-state synthesis, molten-state synthesis, and solid-state synthesis. IV) Electrode engineering and the design and optimization of electrolytes. V) Production of cells, modules, and packs. (VI) Highlights of the challenges associated with the widespread utilization of olivines in LIBs, emphasizing their safety, cost, energy efficiency, and carbon emissions. In conclusion, our review offers a comprehensive overview of the entire process involved in the fabrication of LFP/LMFP-based LIBs, from the initial elements in the mine to the assembly of the final packs that power EVs.
[Display omitted] |
ArticleNumber | 100797 |
Author | Zaghib, Karim Deng, Sixu Li, Xia Nekahi, Atiyeh Kumar M.R., Anil |
Author_xml | – sequence: 1 givenname: Atiyeh surname: Nekahi fullname: Nekahi, Atiyeh – sequence: 2 givenname: Anil surname: Kumar M.R. fullname: Kumar M.R., Anil – sequence: 3 givenname: Xia surname: Li fullname: Li, Xia – sequence: 4 givenname: Sixu surname: Deng fullname: Deng, Sixu – sequence: 5 givenname: Karim surname: Zaghib fullname: Zaghib, Karim email: karim.zaghib@concordia.ca |
BookMark | eNp9kM9KAzEQxoMoWP-8gKcc9bA1ibtNI3oQsSpUFFTwFpLshKZ0E0mi1ps3H8A39EnMUk8ePM3HzPxm-L4ttO6DB4T2KBlSQkeH82GXIA4ZYXVpEC74GhrQMRcVo-xpHQ2IYLziYvS0ibZSmhNSNptmgD7vX1JWziu9ADx1E7i7rbHybdE3fjkBWi37zv7ytHz6_viiB9ioPAst4E5liE4tErYh4oXLM_fSVS54rFXuR5CO8RlO7ylD2XUGR3h18IZtDB3unAecAzYzlZJLO2jDllOw-1u30ePk4uH8qpreXl6fn00rwxrBK2UbW9dCtUJp0GbMWFHE8pZZTuqRbRRQCy0YprUVR1Ro2_S60YprzfXRNmKruyaGlCJY-Rxdp-K7pET2Ucq57KOUfZRyFWWBxn8g43JxFHyOyi3-R09WKBRTxX2UyTjwBloXwWTZBvcf_gPDupTn |
CitedBy_id | crossref_primary_10_1007_s12598_025_03244_8 crossref_primary_10_1016_j_ensm_2025_104035 crossref_primary_10_1016_j_electacta_2025_145844 crossref_primary_10_1016_j_mser_2025_100947 crossref_primary_10_3390_batteries10080268 crossref_primary_10_3390_batteries10080279 crossref_primary_10_3390_batteries11010020 crossref_primary_10_1016_j_mser_2024_100902 crossref_primary_10_1016_j_mser_2025_100952 crossref_primary_10_1016_j_jechem_2024_08_011 crossref_primary_10_3390_ma18061329 crossref_primary_10_1002_aenm_202404929 crossref_primary_10_1016_j_cej_2024_156578 crossref_primary_10_1021_acs_jpcc_4c06546 crossref_primary_10_1016_j_jpowsour_2024_235457 crossref_primary_10_1007_s41918_024_00235_8 crossref_primary_10_1007_s11581_024_05994_4 crossref_primary_10_1016_j_jelechem_2024_118661 crossref_primary_10_1088_2053_1591_ada5bf |
Cites_doi | 10.1039/D0RA03314F 10.1016/j.energy.2022.125966 10.1016/j.watres.2022.118505 10.1063/5.0084105 10.1016/j.tsf.2018.02.017 10.1016/j.nantod.2010.11.002 10.1016/j.jmrt.2021.11.002 10.1021/acsenergylett.0c02584 10.1016/j.energy.2017.01.101 10.1039/D1EE01530C 10.1039/D0EE02917C 10.1149/1945-7111/ab856b 10.1002/adfm.202305161 10.1021/acsomega.9b04165 10.1038/d41586-021-02222-1 10.1038/s43016-021-00232-w 10.1038/35104644 10.3390/su11092527 10.1021/acs.nanolett.5b00326 10.1038/s41467-023-35933-2 10.1016/j.solidstatesciences.2015.08.021 10.1007/s12613-022-2541-1 10.1021/acsenergylett.9b01703 10.1038/s41560-020-00757-7 10.1016/j.jpowsour.2012.12.027 10.1088/1755-1315/603/1/012051 10.1016/j.ijhydene.2020.09.049 10.1038/s41598-020-62553-3 10.1016/j.jpowsour.2010.07.010 10.1016/j.jpowsour.2015.08.074 10.20964/2021.11.09 10.1016/j.jpowsour.2015.10.073 10.1007/s11581-020-03864-3 10.1021/acsomega.9b01343 10.1021/acs.nanolett.6b00334 10.1007/s10008-010-1191-9 10.3390/batteries9070379 10.1016/j.jclepro.2019.119951 10.1039/D1NJ01208H 10.1016/j.vacuum.2023.112258 10.1016/j.erss.2022.102565 10.1021/acs.chemrev.1c00565 10.1039/D2TA07696A 10.1039/D1YA00052G 10.3390/polym13183146 10.1038/s43246-022-00286-8 10.1016/j.elecom.2012.08.016 10.1016/j.mser.2012.05.003 10.3390/en13092163 10.1038/s43017-022-00387-5 10.1016/j.est.2020.101714 10.1016/j.est.2023.107740 10.1039/D2RA04427G 10.1007/s10853-010-5094-z 10.3390/batteries10010039 10.1039/C8TA05336G 10.1002/nano.202000164 10.1007/s10853-018-2247-y 10.1021/acsomega.0c00477 10.1016/j.applthermaleng.2023.121014 10.1016/j.est.2018.07.012 10.1021/acsomega.1c02216 10.1021/acsami.8b22720 10.1088/2515-7655/acc139 10.1016/j.electacta.2023.142469 10.1016/j.powtec.2013.01.041 10.1109/ACCESS.2022.3182726 10.1039/D1EE00354B 10.1038/s43246-022-00236-4 10.1016/j.joule.2018.07.006 10.1002/asia.202000522 10.1016/j.jpowsour.2009.08.089 10.1021/acsaem.8b01253 10.1016/j.est.2021.103307 10.1039/C6RA19767A 10.3390/batteries8100133 10.1016/j.matchemphys.2009.09.017 10.1016/j.etran.2022.100199 10.1039/C7RA00463J 10.1016/j.jallcom.2021.160774 10.1016/j.resconrec.2021.105514 10.1016/j.joule.2020.06.015 10.3390/en14113145 10.1002/cjce.23479 10.1039/C8TA04063J 10.1016/j.est.2021.103534 10.1002/aenm.202103050 10.1002/cjce.23406 10.1039/C7CP01947E 10.1007/s12598-009-0117-0 10.1016/j.nanoen.2014.03.017 10.1039/c2jm34193j 10.3390/su9040504 10.1039/C3CE41567H 10.1016/j.jpowsour.2012.12.095 10.1016/j.matchemphys.2022.126530 10.1016/j.resconrec.2022.106606 10.1039/D0TA09330K 10.1007/s12613-016-1260-x 10.3390/inorganics4020017 10.1111/jiec.13413 10.1007/s10853-007-2011-1 10.1016/j.hydromet.2016.06.019 10.1007/s11581-014-1241-x 10.1016/j.est.2023.107089 10.1016/j.ensm.2019.05.019 10.1002/advs.202207355 10.1007/s11581-016-1910-z 10.1007/s11426-012-4818-0 10.1021/acscombsci.6b00035 10.1155/2019/5638590 10.3389/fchem.2020.00104 10.1016/j.mineng.2020.106743 10.1149/MA2023-012597mtgabs 10.1149/2.066308jes 10.1149/1.1837571 10.1007/s11771-014-2164-4 10.1021/acsaem.8b00923 10.1016/S1003-6326(11)61497-0 10.1016/j.carbpol.2014.05.027 10.1038/s43246-020-00095-x 10.1038/s43246-022-00237-3 10.3390/ma12213640 10.1016/j.jallcom.2023.170610 10.1088/1748-9326/11/5/054010 10.1021/jp8053058 10.1016/j.matchemphys.2013.04.020 10.1002/aenm.202200383 10.1016/j.apenergy.2022.118767 10.1002/aelm.201500246 10.1016/j.jclepro.2021.127224 10.1016/j.vacuum.2021.110541 10.1021/nl501152f 10.26599/NRE.2023.9120059 10.1021/nl302819f 10.1149/1945-7111/ac76e4 10.1039/c2jm30191a 10.1039/C6CS00776G 10.1016/j.joule.2020.05.017 10.1039/C7TA04400C 10.1016/j.jclepro.2022.133342 10.1039/C4TA01365D 10.1016/j.jpowsour.2009.01.074 10.1016/j.jtice.2019.03.002 10.1021/acsomega.1c00129 10.1002/cjce.23522 10.1016/j.jpowsour.2022.231671 10.1039/C8EE03014F 10.1002/adma.202101275 10.3390/ma11112251 10.1021/acs.inorgchem.9b00517 10.1007/s12209-020-00236-w 10.3390/batteries9050261 10.1021/nl1007085 10.1016/j.jallcom.2020.157715 10.1149/1.3654204 10.1016/j.etran.2022.100169 10.1016/j.jclepro.2023.137817 10.1021/acsami.1c18800 10.1016/j.jpowsour.2016.10.106 10.1016/j.jallcom.2021.160090 10.1038/s41467-019-13400-1 10.1039/D2RA08244F 10.1016/j.est.2021.103413 10.1021/acsenergylett.1c01713 10.1016/j.ceramint.2017.07.023 10.1016/j.hydromet.2021.105759 10.1016/j.jpowsour.2012.07.128 10.1149/1.3028304 10.1149/1945-7111/ac0069 10.1016/j.electacta.2016.10.066 10.1016/j.resconrec.2021.105762 10.1002/batt.202100224 10.1016/j.trd.2022.103586 10.1007/s41918-022-00131-z 10.1016/j.ensm.2016.08.002 10.1007/s10854-022-08691-y 10.1016/j.mser.2018.07.001 10.1016/j.rineng.2022.100472 10.1038/s41598-021-91881-1 10.1016/j.est.2019.101116 10.1016/j.mattod.2014.10.040 10.1016/j.jpowsour.2021.229759 10.1016/j.est.2023.108324 10.1007/s10008-015-3049-7 10.1039/D0RA08274K 10.1039/D1QM00179E 10.1021/ic5026075 10.1007/s10008-011-1629-8 10.1016/j.hydromet.2023.106025 10.1021/acssuschemeng.0c08733 10.1016/j.ceramint.2018.02.032 10.1149/2.015112jes |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.mser.2024.100797 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-212X |
ExternalDocumentID | 10_1016_j_mser_2024_100797 S0927796X24000275 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c2597-af5f449ad9abebc822d9a0f7d2f7046f5ae1fedec2bbf9319bf5c2bb5ba7bb7b3 |
IEDL.DBID | .~1 |
ISSN | 0927-796X |
IngestDate | Tue Jul 01 01:14:50 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Tue Jun 18 08:50:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Lithium iron phosphate Electric vehicles Olivine cathode materials Mine-to-chassis |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2597-af5f449ad9abebc822d9a0f7d2f7046f5ae1fedec2bbf9319bf5c2bb5ba7bb7b3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0927796X24000275 |
ParticipantIDs | crossref_primary_10_1016_j_mser_2024_100797 crossref_citationtrail_10_1016_j_mser_2024_100797 elsevier_sciencedirect_doi_10_1016_j_mser_2024_100797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials science & engineering. R, Reports : a review journal |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Qin, Jia, Wu, Jin, Duan, Jiang, Sun, Ding, Shi, Wang (bib264) 2022; 313 Zhu, Pan, Lu, Holmes (bib79) 2022 Julien, Mauger, Vijh, Zaghib (bib173) 2016 A Kind of Battery, Battery Modules, Battery Pack and Electric Vehicle, CN110518174A, 2020. Holmes, Lu, Lu (bib67) 2022 Stace (bib72) 2022 Guo, Wu, Liao, Xie, Zhang, Zhu, Cao, Zhao (bib146) 2015; 54 Hovington, Lagacé, Guerfi, Bouchard, Mauger, Julien, Armand, Zaghib (bib11) 2015; 15 Spears, Brownlie, Cordell, Hermann, Mogollón (bib47) 2022; 3 Mauler, Duffner, Zeier, Leker (bib270) 2021; 14 Zhang, Ge, Shen, Ma, Wang, Wang, Liu, Liu, Liu, Zhao (bib197) 2021; 45 Zaghib, Mauger, Julien (bib155) 2012; 16 Desai (bib275) 2022 From dirty oil to clean batteries, European Federation for Transport & Environment.. Li, Sun, Sun, Wang, Xie (bib110) 2013; 56 L. Mathieu, C. MatteaFrom dirty oil to clean batteries, European Federation for Transport & Environment2021 Fredj, Rousselot, Danis, Bibienne, Gauthier, Liang, Dollé (bib194) 2020; 27 Ptáček (bib94) 2016 Chien, Liu, Chang, Yang (bib104) 2018; 660 Continuing our Investment in Nevada, Tesla (2023). Yang, Zhang, Ding, He, Zhou (bib44) 2018; 2 Wu, Lu, Miranda, Honaker-Schroeder, Lakhsassi, Dees (bib222) 2012; 24 Zhang, Xie, Peng, Hu, Du, Makuza, Gong, Ji, Cao (bib120) 2022; 541 L.W. Beck, M. Soltani, L. Wang, Ferric Phosphate and Methods of Preparation Thereof, US9174846B2, 2015. Zheng, Yang, Wu, Li, Wang, Huang, Li, Xiao, Zhu (bib118) 2023; 960 Daheron, MacNeil (bib193) 2011; 15 Trends in Batteries, Battery Demand For EVs continues to Rise, (2023). S. Nordlund, Tesla Model Y RWD with BYD Blade Battery Has Improved Charging Speeds over Former CATL pack, Drive Tesla Can. (2023). Wang, Zhang, Liu, Wang, Ren, Zhang, Yin, Wang, Zuo (bib21) 2018; 1 Jin, Sun, Yao, Feng, Lai, Shen, Wang, Rui, Xu, Zheng, Lu, Wang, Ouyang (bib235) 2022; 14 He, Jiang, Hong, Liu (bib65) 2021; 306 Li, Huang, Pan, Su, Shao, An (bib22) 2019; 12 New Mach-E LFP battery specs revealed, macheforum (2023). Jaguemont, Bardé (bib266) 2023; 231 . Benedek, Wenzler, Yarema, Wood (bib172) 2017; 7 Qiu, Shao, Wang, Wang, Wang, Wang (bib202) 2014; 111 Can Geothermal Energy Solve the Lithium Shortfall?, Geothermal Technologies Office, Office of Energy Efficiency & Renewable Energy, The US Department of Energy (DOE), 2021. 〈https://www.energy.gov/eere/geothermal/articles/can-geothermal-energy-solve-lithium-shortfall#:∼:text=Hot%20salty%20water%2C%20or%20geothermal,from%20thousands%20of%20feet%20underground〉. Yongjia, Yin, Keyu, Ruhui, Meimei, Yaochun (bib125) 2021; 27 Zaghib, Charest, Dontigny, Guerfi, Lagacé, Mauger, Kopec, Julien (bib190) 2010; 195 Jugović, Uskoković (bib158) 2009; 190 Xu, Dai, Gaines, Hu, Tukker, Steubing (bib56) 2020; 1 Rong, Lu, Liu, Chen, Tang, Yang, Wu, Shen, Chen, Tang, Chen (bib108) 2014; 6 Lithium-Ion Battery Pack Prices Rise for First Time to an Average of $151/kWh, (2022). Sauriol, Li, Hadidi, Villazon, Jin, Yari, Gauthier, Dollé, Chartrand, Kasprzak, Liang, Patience (bib189) 2019; 97 Sparrow, Lu, Lovel, Fisher-White (bib77) 2022 Liu, Xu, Han, Pellegrinelli, Zhu, Zhu, Wan, Chung, Vaaland, Wang, Hu (bib131) 2012; 12 Dou, Zheng, Zhang, Liu, Wang, Wan, Liu, Tao (bib210) 2023; 33 National blueprint for lithium batteries 2021–2030, Federal Consortium for Advanced Batteries, The US Department of Energy (DOE), 2021. List of Newly Released Technologies, Toyota, 2023. Xiao, Hu (bib106) 2014; 21 Wang, Lu (bib133) 2019; 11 Kotal, Jakhar, Roy, Sharma (bib150) 2022; 47 Zhang, Garcia-Araez, Hector (bib169) 2018; 6 Abe, Kumagai (bib212) 2018; 19 Zhou, Xiao, Li (bib219) 2016; 302 (bib89) 2020 Tesla Master Plan Part 3–Sustainable Energy for All of Earth, Tesla, 2023. Ruth (bib80) 2004 Xiao, Li, Tang, Wang, Long, Gao, Chen, Liu, Liu, Wang (bib24) 2021; 5 Eliseeva, Kamenskii, Tolstopyatova, Kondratiev (bib205) 2020; 13 Dokko, Hachida, Watanabe (bib116) 2011; 158 Tajik, Makui, Tosarkani (bib262) 2023; 66 Major Ctries. Worldw. Lithium mine Prod. 2022.. Murugan, Muraliganth, Manthiram (bib180) 2008; 112 Link, Neef, Wicke (bib8) 2023; 9 M. Kane, See inside of the Tesla Model 3’s LFP prismatic battery pack, Insideevs (2021). Global HPMSM market, Can. Manganese (n.d.). Fleischmann, Schaufuss, Linder, Hanicke, Horetsky, Ibrahim, Jautelat, Torscht, Rijt (bib301) 2023 Peng, Cao, Zhou, Hu (bib135) 2009; 28 Neef, Meyer, Klingeler (bib176) 2015; 48 Li (bib217) 2020; 167 Lu, Ishiyama, Higuchi, Matsumura, Higuchi (bib78) 2022 Pardikar, Entwistle, Ge, Cumming, Smith (bib103) 2023; 5 EV Transit. Threat. Battery Prices. Rise First Time.. Kia launches (bib253) 2023 Yi, Cui, Li, Zhang, Yang (bib114) 2020; 5 IEA, Global CO2 Emissions by Sector, 2019, (2021). Tarascon, Armand (bib149) 2001; 414 Choudhury (bib227) 2019 You, Wu, Yuan, Chen, Liu, Zhu, Fu, Wu, Guo, van Ree (bib27) 2020; 8 Guven, Ozgur Kayalica (bib55) 2023; 115 Zaghib, Guerfi, Hovington, Vijh, Trudeau, Mauger, Goodenough, Julien (bib12) 2013; 232 Nikolaeva, Aleksandrova, Chanturiya, Afanasova (bib73) 2021; 6 Bouguern, Madikere Raghunatha Reddy, Li, Deng, Laryea, Zaghib (bib216) 2024; 10 Semi the Future of Trucking, Tesla (2023). Zhong, Wang, Liu, Wang (bib137) 2012; 22 Walvekar, Beltran, Sripad, Pecht (bib236) 2022; 10 Li, Wu, Li, Zhao, Zhao, Ma, Liu (bib115) 2019; 99 Wang, Fang, Peng, Cheng, Du, Zhou (bib66) 2016; 164 Li, Wang, Zhang, Liang, Yao, Zhang (bib96) 2021; 193 Guo, Liang, Cao, Jia (bib111) 2020; 45 Gao, Su, Bao, Li, Chen, Zheng, Tian, Li, Chen, Wu (bib203) 2015; 298 M. Creamer, 2022 Wang, Li, Chen, Yang, Jiang (bib107) 2017; 23 Liu, Yan, Li, Zhang, Sun (bib178) 2020; 8 Lyle, Vaeli, Dutta, Metzger (bib139) 2022; 169 Akhlaq, Mushtaq, Naz, Uroos (bib207) 2023; 13 HPMSM processing 101, Process Routes for High Purity Manganese Production, Can. Manganese (n.d.). Lithium Production, 2021, and Projected Demand in Climate-driven Scenarios, 2030, (2022). Kim, Sovacool, Bazilian, Griffiths, Lee, Yang, Lee (bib82) 2022; 89 Bhutada (bib86) 2022 High-purity manganese facing phenomenal demand growth, PDAC hears, Miningweekly. Electric Vehicle Battery Pack Costs in 2022 Are Nearly 90% Lower than in 2008, According to DOE Estimates, (2023). Hao, Geng, Tate, Liu, Chen, Sun, Liu, Zhao (bib297) 2019; 10 Kraft, Hoefling, Zünd, Kunz, Steinhardt, Tübke, Jossen (bib242) 2021; 168 Lai, Chen, Tang, Zhou, Gao, Guo, Bhagat, Zheng (bib298) 2022; 12 Boyadzhieva, Koleva, Stoyanova (bib23) 2017; 19 Masias, Marcicki, Paxton (bib290) 2021; 6 M.J. Kim, T. Tran, Method for Producing High-purity Manganese Sulfate Monohydrate and High-purity Manganese Sulfate Monohydrate Produced by the Method, US20150110692A1, 2015. Min, Xiao, Fang, Wang, Zhao, Liu, Abdelkader, Xi, Kumar, Huang (bib26) 2021; 14 Lu, Rong, Hu, Chen, Li (bib283) 2019; 23 Lin, Gu, Wang, Zhu, Liu, Fu (bib63) 2016; 23 Shen, Li, Liu, Li, Xu, Hu, Wang (bib98) 2021; 496 Xing, Bliznakov, Bonville, Oljaca, Maric (bib214) 2022; 5 Zhu, Gu, Wen, Yang (bib36) 2021; 206 Xiong, Lu, Holmes (bib75) 2022 Fergus (bib153) 2010; 195 Couto, Charkhgard, Karaman, Job, Kinnaert (bib284) 2023; 263 Yang, Huang, Lin (bib291) 2022; 12 Zhang, Wang, Li, He (bib281) 2021; 6 Karaman, Couto, Kinnaert, Job (bib211) 2023; MA2023-01 Yao, Wang, Zhang, Wang, Xie, Aguey-Zinsou, Ma, Wang (bib102) 2013; 237 Sharmila, Parthibavarman (bib142) 2021; 858 Chen, Lai, Gu, Tang, Gao, Han, Zheng (bib294) 2022; 369 Yang, Duh, Chen, Wang (bib162) 2018; 1 Liu, Li, Lin, Hsu, Liu, Yan, Wu, Cui, Chu (bib43) 2020; 4 Villazon, Sauriol, Rousselot, Talebi-Esfandarani, Bibienne, Gauthier, Liang, Dollé, Chartrand (bib192) 2019; 97 Maeyoshi, Miyamoto, Noda, Munakata, Kanamura (bib13) 2017; 337 Song, Munk-Nielsen, Knap, Uhrenfeldt (bib233) 2021; 44 Zhang, Ma, Shen, Zhai, Zhang, Ji, Hong (bib50) 2020; 253 Jiang, Peng, Zhou, Hu, Zhang, Wu, Zhang, Chen (bib136) 2023; 415 Ludwig, Marino, Haering, Stinner, Nordlund, Doeff, Gasteiger, Nilges (bib160) 2016; 6 Chen, Jin, Lv, Yang, Liu, Chen, Xie, Chen (bib231) 2020; 26 Dang, Helal, Zhu, Xu, Zhu (bib42) 2023; 2 Huang, Pérez-Cardona, Zhao, Sutherland, Paranthaman (bib45) 2021; 9 Global Production of Lithium by Route, 2019 and 2050, (2020). Jin, Jiang, Bao, Hao, Zhang (bib81) 2017; 117 Yang, Ma, Hu, Xi, Lu, Chung (bib144) 2012; 22 Nolan, Liu, Mo (bib185) 2019; 4 Fan, Fan, Hu, Zeng, Zhang, Han, Liu (bib147) 2021; 876 Pei, Yao, Zhang, Yang (bib156) 2012; 220 2023 F-150® Lightning, Ford (2023). Tolganbek, Yerkinbekova, Kalybekkyzy, Bakenov, Mentbayeva (bib17) 2021; 882 Wang, Gao, He, Peng, Zhang, Dai, Ping, Kong (bib234) 2024; 236 Mikael Hanicke, Sören Jautelat, Martin Linder, Patrick Schaufuss, Lukas Torscht, Alexandre van de Rijt (bib6) 2019 Choi, Wang, Bae, Xiao, Nie, Wang, Viswanathan, Lee, Zhang, Graff, Yang, Liu (bib188) 2010; 10 Hasselwander, Meyer, Österle (bib286) 2023; 9 Accident Analysis of the Beijing Lithium Battery Explosion Which Killed Two Firefighters, CTIF International Association of Fire Services, 2021. Wu, Zhang, Ju, Wang, Hui, Mayilvahanan, Takeuchi, Marschilok, West, Takeuchi, Yu (bib282) 2021; 33 Xiuqin, Lin, Haichen, Yichen, Jianwei (bib171) 2012; 22 Zhao, Wang, Cheng (bib35) 2023; 217 Padhi, Nanjundaswamy, Goodenough (bib7) 1997; 144 Jasinski (bib95) 2022 Tracking Steel in Tracking Clean Energy Progress 2023, (2023). Cakmak, Hartl, Kisser, Cetecioglu (bib93) 2022; 219 Battery Materials Market Set to Be Finely Balanced in 2023, (2023). Huynh, Le, Trinh, Tran, Tran, Le (bib167) 2019; 2019 Šimaitis, Allen, Vagg (bib300) 2023 Kelly, Wang, Dai, Winjobi (bib49) 2021; 174 Gao, Lin, LaClair, Liu, Li, Birky, Ward (bib260) 2017; 122 W. Yu, FePO4 synthesis method, CN103754855A, 2014. Guo, Cao, Liu, Ni, Chen, Terrones, Wang (bib206) 2023; 10 Frith, Lacey, Ulissi (bib239) 2023; 14 Brownlie, Sutton, Reay, Heal, Hermann, Kabbe, Spears (bib91) 2021; 2 Liu, Chen, Li, Ding, An, Pan, Zheng, Yang, Fu (bib182) 2018; 11 Cobalt is the Most Expensive Material Used in Lithium-ion Battery Cathodes, (2022). 〈https://www.energy.gov/eere/vehicles/articles/fotw-1228-march-7-2022-cobalt-most-expensive-material-used-lithium-ion#:∼:text=Cobalt%20is%20an%20important%20ingredient,%249%20per%20pound%20in%202021〉. Zhang, Xie, Jin, Zhang, Li, Li, Li, Bao (bib18) 2020; 603 Hagelstein (bib 10.1016/j.mser.2024.100797_bib276 Fleischmann (10.1016/j.mser.2024.100797_bib301) 2023 Liu (10.1016/j.mser.2024.100797_bib43) 2020; 4 10.1016/j.mser.2024.100797_bib274 10.1016/j.mser.2024.100797_bib273 10.1016/j.mser.2024.100797_bib271 Ventura (10.1016/j.mser.2024.100797_bib37) 2020 Zaghib (10.1016/j.mser.2024.100797_bib15) 2023 Karaman (10.1016/j.mser.2024.100797_bib211) 2023; MA2023-01 Bleakley (10.1016/j.mser.2024.100797_bib287) 2023 Rong (10.1016/j.mser.2024.100797_bib108) 2014; 6 Haque (10.1016/j.mser.2024.100797_bib83) 2022 Trinh (10.1016/j.mser.2024.100797_bib166) 2021; 11 Coffin (10.1016/j.mser.2024.100797_bib229) 2018 Jones (10.1016/j.mser.2024.100797_bib92) 2023 Kanamura (10.1016/j.mser.2024.100797_bib165) 2008; 43 Wang (10.1016/j.mser.2024.100797_bib21) 2018; 1 Li (10.1016/j.mser.2024.100797_bib217) 2020; 167 Wang (10.1016/j.mser.2024.100797_bib132) 2019; 4 10.1016/j.mser.2024.100797_bib269 Linder (10.1016/j.mser.2024.100797_bib293) 2023 Zhang (10.1016/j.mser.2024.100797_bib18) 2020; 603 Li (10.1016/j.mser.2024.100797_bib224) 2021; 2 10.1016/j.mser.2024.100797_bib268 10.1016/j.mser.2024.100797_bib267 Zhu (10.1016/j.mser.2024.100797_bib79) 2022 10.1016/j.mser.2024.100797_bib265 Dai (10.1016/j.mser.2024.100797_bib228) 2022; 3 Lin (10.1016/j.mser.2024.100797_bib63) 2016; 23 10.1016/j.mser.2024.100797_bib263 (10.1016/j.mser.2024.100797_bib89) 2020 Guo (10.1016/j.mser.2024.100797_bib146) 2015; 54 Guo (10.1016/j.mser.2024.100797_bib113) 2021; 16 Yang (10.1016/j.mser.2024.100797_bib291) 2022; 12 Daheron (10.1016/j.mser.2024.100797_bib193) 2011; 15 Guven (10.1016/j.mser.2024.100797_bib55) 2023; 115 Shen (10.1016/j.mser.2024.100797_bib98) 2021; 496 Zhu (10.1016/j.mser.2024.100797_bib122) 2014; 20 Lai (10.1016/j.mser.2024.100797_bib298) 2022; 12 Castelvecchi (10.1016/j.mser.2024.100797_bib46) 2021; 596 Nguyen (10.1016/j.mser.2024.100797_bib209) 2020; 167 10.1016/j.mser.2024.100797_bib258 Hwang (10.1016/j.mser.2024.100797_bib25) 2017; 46 10.1016/j.mser.2024.100797_bib256 10.1016/j.mser.2024.100797_bib296 10.1016/j.mser.2024.100797_bib295 Li (10.1016/j.mser.2024.100797_bib41) 2021; 14 10.1016/j.mser.2024.100797_bib5 Johnson (10.1016/j.mser.2024.100797_bib117) 2016; 18 Lyle (10.1016/j.mser.2024.100797_bib139) 2022; 169 10.1016/j.mser.2024.100797_bib3 Zheng (10.1016/j.mser.2024.100797_bib168) 2020; 10 10.1016/j.mser.2024.100797_bib4 Xiao (10.1016/j.mser.2024.100797_bib106) 2014; 21 Wu (10.1016/j.mser.2024.100797_bib282) 2021; 33 Kerbel (10.1016/j.mser.2024.100797_bib109) 2018; 44 Zhong (10.1016/j.mser.2024.100797_bib137) 2012; 22 Qiu (10.1016/j.mser.2024.100797_bib202) 2014; 111 Chen (10.1016/j.mser.2024.100797_bib231) 2020; 26 Sarmadi (10.1016/j.mser.2024.100797_bib161) 2021; 15 Lee (10.1016/j.mser.2024.100797_bib19) 2011; 6 Yang (10.1016/j.mser.2024.100797_bib44) 2018; 2 Lu (10.1016/j.mser.2024.100797_bib78) 2022 Clout (10.1016/j.mser.2024.100797_bib70) 2022 Fan (10.1016/j.mser.2024.100797_bib147) 2021; 876 Dou (10.1016/j.mser.2024.100797_bib210) 2023; 33 Herrera (10.1016/j.mser.2024.100797_bib140) 2015; 3 Chien (10.1016/j.mser.2024.100797_bib104) 2018; 660 Zaghib (10.1016/j.mser.2024.100797_bib191) 2011; 35 Jiang (10.1016/j.mser.2024.100797_bib136) 2023; 415 10.1016/j.mser.2024.100797_bib163 Tarascon (10.1016/j.mser.2024.100797_bib149) 2001; 414 Ming (10.1016/j.mser.2024.100797_bib124) 2021; 6 10.1016/j.mser.2024.100797_bib280 Wang (10.1016/j.mser.2024.100797_bib133) 2019; 11 Shahid (10.1016/j.mser.2024.100797_bib186) 2013; 140 Peng (10.1016/j.mser.2024.100797_bib135) 2009; 28 Zhang (10.1016/j.mser.2024.100797_bib213) 2018; 6 Kim (10.1016/j.mser.2024.100797_bib154) 2020; 9 Huang (10.1016/j.mser.2024.100797_bib196) 2021; 13 Wani (10.1016/j.mser.2024.100797_bib20) 2021; 44 10.1016/j.mser.2024.100797_bib1 10.1016/j.mser.2024.100797_bib2 Zhang (10.1016/j.mser.2024.100797_bib50) 2020; 253 Yao (10.1016/j.mser.2024.100797_bib102) 2013; 237 Peng (10.1016/j.mser.2024.100797_bib232) 2023; 72 Xu (10.1016/j.mser.2024.100797_bib299) 2022; 187 Boyadzhieva (10.1016/j.mser.2024.100797_bib23) 2017; 19 Julien (10.1016/j.mser.2024.100797_bib164) 2016; 4 Fallah (10.1016/j.mser.2024.100797_bib9) 2023; 68 Yongjia (10.1016/j.mser.2024.100797_bib125) 2021; 27 Pardikar (10.1016/j.mser.2024.100797_bib103) 2023; 5 Bhutada (10.1016/j.mser.2024.100797_bib86) 2022 Zhang (10.1016/j.mser.2024.100797_bib197) 2021; 45 Mining (10.1016/j.mser.2024.100797_bib71) 2013 Chen (10.1016/j.mser.2024.100797_bib221) 2023; 30 Huynh (10.1016/j.mser.2024.100797_bib167) 2019; 2019 Ellingsen (10.1016/j.mser.2024.100797_bib259) 2016; 11 Fang (10.1016/j.mser.2024.100797_bib129) 2014; 14 Zhong (10.1016/j.mser.2024.100797_bib105) 2010; 119 Chen (10.1016/j.mser.2024.100797_bib170) 2007; 174 Li (10.1016/j.mser.2024.100797_bib110) 2013; 56 Liu (10.1016/j.mser.2024.100797_bib143) 2011; 46 Zhang (10.1016/j.mser.2024.100797_bib199) 2023; 456 10.1016/j.mser.2024.100797_bib28 Ruth (10.1016/j.mser.2024.100797_bib80) 2004 Dang (10.1016/j.mser.2024.100797_bib42) 2023; 2 Spears (10.1016/j.mser.2024.100797_bib47) 2022; 3 10.1016/j.mser.2024.100797_bib183 Zheng (10.1016/j.mser.2024.100797_bib118) 2023; 960 He (10.1016/j.mser.2024.100797_bib65) 2021; 306 Chen (10.1016/j.mser.2024.100797_bib294) 2022; 369 Jasinski (10.1016/j.mser.2024.100797_bib95) 2022 Nitta (10.1016/j.mser.2024.100797_bib288) 2015; 18 Tabelin (10.1016/j.mser.2024.100797_bib39) 2021; 163 Qin (10.1016/j.mser.2024.100797_bib264) 2022; 313 Zuo (10.1016/j.mser.2024.100797_bib220) 2013; 160 10.1016/j.mser.2024.100797_bib16 Zhao (10.1016/j.mser.2024.100797_bib35) 2023; 217 Wang (10.1016/j.mser.2024.100797_bib107) 2017; 23 Desai (10.1016/j.mser.2024.100797_bib275) 2022 Yi (10.1016/j.mser.2024.100797_bib114) 2020; 5 Cakmak (10.1016/j.mser.2024.100797_bib93) 2022; 219 Eliseeva (10.1016/j.mser.2024.100797_bib205) 2020; 13 Jaumann (10.1016/j.mser.2024.100797_bib226) 2017; 6 Jaguemont (10.1016/j.mser.2024.100797_bib266) 2023; 231 Lambert (10.1016/j.mser.2024.100797_bib257) 2020 Zaghib (10.1016/j.mser.2024.100797_bib155) 2012; 16 Hao (10.1016/j.mser.2024.100797_bib297) 2019; 10 Kotal (10.1016/j.mser.2024.100797_bib150) 2022; 47 Xu (10.1016/j.mser.2024.100797_bib157) 2012; 73 Jugović (10.1016/j.mser.2024.100797_bib158) 2009; 190 Xiao (10.1016/j.mser.2024.100797_bib24) 2021; 5 Holmes (10.1016/j.mser.2024.100797_bib67) 2022 Wang (10.1016/j.mser.2024.100797_bib234) 2024; 236 Jin (10.1016/j.mser.2024.100797_bib235) 2022; 14 Laveda (10.1016/j.mser.2024.100797_bib181) 2018; 6 Ge (10.1016/j.mser.2024.100797_bib289) 2021; 2 Wang (10.1016/j.mser.2024.100797_bib215) 2020; 15 Min (10.1016/j.mser.2024.100797_bib26) 2021; 14 Jin (10.1016/j.mser.2024.100797_bib244) 2023 Benedek (10.1016/j.mser.2024.100797_bib172) 2017; 7 El-Shinawi (10.1016/j.mser.2024.100797_bib14) 2019; 58 Huang (10.1016/j.mser.2024.100797_bib45) 2021; 9 10.1016/j.mser.2024.100797_bib60 Song (10.1016/j.mser.2024.100797_bib233) 2021; 44 10.1016/j.mser.2024.100797_bib62 10.1016/j.mser.2024.100797_bib61 Paolella (10.1016/j.mser.2024.100797_bib159) 2016; 16 Choi (10.1016/j.mser.2024.100797_bib188) 2010; 10 Sauriol (10.1016/j.mser.2024.100797_bib189) 2019; 97 Walvekar (10.1016/j.mser.2024.100797_bib236) 2022; 10 10.1016/j.mser.2024.100797_bib68 Sohn (10.1016/j.mser.2024.100797_bib84) 2020; 10 Li (10.1016/j.mser.2024.100797_bib115) 2019; 99 10.1016/j.mser.2024.100797_bib69 10.1016/j.mser.2024.100797_bib64 Huang (10.1016/j.mser.2024.100797_bib204) 2018; 53 You (10.1016/j.mser.2024.100797_bib27) 2020; 8 Zhang (10.1016/j.mser.2024.100797_bib121) 2022; 30 Mohamed (10.1016/j.mser.2024.100797_bib152) 2020; 10 Fichtner (10.1016/j.mser.2024.100797_bib237) 2022; 5 Šimaitis (10.1016/j.mser.2024.100797_bib300) 2023 Barbosa (10.1016/j.mser.2024.100797_bib148) 2021; 14 Guo (10.1016/j.mser.2024.100797_bib206) 2023; 10 Bolloju (10.1016/j.mser.2024.100797_bib100) 2016; 220 Vadivel Murugan (10.1016/j.mser.2024.100797_bib177) 2008; 156 Yang (10.1016/j.mser.2024.100797_bib179) 2019; 12 Gao (10.1016/j.mser.2024.100797_bib203) 2015; 298 10.1016/j.mser.2024.100797_bib57 Nikolaeva (10.1016/j.mser.2024.100797_bib73) 2021; 6 Xiong (10.1016/j.mser.2024.100797_bib75) 2022 10.1016/j.mser.2024.100797_bib59 Gordon (10.1016/j.mser.2024.100797_bib208) 2020; 5 10.1016/j.mser.2024.100797_bib58 Mahmud (10.1016/j.mser.2024.100797_bib151) 2022; 15 Stace (10.1016/j.mser.2024.100797_bib72) 2022 10.1016/j.mser.2024.100797_bib52 Liu (10.1016/j.mser.2024.100797_bib225) 2022; 10 10.1016/j.mser.2024.100797_bib54 Villazon (10.1016/j.mser.2024.100797_bib192) 2019; 97 Hovington (10.1016/j.mser.2024.100797_bib11) 2015; 15 Patience (10.1016/j.mser.2024.100797_bib195) 2019; 97 Xu (10.1016/j.mser.2024.100797_bib56) 2020; 1 Liu (10.1016/j.mser.2024.100797_bib182) 2018; 11 Jin (10.1016/j.mser.2024.100797_bib81) 2017; 117 Zhou (10.1016/j.mser.2024.100797_bib112) 2017; 43 Mauler (10.1016/j.mser.2024.100797_bib277) 2022; 1 Liu (10.1016/j.mser.2024.100797_bib178) 2020; 8 Pieczonka (10.1016/j.mser.2024.100797_bib184) 2013; 230 He (10.1016/j.mser.2024.100797_bib40) 2020; 4 Zaghib (10.1016/j.mser.2024.100797_bib12) 2013; 232 Li (10.1016/j.mser.2024.100797_bib198) 2022; 122 Kim (10.1016/j.mser.2024.100797_bib285) 2020; 10 Guo (10.1016/j.mser.2024.100797_bib111) 2020; 45 Maeyoshi (10.1016/j.mser.2024.100797_bib13) 2017; 337 Mandal (10.1016/j.mser.2024.100797_bib126) 2017; 2 10.1016/j.mser.2024.100797_bib48 Gao (10.1016/j.mser.2024.100797_bib260) 2017; 122 Kim (10.1016/j.mser.2024.100797_bib82) 2022; 89 Xing (10.1016/j.mser.2024.100797_bib214) 2022; 5 Bouguern (10.1016/j.mser.2024.100797_bib216) 2024; 10 Tajik (10.1016/j.mser.2024.100797_bib262) 2023; 66 Mauler (10.1016/j.mser.2024.100797_bib270) 2021; 14 Yang (10.1016/j.mser.2024.100797_bib278) 2021; 6 Guo (10.1016/j.mser.2024.100797_bib145) 2014; 2 Muralidharan (10.1016/j.mser.2024.100797_bib272) 2022; 12 Toba (10.1016/j.mser.2024.100797_bib29) 2021; 169 Lee (10.1016/j.mser.2024.100797_bib252) 2023 Chen (10.1016/j.mser.2024.100797_bib175) 2022; 12 Couto (10.1016/j.mser.2024.100797_bib284) 2023; 263 Vera (10.1016/j.mser.2024.100797_bib34) 2023; 4 Brownlie (10.1016/j.mser.2024.100797_bib91) 2021; 2 Yi (10.1016/j.mser.2024.100797_bib119) 2022; 33 Sparrow (10.1016/j.mser.2024.100797_bib77) 2022 Hasse |
References_xml | – volume: 5 start-page: 9752 year: 2020 end-page: 9758 ident: bib114 article-title: Enhancement of electrochemical performance of LiFePO4@C by Ga coating publication-title: ACS Omega – reference: New Mach-E LFP battery specs revealed, macheforum (2023). – volume: 14 start-page: 2186 year: 2021 end-page: 2243 ident: bib26 article-title: Potassium-ion batteries: outlook on present and future technologies publication-title: Energy Environ. Sci. – volume: 2 start-page: 218 year: 2017 end-page: 222 ident: bib126 article-title: Synthesis of highly dispersed FePO4 cathode material for rechargeable lithium battery publication-title: Adv. Mater. Proc. – volume: 22 start-page: 2535 year: 2012 end-page: 2540 ident: bib137 article-title: Synthesis of LiMnPO4/C composite material for lithium ion batteries by sol-gel method publication-title: Trans. Nonferrous Met. Soc. China – volume: 1 start-page: 6208 year: 2018 end-page: 6216 ident: bib162 article-title: Synthesis and in-situ investigation of olivine LiMnPO4 composites substituted with tetravalent vanadium in high-rate Li-Ion batteries publication-title: ACS Appl. Energy Mater. – volume: 140 start-page: 659 year: 2013 end-page: 664 ident: bib186 article-title: Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries publication-title: Mater. Chem. Phys. – reference: Global HPMSM market, Can. Manganese (n.d.). – reference: , , EV Transit. Threat. Battery Prices. Rise First Time.. – volume: 33 year: 2021 ident: bib282 article-title: From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems publication-title: Adv. Mater. – volume: 167 year: 2020 ident: bib217 article-title: Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes, deposition on anodes and elimination strategies publication-title: J. Electrochem. Soc. – year: 2023 ident: bib244 article-title: Tesla to use iron-based batteries in semi electric trucks and affordable electric car – volume: 23 start-page: 144 year: 2019 end-page: 153 ident: bib283 article-title: Research and development of advanced battery materials in China publication-title: Energy Storage Mater. – volume: 306 year: 2021 ident: bib65 article-title: Hazard-free treatment and resource utilisation of electrolytic manganese residue: a review publication-title: J. Clean. Prod. – volume: 9 year: 2017 ident: bib292 article-title: GHG emissions from the production of lithium-ion batteries for electric vehicles in China publication-title: Sustainability – start-page: 375 year: 2022 end-page: 396 ident: bib76 article-title: Chapter 11- physiochemical separation of iron ore publication-title: Iron Ore Second Ed. – volume: 11 year: 2016 ident: bib259 article-title: The size and range effect: lifecycle greenhouse gas emissions of electric vehicles publication-title: Environ. Res. Lett. – volume: 219 year: 2022 ident: bib93 article-title: Phosphorus mining from eutrophic marine environment towards a blue economy: the role of bio-based applications publication-title: Water Res. – volume: 115 year: 2023 ident: bib55 article-title: Life-cycle assessment and life-cycle cost assessment of lithium-ion batteries for passenger ferry publication-title: Transp. Res. Part Transp. Environ. – volume: 11 start-page: 13225 year: 2019 end-page: 13233 ident: bib133 article-title: Facile construction of high-performance amorphous FePO4/carbon nanomaterials as cathodes of lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 10581 year: 2014 end-page: 10588 ident: bib145 article-title: Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process publication-title: J. Mater. Chem. A – year: 2020 ident: bib257 article-title: Tesla is Working on New ∼110 kWh Battery Pack for More than 400 Miles of Range – reference: W. Yu, FePO4 synthesis method, CN103754855A, 2014. – volume: 27 start-page: 983 year: 2021 end-page: 991 ident: bib125 article-title: Influence of synthesis parameters on the properties of FePO4·2H2O used for the precursor of LiFePO4 cathode material publication-title: Ionics – start-page: 269 year: 2022 end-page: 308 ident: bib74 article-title: Chapter 8- Comminution and classification technologies of iron ore publication-title: Iron Ore Second Ed. – volume: 11 year: 2021 ident: bib166 article-title: Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries publication-title: Sci. Rep. – volume: 232 start-page: 357 year: 2013 end-page: 369 ident: bib12 article-title: Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends publication-title: J. Power Sources – volume: 960 year: 2023 ident: bib118 article-title: Y3+ doping and electrochemical properties of LiFe0.5Mn0.5PO4@C cathode material for lithium-ion batteries publication-title: J. Alloy. Compd. – reference: Zh Jiang, D. Hua, Method for Preparing Manganese Sulfate, EP10799405A1, 2012. – volume: 23 start-page: 491 year: 2016 end-page: 500 ident: bib63 article-title: Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching publication-title: Int. J. Miner. Metall. Mater. – volume: 18 start-page: 252 year: 2015 end-page: 264 ident: bib288 article-title: Li-ion battery materials: present and future publication-title: Mater. Today – volume: 144 start-page: 1188 year: 1997 ident: bib7 article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries publication-title: J. Electrochem. Soc. – reference: L.W. Beck, M. Soltani, L. Wang, Ferric Phosphate and Methods of Preparation Thereof, US9174846B2, 2015. – volume: 45 start-page: 33016 year: 2020 end-page: 33027 ident: bib111 article-title: Synthesis and electrochemical performance of lithium iron phosphate/carbon composites based on controlling the secondary morphology of precursors publication-title: Int. J. Hydrog. Energy – volume: 882 year: 2021 ident: bib17 article-title: Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: a review publication-title: J. Alloy. Compd. – volume: 8 year: 2022 ident: bib174 article-title: Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review publication-title: Batteries – volume: 195 start-page: 939 year: 2010 end-page: 954 ident: bib153 article-title: Recent developments in cathode materials for lithium ion batteries publication-title: J. Power Sources – volume: 15 year: 2022 ident: bib151 article-title: Recent advances in lithium-ion battery materials for improved electrochemical performance: a review publication-title: Results Eng. – volume: 302 start-page: 274 year: 2016 end-page: 282 ident: bib219 article-title: Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material publication-title: J. Power Sources – reference: Accident Analysis of the Beijing Lithium Battery Explosion Which Killed Two Firefighters, CTIF International Association of Fire Services, 2021. – volume: 2 start-page: 71 year: 2021 end-page: 74 ident: bib91 article-title: Global actions for a sustainable phosphorus future publication-title: Nat. Food – volume: 858 year: 2021 ident: bib142 article-title: Lithium manganese phosphate associated with MWCNT: enhanced positive electrode for lithium hybrid batteries publication-title: J. Alloy. Compd. – volume: 10 year: 2020 ident: bib84 article-title: Energy consumption and CO2 emissions in ironmaking and development of a novel flash technology publication-title: Metals – year: 2023 ident: bib15 article-title: Secondary batteries – lithium rechargeable systems – lithium-ion | positive electrode: lithium iron phosphate publication-title: in: Ref. Module Chem. Mol. Sci. Chem. Eng. – year: 2023 ident: bib293 article-title: the Race to Decarbonize Electric-vehicle Batteries – start-page: 695 year: 2004 end-page: 706 ident: bib80 article-title: Steel Production and Energy publication-title: Encycl. Energy – volume: 1 start-page: 136 year: 2022 end-page: 145 ident: bib277 article-title: Technological innovation vs. tightening raw material markets: falling battery costs put at risk publication-title: Energy Adv. – volume: 237 start-page: 160 year: 2013 end-page: 164 ident: bib102 article-title: High purity lithium iron phosphate/carbon composites prepared by using secondary lithium source publication-title: Powder Technol. – volume: 190 start-page: 538 year: 2009 end-page: 544 ident: bib158 article-title: A review of recent developments in the synthesis procedures of lithium iron phosphate powders publication-title: J. Power Sources – reference: Global Production of Lithium by Route, 2019 and 2050, (2020). – volume: 13 year: 2021 ident: bib196 article-title: Rational design of effective binders for LiFePO4 cathodes publication-title: Polymers – volume: 72 year: 2023 ident: bib232 article-title: Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack publication-title: J. Energy Storage – volume: 337 start-page: 92 year: 2017 end-page: 99 ident: bib13 article-title: Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method publication-title: J. Power Sources – volume: 66 year: 2023 ident: bib262 article-title: Sustainable cathode material selection in lithium-ion batteries using a novel hybrid multi-criteria decision-making publication-title: J. Energy Storage – volume: 7 start-page: 17763 year: 2017 end-page: 17767 ident: bib172 article-title: Low temperature hydrothermal synthesis of battery grade lithium iron phosphate publication-title: RSC Adv. – volume: 2 year: 2023 ident: bib42 article-title: Industrial pathways to lithium extraction from seawater: challenges and perspectives publication-title: Nano Res. Energy – reference: Mineral requirements for clean energy transitions, (n.d.). – reference: , High-purity manganese facing phenomenal demand growth, PDAC hears, Miningweekly. – volume: 22 start-page: 25402 year: 2012 end-page: 25408 ident: bib144 article-title: Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties publication-title: J. Mater. Chem. – volume: 193 year: 2021 ident: bib96 article-title: Freeze drying under vacuum assisted synthesis of LiFePO4@MWCNTs composite with phytic acid as phosphorus source for advanced Li-storage publication-title: Vacuum – reference: IEA, Global CO2 Emissions from Transport by Sub-sector in the Net Zero Scenario, 2000-2030, (2023). – volume: 10 year: 2023 ident: bib206 article-title: Preparation of tough, binder-free, and self-supporting LiFePO4 cathode by using mono-dispersed ultra-long single-walled carbon nanotubes for high-rate performance Li-ion battery publication-title: Adv. Sci. – volume: 12 start-page: 5664 year: 2012 end-page: 5668 ident: bib131 article-title: Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes publication-title: Nano Lett. – year: 2023 ident: bib92 article-title: Norway to develop massive phosphate deposit publication-title: Min. Technol. – volume: 73 start-page: 51 year: 2012 end-page: 65 ident: bib157 article-title: Recent progress in cathode materials research for advanced lithium ion batteries publication-title: Mater. Sci. Eng. R. Rep. – volume: 33 year: 2023 ident: bib210 article-title: Review on the binders for sustainable high-energy-density lithium ion batteries: status, solutions, and prospects publication-title: Adv. Funct. Mater. – start-page: 489 year: 2022 end-page: 538 ident: bib78 article-title: Chapter 15- iron ore sintering publication-title: Iron Ore Second Ed. – volume: 6 start-page: 28 year: 2011 end-page: 41 ident: bib19 article-title: Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries publication-title: Nano today – volume: 9 year: 2023 ident: bib286 article-title: Techno-economic analysis of different battery cell chemistries for the passenger vehicle market publication-title: Batteries – volume: 15 start-page: 5405 year: 2021 end-page: 5413 ident: bib161 article-title: -Lysine-assisted solvothermal synthesis of hollow-like structure LiFePO4/C powders as cathode materials for Li-ion batteries publication-title: J. Mater. Res. Technol. – year: 2022 ident: bib275 article-title: Explainer: Costs of Nickel and Cobalt Used in Electric Vehicle Batteries – volume: 2 start-page: 1648 year: 2018 end-page: 1651 ident: bib44 article-title: Lithium metal extraction from seawater publication-title: Joule – volume: 23 start-page: 377 year: 2017 end-page: 384 ident: bib107 article-title: Synthesis and electrochemical performance of LiFePO4/C cathode materials from Fe2O3 for high-power lithium-ion batteries publication-title: Ionics – reference: Price of Selected Battery Materials and Lithium-ion Batteries, 2015-2023, (2023). – reference: Trends in Batteries, Battery Demand For EVs continues to Rise, (2023). – reference: Reserves of iron ore worldwide in 2022, by country, (2023). – volume: 187 year: 2022 ident: bib299 article-title: Future greenhouse gas emissions of automotive lithium-ion battery cell production publication-title: Resour. Conserv. Recycl. – volume: 8 start-page: 25601 year: 2020 end-page: 25625 ident: bib27 article-title: Advances in rechargeable Mg batteries publication-title: J. Mater. Chem. A – year: 2022 ident: bib95 article-title: Mineral commodity summaries 2022 - Phosphate – reference: M. Kane, See inside of the Tesla Model 3’s LFP prismatic battery pack, Insideevs (2021). – volume: 54 start-page: 667 year: 2015 end-page: 674 ident: bib146 article-title: Performance improvement of lithium manganese phosphate by controllable morphology tailoring with acid-engaged nano engineering publication-title: Inorg. Chem. – volume: 44 start-page: 8397 year: 2018 end-page: 8402 ident: bib109 article-title: Continuous solid-phase synthesis of nanostructured lithium iron phosphate powders in air publication-title: Ceram. Int. – volume: 20 start-page: 1821 year: 2016 end-page: 1829 ident: bib101 article-title: LiFePO4 synthesized via melt synthesis using low-cost iron precursors publication-title: J. Solid State Electrochem. – volume: 122 start-page: 903 year: 2022 end-page: 956 ident: bib198 article-title: From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing publication-title: Chem. Rev. – reference: N. Carey, P. Lienert, Insight: EV Battery Makers Race to Develop Cheaper Cell Materials, Skirting China, Reuters (2022). – volume: 16 start-page: 835 year: 2012 end-page: 845 ident: bib155 article-title: Overview of olivines in lithium batteries for green transportation and energy storage publication-title: J. Solid State Electrochem. – volume: 6 start-page: 14483 year: 2018 end-page: 14517 ident: bib169 article-title: Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries publication-title: J. Mater. Chem. A – start-page: 539 year: 2022 end-page: 578 ident: bib79 article-title: Chapter 16 - Iron ore pelletization publication-title: Iron Ore Second Ed. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 ident: bib25 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. – reference: D.R. Baker, 2022, – reference: Lithium Production, 2021, and Projected Demand in Climate-driven Scenarios, 2030, (2022). – reference: Race to Net Zero: the Pressures of the Battery Boom in Five Charts, (2022). – volume: 19 start-page: 96 year: 2018 end-page: 102 ident: bib212 article-title: Effect of negative/positive capacity ratio on the rate and cycling performances of LiFePO4/graphite lithium-ion batteries publication-title: J. Energy Storage – volume: 603 year: 2020 ident: bib18 article-title: Research status of spinel LiMn2O4 cathode materials for lithium ion batteries publication-title: IOP Conf. Ser. Earth Environ. Sci. – reference: Z. Youxiang, W. Meng, Z. Keli, Preparation Method of Nano-flaky FePO4.2H2O, CN102009968A, 2011. – volume: 14 year: 2021 ident: bib148 article-title: Recent advances on materials for lithium-ion batteries publication-title: Energies – reference: , , Major Ctries. Worldw. Lithium mine Prod. 2022.. – volume: 12 year: 2022 ident: bib298 article-title: Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective publication-title: eTransportation – volume: 12 year: 2022 ident: bib175 article-title: Carbon-coatings improve performance of Li-ion battery publication-title: Nanomaterials – reference: Tesla Master Plan Part 3–Sustainable Energy for All of Earth, Tesla, 2023. – volume: 48 start-page: 270 year: 2015 end-page: 277 ident: bib176 article-title: Morphology-controlled two-step synthesis and electrochemical studies on hierarchically structured LiCoPO4 publication-title: Solid State Sci. – reference: LFP Batteries to Expand Powertrain Choice for Mustang Mach-e as Ford Increases Battery Production Capacity, Ford (2023). – volume: 660 start-page: 931 year: 2018 end-page: 937 ident: bib104 article-title: Effects of α-Fe2O3 size and morphology on performance of LiFePO4/C cathodes for Li-ion batteries publication-title: Thin Solid Films – volume: 220 start-page: 317 year: 2012 end-page: 323 ident: bib156 article-title: Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries publication-title: J. Power Sources – reference: Fact sheet: Biden-Harris Administration Driving U.S. Battery Manufacturing and Good-paying Jobs, The White House, 2022. – volume: 10 start-page: 21662 year: 2020 end-page: 21685 ident: bib152 article-title: Recent advances in the design of cathode materials for Li-ion batteries publication-title: RSC Adv. – volume: 44 year: 2021 ident: bib233 article-title: Performance evaluation of lithium-ion batteries (LiFePO4 cathode) from novel perspectives using a new figure of merit, temperature distribution analysis, and cell package analysis publication-title: J. Energy Storage – reference: BYD (n.d.). – volume: 10 start-page: 22929 year: 2022 end-page: 22954 ident: bib225 article-title: Advanced electrolyte systems with additives for high-cell-voltage and high-energy-density lithium batteries publication-title: J. Mater. Chem. A – volume: 6 start-page: 127 year: 2018 end-page: 137 ident: bib181 article-title: Structure–property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes publication-title: J. Mater. Chem. A – reference: List of Newly Released Technologies, Toyota, 2023. – volume: 4 start-page: 1357 year: 2020 end-page: 1358 ident: bib40 article-title: Mining lithium from seawater publication-title: Joule – volume: 5 start-page: 11455 year: 2020 end-page: 11465 ident: bib208 article-title: Effect of polymeric binders on dispersion of active particles in aqueous LiFePO4-based cathode slurries as well as on mechanical and electrical properties of corresponding dry layers publication-title: ACS Omega – volume: 2 year: 2016 ident: bib223 article-title: Lithium fluoride additives for stable cycling of lithium batteries at high current densities publication-title: Adv. Electron. Mater. – volume: 163 year: 2021 ident: bib39 article-title: Towards a low-carbon society: a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives publication-title: Miner. Eng. – year: 2016 ident: bib173 article-title: Lithium Batteries: Science and Technology – year: 2023 ident: bib301 article-title: Battery 2030: Resilient, Sustainable, and Circular – reference: BYD’s Revolutionary Blade Battery: All You Need to Know, BYD, 2023. – volume: 31 year: 2020 ident: bib261 article-title: Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating publication-title: J. Energy Storage – volume: 10 year: 2020 ident: bib285 article-title: Optimization for maximum specific energy density of a lithium-ion battery using progressive quadratic response surface method and design of experiments publication-title: Sci. Rep. – volume: 9 year: 2023 ident: bib8 article-title: Trends in automotive battery cell design: a statistical analysis of empirical data publication-title: Batteries – volume: 97 start-page: 2287 year: 2019 end-page: 2298 ident: bib192 article-title: Melt-synthesis of LiFePO4 over a metallic bath publication-title: Can. J. Chem. Eng. – volume: 119 start-page: 428 year: 2010 end-page: 431 ident: bib105 article-title: Preparation of high tap-density LiFePO4/C composite cathode materials by carbothermal reduction method using two kinds of Fe3+ precursors publication-title: Mater. Chem. Phys. – volume: 169 year: 2021 ident: bib29 article-title: U.S. lithium resources from geothermal and extraction feasibility publication-title: Resour. Conserv. Recycl. – volume: 415 year: 2023 ident: bib136 article-title: Recovery of iron from titanium white waste for the preparation of LiFePO4 battery publication-title: J. Clean. Prod. – volume: MA2023-01 start-page: 597 year: 2023 ident: bib211 article-title: The effect of particle size and the material loading to the performance and stability of the LFP batteries publication-title: ECS Meet. Abstr. – volume: 6 start-page: 20564 year: 2018 end-page: 20620 ident: bib213 article-title: Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries publication-title: J. Mater. Chem. A – volume: 414 start-page: 359 year: 2001 end-page: 367 ident: bib149 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature – reference: Battery Materials Market Set to Be Finely Balanced in 2023, (2023). – volume: 3 start-page: 14 year: 2022 ident: bib47 article-title: Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector publication-title: Commun. Mater. – volume: 496 year: 2021 ident: bib98 article-title: Facile fabrication of compact LiFePO4/C composite with excellent atomically-efficient for high-energy-density Li-ion batteries publication-title: J. Power Sources – volume: 1 start-page: 99 year: 2020 ident: bib56 article-title: Future material demand for automotive lithium-based batteries publication-title: Commun. Mater. – volume: 220 start-page: 164 year: 2016 end-page: 168 ident: bib100 article-title: A green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly publication-title: Electrochim. Acta – reference: Canada’s energy future 2023: Energy Supply and Demand Projections To 2050, Canada Energy Regulator, 2023. – volume: 160 start-page: A1199 year: 2013 ident: bib220 article-title: Lithium Tetrafluoroborate as an electrolyte additive to improve the high voltage performance of lithium-ion battery publication-title: J. Electrochem. Soc. – volume: 10 start-page: 2799 year: 2010 end-page: 2805 ident: bib188 article-title: LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode publication-title: Nano Lett. – volume: 6 start-page: 18957 year: 2021 end-page: 18963 ident: bib124 article-title: Preparation of micro–nano-structured FePO4·2H2O for LiFePO4 cathode materials by the turbulent flow cycle method publication-title: ACS Omega – volume: 174 year: 2021 ident: bib49 article-title: Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries publication-title: Resour. Conserv. Recycl. – reference: M. Creamer, 2022, – volume: 5 year: 2023 ident: bib103 article-title: Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling publication-title: J. Phys. Energy – volume: 167 year: 2020 ident: bib209 article-title: Review—Conducting polymer-based binders for lithium-ion batteries and beyond publication-title: J. Electrochem. Soc. – volume: 313 year: 2022 ident: bib264 article-title: The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes publication-title: Appl. Energy – volume: 30 year: 2022 ident: bib121 article-title: 001]-oriented LiMn0.6Fe0.4PO4/C nanorod microspheres contributing high-rate performance to olivine-structured cathode for lithium-ion battery publication-title: Mater. Today Energy – volume: 20 start-page: 1501 year: 2014 end-page: 1510 ident: bib122 article-title: Research status in preparation of FePO4: a review publication-title: Ionics – reference: Iron ore facts, Canada.ca, 2023. – volume: 5 year: 2022 ident: bib237 article-title: Recent research and progress in batteries for electric vehicles publication-title: Batter. Supercaps – start-page: 309 year: 2022 end-page: 332 ident: bib75 article-title: Chapter 9- physical separation of iron ore: magnetic separation publication-title: Iron Ore Second Ed. – volume: 3 start-page: 64 year: 2022 ident: bib228 article-title: Best practices in lithium battery cell preparation and evaluation publication-title: Commun. Mater. – volume: 15 start-page: 1217 year: 2011 end-page: 1225 ident: bib193 article-title: Study of LiFePO4 synthesized using a molten method with varying stoichiometries publication-title: J. Solid State Electrochem. – volume: 10 start-page: 5565 year: 2020 ident: bib201 article-title: Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors publication-title: Sci. Rep. – reference: , , From dirty oil to clean batteries, European Federation for Transport & Environment.. – volume: 596 start-page: 336 year: 2021 end-page: 339 ident: bib46 article-title: Electric cars and batteries: how will the world produce enough? publication-title: Nature – volume: 56 start-page: 576 year: 2013 end-page: 582 ident: bib110 article-title: An optimum route to prepare FePO4·2H2O and its use as an iron source to synthesize LiFePO4 publication-title: Sci. China Chem. – volume: 1 start-page: 5928 year: 2018 end-page: 5935 ident: bib21 article-title: Modifying high-voltage olivine-type LiMnPO4 cathode via Mg substitution in high-orientation crystal publication-title: ACS Appl. Energy Mater. – reference: . – volume: 9 year: 2020 ident: bib154 article-title: A comprehensive review of li-ion battery materials and their recycling techniques publication-title: Electronics – reference: Can Geothermal Energy Solve the Lithium Shortfall?, Geothermal Technologies Office, Office of Energy Efficiency & Renewable Energy, The US Department of Energy (DOE), 2021. 〈https://www.energy.gov/eere/geothermal/articles/can-geothermal-energy-solve-lithium-shortfall#:∼:text=Hot%20salty%20water%2C%20or%20geothermal,from%20thousands%20of%20feet%20underground〉. – year: 2022 ident: bib86 article-title: The key minerals in an EV battery – volume: 2 start-page: 16 year: 2021 end-page: 36 ident: bib224 article-title: Electrolyte additives: adding the stability of lithium metal anodes publication-title: Nano Sel. – volume: 6 start-page: 26 year: 2017 end-page: 35 ident: bib226 article-title: Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes publication-title: Energy Storage Mater. – start-page: 59 year: 2022 end-page: 108 ident: bib70 article-title: Chapter 2- Mineralogical, chemical, and physical metallurgical characteristics of iron ore publication-title: Iron Ore Second Ed. – reference: S. Nordlund, Tesla Model Y RWD with BYD Blade Battery Has Improved Charging Speeds over Former CATL pack, Drive Tesla Can. (2023). – volume: 14 start-page: 3152 year: 2021 end-page: 3159 ident: bib41 article-title: Continuous electrical pumping membrane process for seawater lithium mining publication-title: Energy Environ. Sci. – reference: HPMSM processing 101, Process Routes for High Purity Manganese Production, Can. Manganese (n.d.). – reference: Passenger EV Battery Chemistries: LFP for the Massive, NCM for the Majority, (2022). – volume: 217 year: 2023 ident: bib35 article-title: Recent advances in lithium extraction from lithium-bearing clay minerals publication-title: Hydrometallurgy – volume: 2019 year: 2019 ident: bib167 article-title: Structure and electrochemical behavior of minor Mn-doped olivine LiMnxFe1−xPO4 publication-title: J. Chem. – volume: 14 start-page: 4712 year: 2021 end-page: 4739 ident: bib270 article-title: Battery cost forecasting: a review of methods and results with an outlook to 2050 publication-title: Energy Environ. Sci. – year: 2023 ident: bib252 article-title: Hyundai Highly Likely to Launch EV With CATL’s LFP Batteries This Year – volume: 174 start-page: 442 year: 2007 end-page: 448 ident: bib170 article-title: Hydrothermal synthesis of cathode materials publication-title: 13th Int. Meet. Lithium Batter – reference: IEA, Global CO2 Emissions by Sector, 2019, (2021). – volume: 456 year: 2023 ident: bib199 article-title: Solvent-free lithium iron phosphate cathode fabrication with fibrillation of polytetrafluoroethylene publication-title: Electrochim. Acta – volume: 35 start-page: 83 year: 2011 ident: bib191 article-title: Electrochemical features of LiFePO4 nanoparticles obtained by grinding ingot synthesized in the molten state publication-title: ECS Trans. – reference: Battery Critical Materials Supply Chain Challenges and Opportunities: Results of the 2020 Request for Information (RFI) and Workshop, Office of Energy Efficiency & Renewable Energy, the Us Department of Energy (DOE), 2022. – year: 2019 ident: bib6 publication-title: Battery 2030: Resilient, Sustainable, and Circular – volume: 13 start-page: 5723 year: 2023 end-page: 5743 ident: bib207 article-title: Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review publication-title: RSC Adv. – volume: 6 start-page: 621 year: 2021 end-page: 630 ident: bib290 article-title: Opportunities and challenges of lithium ion batteries in automotive applications publication-title: ACS Energy Lett. – reference: The Paris Agreement, Climate Action, United Nations, 2015. – volume: 4 start-page: 14790 year: 2019 end-page: 14799 ident: bib132 article-title: Amorphous FePO4/carbon nanotube cathode preparation via in Situ nanoprecipitation and coagulation in a microreactor publication-title: ACS Omega – volume: 45 start-page: 9846 year: 2021 end-page: 9855 ident: bib197 article-title: Green water-based binders for LiFePO4/C cathodes in Li-ion batteries: a comparative study publication-title: N. J. Chem. – reference: Canada’s New Economic Engine, Modelling Canada’s Ev Battery Supply Chain Potential—and How Best to Seize It, Clean Energy Canada and Trillium, 2022. – start-page: 1 year: 2022 end-page: 56 ident: bib67 article-title: Chapter 1- introduction: overview of the global iron ore industry publication-title: Iron Ore Second Ed. – reference: Lithium-Ion Battery Pack Prices Rise for First Time to an Average of $151/kWh, (2022). – volume: 6 start-page: 176 year: 2021 end-page: 185 ident: bib278 article-title: Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles publication-title: Nat. Energy – volume: 134 start-page: 1 year: 2018 end-page: 21 ident: bib218 article-title: A comprehensive review of lithium salts and beyond for rechargeable batteries: progress and perspectives publication-title: Mater. Sci. Eng. R. Rep. – volume: 4 start-page: 1459 year: 2020 end-page: 1469 ident: bib43 article-title: Lithium extraction from seawater through pulsed electrochemical intercalation publication-title: Joule – reference: V. Gariepy, A. Guerfi, K. Hanai, P. Hovington, Sh Saito, T. Sawai, K. Urao, K. Zaghib, Method of Producing Electrode Material for Lithium-ion Secondary Battery and Lithium-ion Battery Using Such Electrode Material, EP 2909879 A1, 2015. – reference: M.J. Kim, T. Tran, Method for Producing High-purity Manganese Sulfate Monohydrate and High-purity Manganese Sulfate Monohydrate Produced by the Method, US20150110692A1, 2015. – reference: BloombergNEF: Battery Metals Rebounding; by 2030, Annual Li-ion Battery Demand to Pass 2TWh, Green Car Congr. (2021). – volume: 90 start-page: 3736 year: 2009 end-page: 3740 ident: bib51 article-title: Globally sustainable manganese metal production and use publication-title: Sustain. Ind. Environ. Syst. – volume: 253 year: 2020 ident: bib50 article-title: Life cycle assessment of electrolytic manganese metal production publication-title: J. Clean. Prod. – reference: Volumetric Energy Density of Lithium-ion Batteries Increased by More than Eight times Between 2008 and 2020, (2022). – volume: 369 year: 2022 ident: bib294 article-title: Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China publication-title: J. Clean. Prod. – reference: W.J. Brownlie, M.A. Sutton, K.V. Heal, D.S. Reay, B.M. Spears (eds.), Our Phosphorus Future, UK Centre for Ecology and Hydrology, Edinburgh, 2022. – volume: 19 start-page: 12730 year: 2017 end-page: 12739 ident: bib23 article-title: Crystal chemistry of Mg substitution in NaMnPO4 olivine: concentration limit and cation distribution publication-title: Phys. Chem. Chem. Phys. – year: 2023 ident: bib279 publication-title: High Energy Density Technology Exceeding Limitations – year: 2022 ident: bib53 article-title: Power spike: how battery makers can respond to surging demand from EVs – volume: 89 year: 2022 ident: bib82 article-title: Decarbonizing the iron and steel industry: a systematic review of sociotechnical systems, technological innovations, and policy options publication-title: Energy Res. Soc. Sci. – volume: 12 year: 2022 ident: bib272 article-title: Next-generation cobalt-free cathodes – a prospective solution to the battery industry’s cobalt problem publication-title: Adv. Energy Mater. – reference: National blueprint for lithium batteries 2021–2030, Federal Consortium for Advanced Batteries, The US Department of Energy (DOE), 2021. – reference: M. Garside, 2023, – volume: 16 year: 2021 ident: bib113 article-title: Preparation of LiFePO4 using iron(II) sulfate as product from titanium dioxide slag purification process and its electrochemical properties publication-title: Int. J. Electrochem. Sci. – volume: 3 start-page: 54 year: 2015 end-page: 64 ident: bib140 article-title: LiMnPO4: review on synthesis and electrochemical properties publication-title: J. Chem. Eng. Mater. Sci. – volume: 68 year: 2023 ident: bib9 article-title: Is shifting from Li-ion NMC to LFP in EVs beneficial for second-life storages in electricity markets? publication-title: J. Energy Storage – start-page: 691 year: 2022 end-page: 710 ident: bib83 article-title: Chapter 20- Life cycle assessment of iron ore mining and processing publication-title: Iron Ore Second Ed. – volume: 158 start-page: A1275 year: 2011 ident: bib116 article-title: LiMnPO4 nanoparticles prepared through the reaction between Li3PO4 and molten aqua-complex of MnSO4 publication-title: J. Electrochem. Soc. – volume: 263 year: 2023 ident: bib284 article-title: Lithium-ion battery design optimization based on a dimensionless reduced-order electrochemical model publication-title: Energy – volume: 10 start-page: 39981 year: 2020 end-page: 39987 ident: bib168 article-title: Heterogeneous synthesis and electrochemical performance of LiMnPO4/C composites as cathode materials of lithium ion batteries publication-title: RSC Adv. – volume: 47 year: 2022 ident: bib150 article-title: Cathode materials for rechargeable lithium batteries: recent progress and future prospects publication-title: J. Energy Storage – volume: 99 start-page: 74 year: 2019 end-page: 81 ident: bib115 article-title: Facile strategies to utilize FeSO4·7H2O waste slag for LiFePO4/C cathode with high performances publication-title: J. Taiwan Inst. Chem. Eng. – volume: 12 start-page: 26070 year: 2022 end-page: 26077 ident: bib138 article-title: Simple synthesis of a hierarchical LiMn0.8Fe0.2PO4/C cathode by investigation of iron sources for lithium-ion batteries publication-title: RSC Adv. – reference: Electric Vehicle Battery Pack Costs in 2022 Are Nearly 90% Lower than in 2008, According to DOE Estimates, (2023). – volume: 5 start-page: 14 year: 2022 ident: bib214 article-title: A review of nonaqueous electrolytes, binders, and separators for lithium-ion batteries publication-title: Electrochem. Energy Rev. – year: 2019 ident: bib227 article-title: Rational design of nanostructured polymer electrolytes and solid–liquid interphases for lithium batteries – year: 2023 ident: bib300 article-title: Are future recycling benefits misleading? Prospective life cycle assessment of lithium-ion batteries publication-title: J. Ind. Ecol. – volume: 11 start-page: 2251 year: 2018 ident: bib182 article-title: Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications publication-title: Materials – volume: 13 year: 2020 ident: bib205 article-title: Effect of combined conductive polymer binder on the electrochemical performance of electrode materials for lithium-ion batteries publication-title: Energies – volume: 6 start-page: 3719 year: 2021 end-page: 3724 ident: bib281 article-title: Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries publication-title: ACS Energy Lett. – reference: Committed Mine Production and Primary Demand for Lithium, 2020-2030, (2021). – volume: 33 start-page: 18364 year: 2022 end-page: 18373 ident: bib119 article-title: Rheological phase reaction synthesis and electrochemical performance of LiFe2/3Mn1/3PO4/C cathode for lithium-ion batteries publication-title: J. Mater. Sci. Mater. Electron. – volume: 22 start-page: 9064 year: 2012 end-page: 9068 ident: bib171 article-title: Temperature-dependent crystallinity and morphology of LiFePO4 prepared by hydrothermal synthesis publication-title: J. Mater. Chem. – reference: Clarivate Analytics, Web Science and Core Collection2023〈https://www.webofscience.com/wos〉.. – volume: 28 start-page: 612 year: 2009 end-page: 617 ident: bib135 article-title: Synthesis of LiFePO4 using FeSO4·7H2O byproduct from TiO2 production as raw material publication-title: Rare Met. – volume: 6 start-page: 173 year: 2014 end-page: 179 ident: bib108 article-title: Fabrication and characteristics of nano LiFePO4/C composites with high capacity and high rate using nano Fe2O3 as raw materials publication-title: Nano Energy – reference: 2023 F-150® Lightning, Ford (2023). – volume: 212 year: 2023 ident: bib99 article-title: An inexpensive preparation of unique nano-micro porous LiFePO4 cathode with excellent rate capability for lithium-ion batteries publication-title: Vacuum – reference: Tracking Steel in Tracking Clean Energy Progress 2023, (2023). – volume: 8 start-page: 104 year: 2020 ident: bib178 article-title: One-step microwave synthesis of micro/nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries publication-title: Front. Chem. – volume: 43 start-page: 2138 year: 2008 end-page: 2142 ident: bib165 article-title: Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries publication-title: J. Mater. Sci. – volume: 53 start-page: 9690 year: 2018 end-page: 9700 ident: bib204 article-title: N-cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries publication-title: J. Mater. Sci. – volume: 10 year: 2022 ident: bib187 article-title: Synthesis of high-density olivine LiFePO4 from paleozoic siderite FeCO3 and its electrochemical performance in lithium batteries publication-title: APL Mater. – volume: 111 start-page: 588 year: 2014 end-page: 591 ident: bib202 article-title: Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery publication-title: Carbohydr. Polym. – start-page: 249 year: 2022 end-page: 268 ident: bib72 article-title: Chapter 7- Iron ore extraction techniques publication-title: Iron Ore Second Ed. – volume: 876 year: 2021 ident: bib147 article-title: Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries publication-title: J. Alloy. Compd. – reference: Continuing our Investment in Nevada, Tesla (2023). – volume: 206 year: 2021 ident: bib36 article-title: Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process publication-title: Hydrometallurgy – volume: 15 start-page: 2803 year: 2020 end-page: 2814 ident: bib215 article-title: Regulation of cathode-electrolyte interphase via electrolyte additives in lithium ion batteries publication-title: Chem. Asian J. – volume: 4 year: 2016 ident: bib164 article-title: Olivine-based blended compounds as positive electrodes for lithium batteries publication-title: Inorganics – year: 2020 ident: bib89 – volume: 97 start-page: 2196 year: 2019 end-page: 2210 ident: bib189 article-title: Fe3+ reduction during melt-synthesis of LiFePO4 publication-title: Can. J. Chem. Eng. – volume: 6 start-page: 9077 year: 2021 end-page: 9085 ident: bib73 article-title: Mineral and technological features of magnetite–hematite ores and their influence on the choice of processing technology publication-title: ACS Omega – volume: 14 start-page: 3539 year: 2014 end-page: 3543 ident: bib129 article-title: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries publication-title: Nano Lett. – volume: 236 year: 2024 ident: bib234 article-title: Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system publication-title: Appl. Therm. Eng. – reference: Semi the Future of Trucking, Tesla (2023). – volume: 14 year: 2022 ident: bib235 article-title: No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology publication-title: eTransportation – volume: 10 start-page: 63834 year: 2022 end-page: 63843 ident: bib236 article-title: Implications of the electric vehicle manufacturers’ decision to mass adopt lithium-iron phosphate batteries publication-title: IEEE Access – volume: 27 year: 2020 ident: bib194 article-title: Synthesis and characterization of LiFe1−xMnxPO4 (x = 0.25, 0.50, 0.75) lithium ion battery cathode synthesized via a melting process publication-title: J. Energy Storage – volume: 2 year: 2021 ident: bib289 article-title: High safety and cycling stability of ultrahigh energy lithium ion batteries publication-title: Cell Rep. Phys. Sci. – reference: Lithium valley: Powering our Clean Energy Transition, Geothermal Technologies Office, Office of Energy Efficiency & Renewable Energy, the Us Department of Energy (DOE), 2022. – volume: 12 year: 2022 ident: bib291 article-title: Sustainable electric vehicle batteries for a sustainable world: perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy publication-title: Adv. Energy Mater. – volume: 12 start-page: 2030 year: 2019 end-page: 2053 ident: bib22 article-title: Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries publication-title: Energy Environ. Sci. – volume: 13 start-page: 57442 year: 2021 end-page: 57450 ident: bib130 article-title: Low-temperature synthesis of amorphous FePO4@rGO composites for cost-effective sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – start-page: Ch. 8 year: 2016 ident: bib94 article-title: Mining and beneficiation of phosphate ore publication-title: Apatites Their Synth. Analog – volume: 26 start-page: 208 year: 2020 end-page: 217 ident: bib231 article-title: Applications of lithium-ion batteries in grid-scale energy storage systems publication-title: Trans. Tianjin Univ. – volume: 3 start-page: 15 year: 2022 ident: bib97 article-title: Reply to: concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector publication-title: Commun. Mater. – volume: 112 start-page: 14665 year: 2008 end-page: 14671 ident: bib180 article-title: Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries publication-title: J. Phys. Chem. C – volume: 230 start-page: 122 year: 2013 end-page: 129 ident: bib184 article-title: Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction methods for Li-ion batteries publication-title: J. Power Sources – year: 2023 ident: bib253 article-title: The Kia Ray EV – volume: 16 start-page: 2692 year: 2016 end-page: 2697 ident: bib159 article-title: Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ publication-title: Nano Lett. – volume: 16 start-page: 766 year: 2014 end-page: 774 ident: bib141 article-title: Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts publication-title: CrystEngComm – volume: 15 start-page: 2671 year: 2015 end-page: 2678 ident: bib11 article-title: New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8 publication-title: Nano Lett. – volume: 12 year: 2019 ident: bib179 article-title: Conventional and microwave hydrothermal synthesis and application of functional materials: a review publication-title: Materials – volume: 298 start-page: 292 year: 2015 end-page: 298 ident: bib203 article-title: High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder publication-title: J. Power Sources – volume: 164 start-page: 288 year: 2016 end-page: 294 ident: bib66 article-title: Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2 publication-title: Hydrometallurgy – volume: 97 start-page: 2189 year: 2019 end-page: 2195 ident: bib195 article-title: Piloting melt synthesis and manufacturing processes to produce c-lifepo4: preface publication-title: Can. J. Chem. Eng. – reference: Fire Hazard Analysis for Various Lithium Batteries, the Us Department of Transportation, Federal Aviation Administration, 2017. – reference: Cobalt is the Most Expensive Material Used in Lithium-ion Battery Cathodes, (2022). 〈https://www.energy.gov/eere/vehicles/articles/fotw-1228-march-7-2022-cobalt-most-expensive-material-used-lithium-ion#:∼:text=Cobalt%20is%20an%20important%20ingredient,%249%20per%20pound%20in%202021〉. – volume: 10 start-page: 5398 year: 2019 ident: bib297 article-title: Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment publication-title: Nat. Commun. – volume: 30 year: 2023 ident: bib221 article-title: Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries publication-title: Int. J. Min. Met. Mater. – volume: 14 start-page: 420 year: 2023 ident: bib239 article-title: A non-academic perspective on the future of lithium-based batteries publication-title: Nat. Commun. – reference: L. Mathieu, C. MatteaFrom dirty oil to clean batteries, European Federation for Transport & Environment2021, – start-page: 397 year: 2022 end-page: 420 ident: bib77 article-title: Chapter 12- chemical separation of iron ore publication-title: Iron Ore Second Ed. – volume: 43 start-page: 13254 year: 2017 end-page: 13263 ident: bib112 article-title: Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C publication-title: Ceram. Int. – reference: Method of pRoducing In-situ Carbon Coated Lithium Iron Phosphate Cathode Material for Lithium-ion Batteries and the Product Thereof, WO2022144917A1, 2022. – volume: 9 start-page: 6551 year: 2021 end-page: 6560 ident: bib45 article-title: Life cycle assessment and techno-economic assessment of lithium recovery from geothermal brine publication-title: ACS Sustain. Chem. Eng. – volume: 21 start-page: 2143 year: 2014 end-page: 2149 ident: bib106 article-title: A novel synthesis of LiFePO4/C from Fe2O3 without extra carbon or carbon-containing reductant publication-title: J. Cent. South Univ. – volume: 6 start-page: 82984 year: 2016 end-page: 82994 ident: bib160 article-title: Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries publication-title: RSC Adv. – volume: 11 year: 2019 ident: bib10 article-title: Life cycle Assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios publication-title: Sustainability – year: 2020 ident: bib37 article-title: Selective Recovery of Lithium from Geothermal Brines – reference: A Vision for a Sustainable Battery Value Chain in 2030, G. B. Alliance, 2019. – year: 2013 ident: bib71 article-title: Energy and environmental profile of the U.S. mining industry: chapter 4: iron – volume: 117 start-page: 58 year: 2017 end-page: 65 ident: bib81 article-title: The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace publication-title: Resour. Effic. Chin. Ind. – volume: 4 start-page: 2444 year: 2019 end-page: 2451 ident: bib185 article-title: Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries publication-title: ACS Energy Lett. – volume: 4 start-page: 149 year: 2023 end-page: 165 ident: bib34 article-title: Environmental impact of direct lithium extraction from brines publication-title: Nat. Rev. Earth Environ. – volume: 156 start-page: A79 year: 2008 ident: bib177 article-title: One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes publication-title: J. Electrochem. Soc. – reference: The composition of EV batteries: Cells? Modules? Packs? Let’s understand properly!, Samsung SDI, n.d. – volume: 58 start-page: 6946 year: 2019 end-page: 6949 ident: bib14 article-title: Morphology-directed synthesis of LiFePO4 and LiCoPO4 from nanostructured Li1+2xPO3+x publication-title: Inorg. Chem. – volume: 195 start-page: 8280 year: 2010 end-page: 8288 ident: bib190 article-title: LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries publication-title: J. Power Sources – volume: 231 year: 2023 ident: bib266 article-title: A critical review of lithium-ion battery safety testing and standards publication-title: Appl. Therm. Eng. – volume: 44 year: 2021 ident: bib20 article-title: A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance publication-title: J. Energy Storage – year: 2018 ident: bib229 article-title: The supply chain for electric vehicle batteries publication-title: J. Int Commer. Econ. – year: 2023 ident: bib287 article-title: Tesla supplier CATL to produce M3P Batteries that will deliver big boost in range for EVs publication-title: Driven – volume: 24 start-page: 78 year: 2012 end-page: 81 ident: bib222 article-title: Effects of lithium difluoro(oxalate)borate on the performance of Li-rich composite cathode in Li-ion battery publication-title: Electrochem. Commun. – volume: 46 start-page: 2474 year: 2011 end-page: 2478 ident: bib143 article-title: Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization publication-title: J. Mater. Sci. – volume: 18 start-page: 665 year: 2016 end-page: 672 ident: bib117 article-title: Mapping structure-composition-property relationships in V- and Fe-doped LiMnPO4 cathodes for lithium-ion batteries publication-title: ACS Comb. Sci. – volume: 541 year: 2022 ident: bib120 article-title: Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes publication-title: J. Power Sources – volume: 290 year: 2022 ident: bib200 article-title: Improving the electrochemical performance of LiFePO4 cathode with novel water-soluble binders publication-title: Mater. Chem. Phys. – reference: A Kind of Battery, Battery Modules, Battery Pack and Electric Vehicle, CN110518174A, 2020. – volume: 5 start-page: 3735 year: 2021 end-page: 3764 ident: bib24 article-title: Recent progress of emerging cathode materials for sodium ion batteries publication-title: Mater. Chem. Front. – reference: Sh Liu, A Kind of Preparation Method of Battery Grade Ferrous Sulfate Heptahydrate Crystal, CN105293588B, 2015. – volume: 168 year: 2021 ident: bib242 article-title: Implications of the heat generation of LMR-NCM on the thermal behavior of large-format lithium-ion batteries publication-title: J. Electrochem. Soc. – volume: 10 year: 2024 ident: bib216 article-title: Engineering dry electrode manufacturing for sustainable lithium-ion batteries publication-title: Batteries – volume: 169 year: 2022 ident: bib139 article-title: Melt synthesis of lithium manganese iron phosphate: part I. Composition, physical properties, structural analysis, and charge/discharge cycling publication-title: J. Electrochem. Soc. – volume: 122 start-page: 588 year: 2017 end-page: 600 ident: bib260 article-title: Battery capacity and recharging needs for electric buses in city transit service publication-title: Energy – reference: T.D. Grandi, 4 Benefits of LFP batteries for EVs, Vis. Capital. (n.d.). – reference: J. White, I. Wissenbach, Mercedes CEO: Efficiency Is the “New Currency” in the Ev Market, Reuters (2023). – volume: 10 start-page: 21662 year: 2020 ident: 10.1016/j.mser.2024.100797_bib152 article-title: Recent advances in the design of cathode materials for Li-ion batteries publication-title: RSC Adv. doi: 10.1039/D0RA03314F – volume: 263 year: 2023 ident: 10.1016/j.mser.2024.100797_bib284 article-title: Lithium-ion battery design optimization based on a dimensionless reduced-order electrochemical model publication-title: Energy doi: 10.1016/j.energy.2022.125966 – ident: 10.1016/j.mser.2024.100797_bib88 – volume: 219 year: 2022 ident: 10.1016/j.mser.2024.100797_bib93 article-title: Phosphorus mining from eutrophic marine environment towards a blue economy: the role of bio-based applications publication-title: Water Res. doi: 10.1016/j.watres.2022.118505 – volume: 2 start-page: 218 year: 2017 ident: 10.1016/j.mser.2024.100797_bib126 article-title: Synthesis of highly dispersed FePO4 cathode material for rechargeable lithium battery publication-title: Adv. Mater. Proc. – volume: 10 year: 2022 ident: 10.1016/j.mser.2024.100797_bib187 article-title: Synthesis of high-density olivine LiFePO4 from paleozoic siderite FeCO3 and its electrochemical performance in lithium batteries publication-title: APL Mater. doi: 10.1063/5.0084105 – volume: 660 start-page: 931 year: 2018 ident: 10.1016/j.mser.2024.100797_bib104 article-title: Effects of α-Fe2O3 size and morphology on performance of LiFePO4/C cathodes for Li-ion batteries publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.02.017 – volume: 6 start-page: 28 year: 2011 ident: 10.1016/j.mser.2024.100797_bib19 article-title: Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries publication-title: Nano today doi: 10.1016/j.nantod.2010.11.002 – volume: 90 start-page: 3736 year: 2009 ident: 10.1016/j.mser.2024.100797_bib51 article-title: Globally sustainable manganese metal production and use publication-title: Sustain. Ind. Environ. Syst. – volume: 15 start-page: 5405 year: 2021 ident: 10.1016/j.mser.2024.100797_bib161 article-title: L-Lysine-assisted solvothermal synthesis of hollow-like structure LiFePO4/C powders as cathode materials for Li-ion batteries publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.11.002 – volume: 6 start-page: 621 year: 2021 ident: 10.1016/j.mser.2024.100797_bib290 article-title: Opportunities and challenges of lithium ion batteries in automotive applications publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02584 – volume: 122 start-page: 588 year: 2017 ident: 10.1016/j.mser.2024.100797_bib260 article-title: Battery capacity and recharging needs for electric buses in city transit service publication-title: Energy doi: 10.1016/j.energy.2017.01.101 – volume: 14 start-page: 4712 year: 2021 ident: 10.1016/j.mser.2024.100797_bib270 article-title: Battery cost forecasting: a review of methods and results with an outlook to 2050 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01530C – volume: 14 start-page: 2186 year: 2021 ident: 10.1016/j.mser.2024.100797_bib26 article-title: Potassium-ion batteries: outlook on present and future technologies publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02917C – volume: 9 year: 2020 ident: 10.1016/j.mser.2024.100797_bib154 article-title: A comprehensive review of li-ion battery materials and their recycling techniques publication-title: Electronics – ident: 10.1016/j.mser.2024.100797_bib59 – volume: 167 year: 2020 ident: 10.1016/j.mser.2024.100797_bib209 article-title: Review—Conducting polymer-based binders for lithium-ion batteries and beyond publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab856b – volume: 33 year: 2023 ident: 10.1016/j.mser.2024.100797_bib210 article-title: Review on the binders for sustainable high-energy-density lithium ion batteries: status, solutions, and prospects publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305161 – volume: 5 start-page: 9752 year: 2020 ident: 10.1016/j.mser.2024.100797_bib114 article-title: Enhancement of electrochemical performance of LiFePO4@C by Ga coating publication-title: ACS Omega doi: 10.1021/acsomega.9b04165 – volume: 596 start-page: 336 year: 2021 ident: 10.1016/j.mser.2024.100797_bib46 article-title: Electric cars and batteries: how will the world produce enough? publication-title: Nature doi: 10.1038/d41586-021-02222-1 – year: 2020 ident: 10.1016/j.mser.2024.100797_bib89 – ident: 10.1016/j.mser.2024.100797_bib241 – volume: 2 start-page: 71 year: 2021 ident: 10.1016/j.mser.2024.100797_bib91 article-title: Global actions for a sustainable phosphorus future publication-title: Nat. Food doi: 10.1038/s43016-021-00232-w – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.mser.2024.100797_bib149 article-title: Issues and challenges facing rechargeable lithium batteries publication-title: Nature doi: 10.1038/35104644 – ident: 10.1016/j.mser.2024.100797_bib258 – volume: 11 year: 2019 ident: 10.1016/j.mser.2024.100797_bib10 article-title: Life cycle Assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios publication-title: Sustainability doi: 10.3390/su11092527 – start-page: 1 year: 2022 ident: 10.1016/j.mser.2024.100797_bib67 article-title: Chapter 1- introduction: overview of the global iron ore industry – year: 2023 ident: 10.1016/j.mser.2024.100797_bib244 – volume: 15 start-page: 2671 year: 2015 ident: 10.1016/j.mser.2024.100797_bib11 article-title: New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00326 – volume: 14 start-page: 420 year: 2023 ident: 10.1016/j.mser.2024.100797_bib239 article-title: A non-academic perspective on the future of lithium-based batteries publication-title: Nat. Commun. doi: 10.1038/s41467-023-35933-2 – ident: 10.1016/j.mser.2024.100797_bib31 – volume: 48 start-page: 270 year: 2015 ident: 10.1016/j.mser.2024.100797_bib176 article-title: Morphology-controlled two-step synthesis and electrochemical studies on hierarchically structured LiCoPO4 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2015.08.021 – volume: 30 issue: 1 year: 2023 ident: 10.1016/j.mser.2024.100797_bib221 article-title: Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-022-2541-1 – ident: 10.1016/j.mser.2024.100797_bib269 – volume: 4 start-page: 2444 year: 2019 ident: 10.1016/j.mser.2024.100797_bib185 article-title: Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01703 – volume: 6 start-page: 176 year: 2021 ident: 10.1016/j.mser.2024.100797_bib278 article-title: Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles publication-title: Nat. Energy doi: 10.1038/s41560-020-00757-7 – start-page: 489 year: 2022 ident: 10.1016/j.mser.2024.100797_bib78 article-title: Chapter 15- iron ore sintering – volume: 230 start-page: 122 year: 2013 ident: 10.1016/j.mser.2024.100797_bib184 article-title: Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction methods for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.027 – volume: 603 year: 2020 ident: 10.1016/j.mser.2024.100797_bib18 article-title: Research status of spinel LiMn2O4 cathode materials for lithium ion batteries publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/603/1/012051 – volume: 45 start-page: 33016 year: 2020 ident: 10.1016/j.mser.2024.100797_bib111 article-title: Synthesis and electrochemical performance of lithium iron phosphate/carbon composites based on controlling the secondary morphology of precursors publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.09.049 – volume: 10 start-page: 5565 year: 2020 ident: 10.1016/j.mser.2024.100797_bib201 article-title: Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors publication-title: Sci. Rep. doi: 10.1038/s41598-020-62553-3 – ident: 10.1016/j.mser.2024.100797_bib276 – volume: 195 start-page: 8280 year: 2010 ident: 10.1016/j.mser.2024.100797_bib190 article-title: LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.07.010 – volume: 298 start-page: 292 year: 2015 ident: 10.1016/j.mser.2024.100797_bib203 article-title: High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.08.074 – volume: 16 year: 2021 ident: 10.1016/j.mser.2024.100797_bib113 article-title: Preparation of LiFePO4 using iron(II) sulfate as product from titanium dioxide slag purification process and its electrochemical properties publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2021.11.09 – volume: 302 start-page: 274 year: 2016 ident: 10.1016/j.mser.2024.100797_bib219 article-title: Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.073 – ident: 10.1016/j.mser.2024.100797_bib30 – ident: 10.1016/j.mser.2024.100797_bib247 – start-page: 309 year: 2022 ident: 10.1016/j.mser.2024.100797_bib75 article-title: Chapter 9- physical separation of iron ore: magnetic separation – volume: 27 start-page: 983 year: 2021 ident: 10.1016/j.mser.2024.100797_bib125 article-title: Influence of synthesis parameters on the properties of FePO4·2H2O used for the precursor of LiFePO4 cathode material publication-title: Ionics doi: 10.1007/s11581-020-03864-3 – volume: 236 year: 2024 ident: 10.1016/j.mser.2024.100797_bib234 article-title: Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system publication-title: Appl. Therm. Eng. – ident: 10.1016/j.mser.2024.100797_bib4 – year: 2019 ident: 10.1016/j.mser.2024.100797_bib6 – ident: 10.1016/j.mser.2024.100797_bib64 – volume: 4 start-page: 14790 year: 2019 ident: 10.1016/j.mser.2024.100797_bib132 article-title: Amorphous FePO4/carbon nanotube cathode preparation via in Situ nanoprecipitation and coagulation in a microreactor publication-title: ACS Omega doi: 10.1021/acsomega.9b01343 – volume: 16 start-page: 2692 year: 2016 ident: 10.1016/j.mser.2024.100797_bib159 article-title: Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+ publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00334 – volume: 15 start-page: 1217 year: 2011 ident: 10.1016/j.mser.2024.100797_bib193 article-title: Study of LiFePO4 synthesized using a molten method with varying stoichiometries publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-010-1191-9 – volume: 9 year: 2023 ident: 10.1016/j.mser.2024.100797_bib286 article-title: Techno-economic analysis of different battery cell chemistries for the passenger vehicle market publication-title: Batteries doi: 10.3390/batteries9070379 – ident: 10.1016/j.mser.2024.100797_bib58 – volume: 253 year: 2020 ident: 10.1016/j.mser.2024.100797_bib50 article-title: Life cycle assessment of electrolytic manganese metal production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119951 – volume: 45 start-page: 9846 year: 2021 ident: 10.1016/j.mser.2024.100797_bib197 article-title: Green water-based binders for LiFePO4/C cathodes in Li-ion batteries: a comparative study publication-title: N. J. Chem. doi: 10.1039/D1NJ01208H – year: 2020 ident: 10.1016/j.mser.2024.100797_bib257 – volume: 2 year: 2021 ident: 10.1016/j.mser.2024.100797_bib289 article-title: High safety and cycling stability of ultrahigh energy lithium ion batteries publication-title: Cell Rep. Phys. Sci. – year: 2022 ident: 10.1016/j.mser.2024.100797_bib86 – ident: 10.1016/j.mser.2024.100797_bib3 – ident: 10.1016/j.mser.2024.100797_bib127 – ident: 10.1016/j.mser.2024.100797_bib61 – volume: 212 year: 2023 ident: 10.1016/j.mser.2024.100797_bib99 article-title: An inexpensive preparation of unique nano-micro porous LiFePO4 cathode with excellent rate capability for lithium-ion batteries publication-title: Vacuum doi: 10.1016/j.vacuum.2023.112258 – volume: 89 year: 2022 ident: 10.1016/j.mser.2024.100797_bib82 article-title: Decarbonizing the iron and steel industry: a systematic review of sociotechnical systems, technological innovations, and policy options publication-title: Energy Res. Soc. Sci. doi: 10.1016/j.erss.2022.102565 – volume: 122 start-page: 903 year: 2022 ident: 10.1016/j.mser.2024.100797_bib198 article-title: From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00565 – volume: 10 start-page: 22929 year: 2022 ident: 10.1016/j.mser.2024.100797_bib225 article-title: Advanced electrolyte systems with additives for high-cell-voltage and high-energy-density lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07696A – volume: 1 start-page: 136 year: 2022 ident: 10.1016/j.mser.2024.100797_bib277 article-title: Technological innovation vs. tightening raw material markets: falling battery costs put at risk publication-title: Energy Adv. doi: 10.1039/D1YA00052G – volume: 13 year: 2021 ident: 10.1016/j.mser.2024.100797_bib196 article-title: Rational design of effective binders for LiFePO4 cathodes publication-title: Polymers doi: 10.3390/polym13183146 – volume: 3 start-page: 64 year: 2022 ident: 10.1016/j.mser.2024.100797_bib228 article-title: Best practices in lithium battery cell preparation and evaluation publication-title: Commun. Mater. doi: 10.1038/s43246-022-00286-8 – volume: 24 start-page: 78 year: 2012 ident: 10.1016/j.mser.2024.100797_bib222 article-title: Effects of lithium difluoro(oxalate)borate on the performance of Li-rich composite cathode in Li-ion battery publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.08.016 – ident: 10.1016/j.mser.2024.100797_bib32 – year: 2020 ident: 10.1016/j.mser.2024.100797_bib37 – start-page: Ch. 8 year: 2016 ident: 10.1016/j.mser.2024.100797_bib94 article-title: Mining and beneficiation of phosphate ore – volume: 73 start-page: 51 year: 2012 ident: 10.1016/j.mser.2024.100797_bib157 article-title: Recent progress in cathode materials research for advanced lithium ion batteries publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2012.05.003 – volume: 13 year: 2020 ident: 10.1016/j.mser.2024.100797_bib205 article-title: Effect of combined conductive polymer binder on the electrochemical performance of electrode materials for lithium-ion batteries publication-title: Energies doi: 10.3390/en13092163 – volume: 4 start-page: 149 year: 2023 ident: 10.1016/j.mser.2024.100797_bib34 article-title: Environmental impact of direct lithium extraction from brines publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-022-00387-5 – volume: 31 year: 2020 ident: 10.1016/j.mser.2024.100797_bib261 article-title: Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101714 – volume: 68 year: 2023 ident: 10.1016/j.mser.2024.100797_bib9 article-title: Is shifting from Li-ion NMC to LFP in EVs beneficial for second-life storages in electricity markets? publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107740 – volume: 30 year: 2022 ident: 10.1016/j.mser.2024.100797_bib121 article-title: 001]-oriented LiMn0.6Fe0.4PO4/C nanorod microspheres contributing high-rate performance to olivine-structured cathode for lithium-ion battery publication-title: Mater. Today Energy – volume: 12 start-page: 26070 year: 2022 ident: 10.1016/j.mser.2024.100797_bib138 article-title: Simple synthesis of a hierarchical LiMn0.8Fe0.2PO4/C cathode by investigation of iron sources for lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/D2RA04427G – volume: 46 start-page: 2474 year: 2011 ident: 10.1016/j.mser.2024.100797_bib143 article-title: Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-5094-z – year: 2022 ident: 10.1016/j.mser.2024.100797_bib275 – volume: 10 year: 2024 ident: 10.1016/j.mser.2024.100797_bib216 article-title: Engineering dry electrode manufacturing for sustainable lithium-ion batteries publication-title: Batteries doi: 10.3390/batteries10010039 – ident: 10.1016/j.mser.2024.100797_bib254 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib287 article-title: Tesla supplier CATL to produce M3P Batteries that will deliver big boost in range for EVs publication-title: Driven – volume: 6 start-page: 20564 year: 2018 ident: 10.1016/j.mser.2024.100797_bib213 article-title: Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05336G – year: 2018 ident: 10.1016/j.mser.2024.100797_bib229 article-title: The supply chain for electric vehicle batteries publication-title: J. Int Commer. Econ. – volume: 2 start-page: 16 year: 2021 ident: 10.1016/j.mser.2024.100797_bib224 article-title: Electrolyte additives: adding the stability of lithium metal anodes publication-title: Nano Sel. doi: 10.1002/nano.202000164 – volume: 53 start-page: 9690 year: 2018 ident: 10.1016/j.mser.2024.100797_bib204 article-title: N-cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2247-y – ident: 10.1016/j.mser.2024.100797_bib87 – volume: 5 start-page: 11455 year: 2020 ident: 10.1016/j.mser.2024.100797_bib208 article-title: Effect of polymeric binders on dispersion of active particles in aqueous LiFePO4-based cathode slurries as well as on mechanical and electrical properties of corresponding dry layers publication-title: ACS Omega doi: 10.1021/acsomega.0c00477 – volume: 231 year: 2023 ident: 10.1016/j.mser.2024.100797_bib266 article-title: A critical review of lithium-ion battery safety testing and standards publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121014 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib252 – volume: 19 start-page: 96 year: 2018 ident: 10.1016/j.mser.2024.100797_bib212 article-title: Effect of negative/positive capacity ratio on the rate and cycling performances of LiFePO4/graphite lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2018.07.012 – volume: 6 start-page: 18957 year: 2021 ident: 10.1016/j.mser.2024.100797_bib124 article-title: Preparation of micro–nano-structured FePO4·2H2O for LiFePO4 cathode materials by the turbulent flow cycle method publication-title: ACS Omega doi: 10.1021/acsomega.1c02216 – volume: 11 start-page: 13225 year: 2019 ident: 10.1016/j.mser.2024.100797_bib133 article-title: Facile construction of high-performance amorphous FePO4/carbon nanomaterials as cathodes of lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22720 – ident: 10.1016/j.mser.2024.100797_bib271 – ident: 10.1016/j.mser.2024.100797_bib265 – start-page: 269 year: 2022 ident: 10.1016/j.mser.2024.100797_bib74 article-title: Chapter 8- Comminution and classification technologies of iron ore – volume: 5 year: 2023 ident: 10.1016/j.mser.2024.100797_bib103 article-title: Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling publication-title: J. Phys. Energy doi: 10.1088/2515-7655/acc139 – ident: 10.1016/j.mser.2024.100797_bib183 – ident: 10.1016/j.mser.2024.100797_bib248 – volume: 456 year: 2023 ident: 10.1016/j.mser.2024.100797_bib199 article-title: Solvent-free lithium iron phosphate cathode fabrication with fibrillation of polytetrafluoroethylene publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142469 – volume: 237 start-page: 160 year: 2013 ident: 10.1016/j.mser.2024.100797_bib102 article-title: High purity lithium iron phosphate/carbon composites prepared by using secondary lithium source publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.01.041 – volume: 10 start-page: 63834 year: 2022 ident: 10.1016/j.mser.2024.100797_bib236 article-title: Implications of the electric vehicle manufacturers’ decision to mass adopt lithium-iron phosphate batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3182726 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib293 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib92 article-title: Norway to develop massive phosphate deposit publication-title: Min. Technol. – volume: 14 start-page: 3152 year: 2021 ident: 10.1016/j.mser.2024.100797_bib41 article-title: Continuous electrical pumping membrane process for seawater lithium mining publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00354B – volume: 3 start-page: 14 year: 2022 ident: 10.1016/j.mser.2024.100797_bib47 article-title: Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector publication-title: Commun. Mater. doi: 10.1038/s43246-022-00236-4 – ident: 10.1016/j.mser.2024.100797_bib238 – volume: 2 start-page: 1648 year: 2018 ident: 10.1016/j.mser.2024.100797_bib44 article-title: Lithium metal extraction from seawater publication-title: Joule doi: 10.1016/j.joule.2018.07.006 – volume: 15 start-page: 2803 year: 2020 ident: 10.1016/j.mser.2024.100797_bib215 article-title: Regulation of cathode-electrolyte interphase via electrolyte additives in lithium ion batteries publication-title: Chem. Asian J. doi: 10.1002/asia.202000522 – volume: 195 start-page: 939 year: 2010 ident: 10.1016/j.mser.2024.100797_bib153 article-title: Recent developments in cathode materials for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.089 – start-page: 397 year: 2022 ident: 10.1016/j.mser.2024.100797_bib77 article-title: Chapter 12- chemical separation of iron ore – volume: 1 start-page: 6208 year: 2018 ident: 10.1016/j.mser.2024.100797_bib162 article-title: Synthesis and in-situ investigation of olivine LiMnPO4 composites substituted with tetravalent vanadium in high-rate Li-Ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01253 – ident: 10.1016/j.mser.2024.100797_bib243 – volume: 44 year: 2021 ident: 10.1016/j.mser.2024.100797_bib20 article-title: A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103307 – volume: 6 start-page: 82984 year: 2016 ident: 10.1016/j.mser.2024.100797_bib160 article-title: Facile, ethylene glycol-promoted microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA19767A – volume: 8 year: 2022 ident: 10.1016/j.mser.2024.100797_bib174 article-title: Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review publication-title: Batteries doi: 10.3390/batteries8100133 – ident: 10.1016/j.mser.2024.100797_bib60 – volume: 119 start-page: 428 year: 2010 ident: 10.1016/j.mser.2024.100797_bib105 article-title: Preparation of high tap-density LiFePO4/C composite cathode materials by carbothermal reduction method using two kinds of Fe3+ precursors publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2009.09.017 – volume: 14 year: 2022 ident: 10.1016/j.mser.2024.100797_bib235 article-title: No thermal runaway propagation optimization design of battery arrangement for cell-to-chassis technology publication-title: eTransportation doi: 10.1016/j.etran.2022.100199 – volume: 7 start-page: 17763 year: 2017 ident: 10.1016/j.mser.2024.100797_bib172 article-title: Low temperature hydrothermal synthesis of battery grade lithium iron phosphate publication-title: RSC Adv. doi: 10.1039/C7RA00463J – volume: 882 year: 2021 ident: 10.1016/j.mser.2024.100797_bib17 article-title: Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: a review publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.160774 – volume: 169 year: 2021 ident: 10.1016/j.mser.2024.100797_bib29 article-title: U.S. lithium resources from geothermal and extraction feasibility publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.105514 – volume: 4 start-page: 1357 year: 2020 ident: 10.1016/j.mser.2024.100797_bib40 article-title: Mining lithium from seawater publication-title: Joule doi: 10.1016/j.joule.2020.06.015 – volume: 14 year: 2021 ident: 10.1016/j.mser.2024.100797_bib148 article-title: Recent advances on materials for lithium-ion batteries publication-title: Energies doi: 10.3390/en14113145 – volume: 174 start-page: 442 year: 2007 ident: 10.1016/j.mser.2024.100797_bib170 article-title: Hydrothermal synthesis of cathode materials publication-title: 13th Int. Meet. Lithium Batter – volume: 167 year: 2020 ident: 10.1016/j.mser.2024.100797_bib217 article-title: Review—An unpredictable hazard in lithium-ion batteries from transition metal ions: dissolution from cathodes, deposition on anodes and elimination strategies publication-title: J. Electrochem. Soc. – volume: 97 start-page: 2189 year: 2019 ident: 10.1016/j.mser.2024.100797_bib195 article-title: Piloting melt synthesis and manufacturing processes to produce c-lifepo4: preface publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23479 – start-page: 695 year: 2004 ident: 10.1016/j.mser.2024.100797_bib80 article-title: Steel Production and Energy – volume: 6 start-page: 14483 year: 2018 ident: 10.1016/j.mser.2024.100797_bib169 article-title: Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04063J – ident: 10.1016/j.mser.2024.100797_bib48 – ident: 10.1016/j.mser.2024.100797_bib54 – volume: 47 year: 2022 ident: 10.1016/j.mser.2024.100797_bib150 article-title: Cathode materials for rechargeable lithium batteries: recent progress and future prospects publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103534 – volume: 12 year: 2022 ident: 10.1016/j.mser.2024.100797_bib272 article-title: Next-generation cobalt-free cathodes – a prospective solution to the battery industry’s cobalt problem publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103050 – volume: 97 start-page: 2287 year: 2019 ident: 10.1016/j.mser.2024.100797_bib192 article-title: Melt-synthesis of LiFePO4 over a metallic bath publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23406 – volume: 19 start-page: 12730 year: 2017 ident: 10.1016/j.mser.2024.100797_bib23 article-title: Crystal chemistry of Mg substitution in NaMnPO4 olivine: concentration limit and cation distribution publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01947E – volume: 28 start-page: 612 year: 2009 ident: 10.1016/j.mser.2024.100797_bib135 article-title: Synthesis of LiFePO4 using FeSO4·7H2O byproduct from TiO2 production as raw material publication-title: Rare Met. doi: 10.1007/s12598-009-0117-0 – ident: 10.1016/j.mser.2024.100797_bib123 – ident: 10.1016/j.mser.2024.100797_bib255 – volume: 6 start-page: 173 year: 2014 ident: 10.1016/j.mser.2024.100797_bib108 article-title: Fabrication and characteristics of nano LiFePO4/C composites with high capacity and high rate using nano Fe2O3 as raw materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.03.017 – volume: 22 start-page: 25402 year: 2012 ident: 10.1016/j.mser.2024.100797_bib144 article-title: Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties publication-title: J. Mater. Chem. doi: 10.1039/c2jm34193j – volume: 9 year: 2017 ident: 10.1016/j.mser.2024.100797_bib292 article-title: GHG emissions from the production of lithium-ion batteries for electric vehicles in China publication-title: Sustainability doi: 10.3390/su9040504 – volume: 16 start-page: 766 year: 2014 ident: 10.1016/j.mser.2024.100797_bib141 article-title: Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts publication-title: CrystEngComm doi: 10.1039/C3CE41567H – volume: 232 start-page: 357 year: 2013 ident: 10.1016/j.mser.2024.100797_bib12 article-title: Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.095 – volume: 290 year: 2022 ident: 10.1016/j.mser.2024.100797_bib200 article-title: Improving the electrochemical performance of LiFePO4 cathode with novel water-soluble binders publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.126530 – ident: 10.1016/j.mser.2024.100797_bib249 – volume: 187 year: 2022 ident: 10.1016/j.mser.2024.100797_bib299 article-title: Future greenhouse gas emissions of automotive lithium-ion battery cell production publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2022.106606 – volume: 8 start-page: 25601 year: 2020 ident: 10.1016/j.mser.2024.100797_bib27 article-title: Advances in rechargeable Mg batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09330K – volume: 23 start-page: 491 year: 2016 ident: 10.1016/j.mser.2024.100797_bib63 article-title: Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-016-1260-x – volume: 4 year: 2016 ident: 10.1016/j.mser.2024.100797_bib164 article-title: Olivine-based blended compounds as positive electrodes for lithium batteries publication-title: Inorganics doi: 10.3390/inorganics4020017 – volume: 10 year: 2020 ident: 10.1016/j.mser.2024.100797_bib84 article-title: Energy consumption and CO2 emissions in ironmaking and development of a novel flash technology publication-title: Metals – start-page: 375 year: 2022 ident: 10.1016/j.mser.2024.100797_bib76 article-title: Chapter 11- physiochemical separation of iron ore – volume: 3 start-page: 54 year: 2015 ident: 10.1016/j.mser.2024.100797_bib140 article-title: LiMnPO4: review on synthesis and electrochemical properties publication-title: J. Chem. Eng. Mater. Sci. – year: 2023 ident: 10.1016/j.mser.2024.100797_bib300 article-title: Are future recycling benefits misleading? Prospective life cycle assessment of lithium-ion batteries publication-title: J. Ind. Ecol. doi: 10.1111/jiec.13413 – ident: 10.1016/j.mser.2024.100797_bib2 – ident: 10.1016/j.mser.2024.100797_bib128 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib301 – ident: 10.1016/j.mser.2024.100797_bib62 – ident: 10.1016/j.mser.2024.100797_bib250 – volume: 43 start-page: 2138 year: 2008 ident: 10.1016/j.mser.2024.100797_bib165 article-title: Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-2011-1 – volume: 164 start-page: 288 year: 2016 ident: 10.1016/j.mser.2024.100797_bib66 article-title: Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.06.019 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib279 – volume: 20 start-page: 1501 year: 2014 ident: 10.1016/j.mser.2024.100797_bib122 article-title: Research status in preparation of FePO4: a review publication-title: Ionics doi: 10.1007/s11581-014-1241-x – volume: 66 year: 2023 ident: 10.1016/j.mser.2024.100797_bib262 article-title: Sustainable cathode material selection in lithium-ion batteries using a novel hybrid multi-criteria decision-making publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107089 – volume: 23 start-page: 144 year: 2019 ident: 10.1016/j.mser.2024.100797_bib283 article-title: Research and development of advanced battery materials in China publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.019 – volume: 10 year: 2023 ident: 10.1016/j.mser.2024.100797_bib206 article-title: Preparation of tough, binder-free, and self-supporting LiFePO4 cathode by using mono-dispersed ultra-long single-walled carbon nanotubes for high-rate performance Li-ion battery publication-title: Adv. Sci. doi: 10.1002/advs.202207355 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib15 article-title: Secondary batteries – lithium rechargeable systems – lithium-ion | positive electrode: lithium iron phosphate – volume: 23 start-page: 377 year: 2017 ident: 10.1016/j.mser.2024.100797_bib107 article-title: Synthesis and electrochemical performance of LiFePO4/C cathode materials from Fe2O3 for high-power lithium-ion batteries publication-title: Ionics doi: 10.1007/s11581-016-1910-z – volume: 56 start-page: 576 year: 2013 ident: 10.1016/j.mser.2024.100797_bib110 article-title: An optimum route to prepare FePO4·2H2O and its use as an iron source to synthesize LiFePO4 publication-title: Sci. China Chem. doi: 10.1007/s11426-012-4818-0 – ident: 10.1016/j.mser.2024.100797_bib296 – volume: 18 start-page: 665 year: 2016 ident: 10.1016/j.mser.2024.100797_bib117 article-title: Mapping structure-composition-property relationships in V- and Fe-doped LiMnPO4 cathodes for lithium-ion batteries publication-title: ACS Comb. Sci. doi: 10.1021/acscombsci.6b00035 – volume: 2019 year: 2019 ident: 10.1016/j.mser.2024.100797_bib167 article-title: Structure and electrochemical behavior of minor Mn-doped olivine LiMnxFe1−xPO4 publication-title: J. Chem. doi: 10.1155/2019/5638590 – volume: 8 start-page: 104 year: 2020 ident: 10.1016/j.mser.2024.100797_bib178 article-title: One-step microwave synthesis of micro/nanoscale LiFePO4/graphene cathode with high performance for lithium-ion batteries publication-title: Front. Chem. doi: 10.3389/fchem.2020.00104 – ident: 10.1016/j.mser.2024.100797_bib38 – volume: 163 year: 2021 ident: 10.1016/j.mser.2024.100797_bib39 article-title: Towards a low-carbon society: a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106743 – volume: MA2023-01 start-page: 597 year: 2023 ident: 10.1016/j.mser.2024.100797_bib211 article-title: The effect of particle size and the material loading to the performance and stability of the LFP batteries publication-title: ECS Meet. Abstr. doi: 10.1149/MA2023-012597mtgabs – volume: 160 start-page: A1199 year: 2013 ident: 10.1016/j.mser.2024.100797_bib220 article-title: Lithium Tetrafluoroborate as an electrolyte additive to improve the high voltage performance of lithium-ion battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.066308jes – volume: 144 start-page: 1188 year: 1997 ident: 10.1016/j.mser.2024.100797_bib7 article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837571 – volume: 21 start-page: 2143 year: 2014 ident: 10.1016/j.mser.2024.100797_bib106 article-title: A novel synthesis of LiFePO4/C from Fe2O3 without extra carbon or carbon-containing reductant publication-title: J. Cent. South Univ. doi: 10.1007/s11771-014-2164-4 – volume: 1 start-page: 5928 year: 2018 ident: 10.1016/j.mser.2024.100797_bib21 article-title: Modifying high-voltage olivine-type LiMnPO4 cathode via Mg substitution in high-orientation crystal publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00923 – start-page: 539 year: 2022 ident: 10.1016/j.mser.2024.100797_bib79 article-title: Chapter 16 - Iron ore pelletization – ident: 10.1016/j.mser.2024.100797_bib134 – volume: 22 start-page: 2535 year: 2012 ident: 10.1016/j.mser.2024.100797_bib137 article-title: Synthesis of LiMnPO4/C composite material for lithium ion batteries by sol-gel method publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(11)61497-0 – volume: 111 start-page: 588 year: 2014 ident: 10.1016/j.mser.2024.100797_bib202 article-title: Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.05.027 – volume: 1 start-page: 99 year: 2020 ident: 10.1016/j.mser.2024.100797_bib56 article-title: Future material demand for automotive lithium-based batteries publication-title: Commun. Mater. doi: 10.1038/s43246-020-00095-x – volume: 3 start-page: 15 year: 2022 ident: 10.1016/j.mser.2024.100797_bib97 article-title: Reply to: concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector publication-title: Commun. Mater. doi: 10.1038/s43246-022-00237-3 – volume: 12 year: 2019 ident: 10.1016/j.mser.2024.100797_bib179 article-title: Conventional and microwave hydrothermal synthesis and application of functional materials: a review publication-title: Materials doi: 10.3390/ma12213640 – ident: 10.1016/j.mser.2024.100797_bib163 – ident: 10.1016/j.mser.2024.100797_bib295 – ident: 10.1016/j.mser.2024.100797_bib1 – volume: 960 year: 2023 ident: 10.1016/j.mser.2024.100797_bib118 article-title: Y3+ doping and electrochemical properties of LiFe0.5Mn0.5PO4@C cathode material for lithium-ion batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.170610 – volume: 11 year: 2016 ident: 10.1016/j.mser.2024.100797_bib259 article-title: The size and range effect: lifecycle greenhouse gas emissions of electric vehicles publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/5/054010 – volume: 112 start-page: 14665 year: 2008 ident: 10.1016/j.mser.2024.100797_bib180 article-title: Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp8053058 – volume: 140 start-page: 659 year: 2013 ident: 10.1016/j.mser.2024.100797_bib186 article-title: Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.04.020 – ident: 10.1016/j.mser.2024.100797_bib256 – volume: 12 year: 2022 ident: 10.1016/j.mser.2024.100797_bib291 article-title: Sustainable electric vehicle batteries for a sustainable world: perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200383 – ident: 10.1016/j.mser.2024.100797_bib16 – volume: 313 year: 2022 ident: 10.1016/j.mser.2024.100797_bib264 article-title: The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118767 – volume: 2 year: 2016 ident: 10.1016/j.mser.2024.100797_bib223 article-title: Lithium fluoride additives for stable cycling of lithium batteries at high current densities publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500246 – volume: 306 year: 2021 ident: 10.1016/j.mser.2024.100797_bib65 article-title: Hazard-free treatment and resource utilisation of electrolytic manganese residue: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127224 – volume: 193 year: 2021 ident: 10.1016/j.mser.2024.100797_bib96 article-title: Freeze drying under vacuum assisted synthesis of LiFePO4@MWCNTs composite with phytic acid as phosphorus source for advanced Li-storage publication-title: Vacuum doi: 10.1016/j.vacuum.2021.110541 – ident: 10.1016/j.mser.2024.100797_bib273 – volume: 14 start-page: 3539 year: 2014 ident: 10.1016/j.mser.2024.100797_bib129 article-title: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries publication-title: Nano Lett. doi: 10.1021/nl501152f – volume: 10 year: 2020 ident: 10.1016/j.mser.2024.100797_bib285 article-title: Optimization for maximum specific energy density of a lithium-ion battery using progressive quadratic response surface method and design of experiments publication-title: Sci. Rep. – volume: 2 year: 2023 ident: 10.1016/j.mser.2024.100797_bib42 article-title: Industrial pathways to lithium extraction from seawater: challenges and perspectives publication-title: Nano Res. Energy doi: 10.26599/NRE.2023.9120059 – volume: 12 start-page: 5664 year: 2012 ident: 10.1016/j.mser.2024.100797_bib131 article-title: Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes publication-title: Nano Lett. doi: 10.1021/nl302819f – volume: 169 year: 2022 ident: 10.1016/j.mser.2024.100797_bib139 article-title: Melt synthesis of lithium manganese iron phosphate: part I. Composition, physical properties, structural analysis, and charge/discharge cycling publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac76e4 – ident: 10.1016/j.mser.2024.100797_bib267 – volume: 22 start-page: 9064 year: 2012 ident: 10.1016/j.mser.2024.100797_bib171 article-title: Temperature-dependent crystallinity and morphology of LiFePO4 prepared by hydrothermal synthesis publication-title: J. Mater. Chem. doi: 10.1039/c2jm30191a – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.mser.2024.100797_bib25 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 4 start-page: 1459 year: 2020 ident: 10.1016/j.mser.2024.100797_bib43 article-title: Lithium extraction from seawater through pulsed electrochemical intercalation publication-title: Joule doi: 10.1016/j.joule.2020.05.017 – volume: 12 year: 2022 ident: 10.1016/j.mser.2024.100797_bib175 article-title: Carbon-coatings improve performance of Li-ion battery publication-title: Nanomaterials – year: 2022 ident: 10.1016/j.mser.2024.100797_bib95 – ident: 10.1016/j.mser.2024.100797_bib33 – volume: 6 start-page: 127 year: 2018 ident: 10.1016/j.mser.2024.100797_bib181 article-title: Structure–property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04400C – volume: 369 year: 2022 ident: 10.1016/j.mser.2024.100797_bib294 article-title: Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133342 – volume: 2 start-page: 10581 year: 2014 ident: 10.1016/j.mser.2024.100797_bib145 article-title: Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01365D – ident: 10.1016/j.mser.2024.100797_bib90 – volume: 190 start-page: 538 year: 2009 ident: 10.1016/j.mser.2024.100797_bib158 article-title: A review of recent developments in the synthesis procedures of lithium iron phosphate powders publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.074 – ident: 10.1016/j.mser.2024.100797_bib280 – volume: 99 start-page: 74 year: 2019 ident: 10.1016/j.mser.2024.100797_bib115 article-title: Facile strategies to utilize FeSO4·7H2O waste slag for LiFePO4/C cathode with high performances publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.03.002 – volume: 6 start-page: 9077 year: 2021 ident: 10.1016/j.mser.2024.100797_bib73 article-title: Mineral and technological features of magnetite–hematite ores and their influence on the choice of processing technology publication-title: ACS Omega doi: 10.1021/acsomega.1c00129 – ident: 10.1016/j.mser.2024.100797_bib274 – volume: 97 start-page: 2196 year: 2019 ident: 10.1016/j.mser.2024.100797_bib189 article-title: Fe3+ reduction during melt-synthesis of LiFePO4 publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23522 – ident: 10.1016/j.mser.2024.100797_bib251 – ident: 10.1016/j.mser.2024.100797_bib69 – start-page: 59 year: 2022 ident: 10.1016/j.mser.2024.100797_bib70 article-title: Chapter 2- Mineralogical, chemical, and physical metallurgical characteristics of iron ore – volume: 541 year: 2022 ident: 10.1016/j.mser.2024.100797_bib120 article-title: Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231671 – volume: 12 start-page: 2030 year: 2019 ident: 10.1016/j.mser.2024.100797_bib22 article-title: Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03014F – volume: 33 year: 2021 ident: 10.1016/j.mser.2024.100797_bib282 article-title: From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems publication-title: Adv. Mater. doi: 10.1002/adma.202101275 – ident: 10.1016/j.mser.2024.100797_bib268 – ident: 10.1016/j.mser.2024.100797_bib245 – volume: 117 start-page: 58 year: 2017 ident: 10.1016/j.mser.2024.100797_bib81 article-title: The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace publication-title: Resour. Effic. Chin. Ind. – volume: 11 start-page: 2251 year: 2018 ident: 10.1016/j.mser.2024.100797_bib182 article-title: Preparation of LiFePO4/C cathode materials via a green synthesis route for lithium-ion battery applications publication-title: Materials doi: 10.3390/ma11112251 – start-page: 691 year: 2022 ident: 10.1016/j.mser.2024.100797_bib83 article-title: Chapter 20- Life cycle assessment of iron ore mining and processing – volume: 58 start-page: 6946 year: 2019 ident: 10.1016/j.mser.2024.100797_bib14 article-title: Morphology-directed synthesis of LiFePO4 and LiCoPO4 from nanostructured Li1+2xPO3+x publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00517 – volume: 26 start-page: 208 year: 2020 ident: 10.1016/j.mser.2024.100797_bib231 article-title: Applications of lithium-ion batteries in grid-scale energy storage systems publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-020-00236-w – volume: 9 year: 2023 ident: 10.1016/j.mser.2024.100797_bib8 article-title: Trends in automotive battery cell design: a statistical analysis of empirical data publication-title: Batteries doi: 10.3390/batteries9050261 – volume: 10 start-page: 2799 year: 2010 ident: 10.1016/j.mser.2024.100797_bib188 article-title: LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode publication-title: Nano Lett. doi: 10.1021/nl1007085 – volume: 858 year: 2021 ident: 10.1016/j.mser.2024.100797_bib142 article-title: Lithium manganese phosphate associated with MWCNT: enhanced positive electrode for lithium hybrid batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.157715 – volume: 35 start-page: 83 year: 2011 ident: 10.1016/j.mser.2024.100797_bib191 article-title: Electrochemical features of LiFePO4 nanoparticles obtained by grinding ingot synthesized in the molten state publication-title: ECS Trans. doi: 10.1149/1.3654204 – year: 2016 ident: 10.1016/j.mser.2024.100797_bib173 – ident: 10.1016/j.mser.2024.100797_bib52 – volume: 12 year: 2022 ident: 10.1016/j.mser.2024.100797_bib298 article-title: Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective publication-title: eTransportation doi: 10.1016/j.etran.2022.100169 – volume: 415 year: 2023 ident: 10.1016/j.mser.2024.100797_bib136 article-title: Recovery of iron from titanium white waste for the preparation of LiFePO4 battery publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137817 – volume: 13 start-page: 57442 year: 2021 ident: 10.1016/j.mser.2024.100797_bib130 article-title: Low-temperature synthesis of amorphous FePO4@rGO composites for cost-effective sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18800 – ident: 10.1016/j.mser.2024.100797_bib240 – volume: 337 start-page: 92 year: 2017 ident: 10.1016/j.mser.2024.100797_bib13 article-title: Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.106 – year: 2019 ident: 10.1016/j.mser.2024.100797_bib227 – volume: 876 year: 2021 ident: 10.1016/j.mser.2024.100797_bib147 article-title: Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.160090 – volume: 10 start-page: 5398 year: 2019 ident: 10.1016/j.mser.2024.100797_bib297 article-title: Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment publication-title: Nat. Commun. doi: 10.1038/s41467-019-13400-1 – ident: 10.1016/j.mser.2024.100797_bib5 – volume: 13 start-page: 5723 year: 2023 ident: 10.1016/j.mser.2024.100797_bib207 article-title: Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review publication-title: RSC Adv. doi: 10.1039/D2RA08244F – start-page: 249 year: 2022 ident: 10.1016/j.mser.2024.100797_bib72 article-title: Chapter 7- Iron ore extraction techniques – volume: 44 year: 2021 ident: 10.1016/j.mser.2024.100797_bib233 article-title: Performance evaluation of lithium-ion batteries (LiFePO4 cathode) from novel perspectives using a new figure of merit, temperature distribution analysis, and cell package analysis publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103413 – volume: 6 start-page: 3719 year: 2021 ident: 10.1016/j.mser.2024.100797_bib281 article-title: Criterion for identifying anodes for practically accessible high-energy-density lithium-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01713 – ident: 10.1016/j.mser.2024.100797_bib230 – volume: 43 start-page: 13254 year: 2017 ident: 10.1016/j.mser.2024.100797_bib112 article-title: Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.07.023 – volume: 206 year: 2021 ident: 10.1016/j.mser.2024.100797_bib36 article-title: Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2021.105759 – year: 2022 ident: 10.1016/j.mser.2024.100797_bib53 – ident: 10.1016/j.mser.2024.100797_bib57 – volume: 220 start-page: 317 year: 2012 ident: 10.1016/j.mser.2024.100797_bib156 article-title: Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.128 – ident: 10.1016/j.mser.2024.100797_bib28 – volume: 156 start-page: A79 year: 2008 ident: 10.1016/j.mser.2024.100797_bib177 article-title: One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.3028304 – year: 2013 ident: 10.1016/j.mser.2024.100797_bib71 – volume: 168 year: 2021 ident: 10.1016/j.mser.2024.100797_bib242 article-title: Implications of the heat generation of LMR-NCM on the thermal behavior of large-format lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac0069 – volume: 220 start-page: 164 year: 2016 ident: 10.1016/j.mser.2024.100797_bib100 article-title: A green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.066 – year: 2023 ident: 10.1016/j.mser.2024.100797_bib253 – volume: 174 year: 2021 ident: 10.1016/j.mser.2024.100797_bib49 article-title: Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.105762 – volume: 5 year: 2022 ident: 10.1016/j.mser.2024.100797_bib237 article-title: Recent research and progress in batteries for electric vehicles publication-title: Batter. Supercaps doi: 10.1002/batt.202100224 – volume: 115 year: 2023 ident: 10.1016/j.mser.2024.100797_bib55 article-title: Life-cycle assessment and life-cycle cost assessment of lithium-ion batteries for passenger ferry publication-title: Transp. Res. Part Transp. Environ. doi: 10.1016/j.trd.2022.103586 – ident: 10.1016/j.mser.2024.100797_bib68 – volume: 5 start-page: 14 year: 2022 ident: 10.1016/j.mser.2024.100797_bib214 article-title: A review of nonaqueous electrolytes, binders, and separators for lithium-ion batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00131-z – volume: 6 start-page: 26 year: 2017 ident: 10.1016/j.mser.2024.100797_bib226 article-title: Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.08.002 – volume: 33 start-page: 18364 year: 2022 ident: 10.1016/j.mser.2024.100797_bib119 article-title: Rheological phase reaction synthesis and electrochemical performance of LiFe2/3Mn1/3PO4/C cathode for lithium-ion batteries publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-022-08691-y – volume: 134 start-page: 1 year: 2018 ident: 10.1016/j.mser.2024.100797_bib218 article-title: A comprehensive review of lithium salts and beyond for rechargeable batteries: progress and perspectives publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2018.07.001 – volume: 15 year: 2022 ident: 10.1016/j.mser.2024.100797_bib151 article-title: Recent advances in lithium-ion battery materials for improved electrochemical performance: a review publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100472 – ident: 10.1016/j.mser.2024.100797_bib85 – volume: 11 year: 2021 ident: 10.1016/j.mser.2024.100797_bib166 article-title: Hydrothermally synthesized nanostructured LiMnxFe1−xPO4 (x = 0–0.3) cathode materials with enhanced properties for lithium-ion batteries publication-title: Sci. Rep. doi: 10.1038/s41598-021-91881-1 – volume: 27 year: 2020 ident: 10.1016/j.mser.2024.100797_bib194 article-title: Synthesis and characterization of LiFe1−xMnxPO4 (x = 0.25, 0.50, 0.75) lithium ion battery cathode synthesized via a melting process publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101116 – volume: 18 start-page: 252 year: 2015 ident: 10.1016/j.mser.2024.100797_bib288 article-title: Li-ion battery materials: present and future publication-title: Mater. Today doi: 10.1016/j.mattod.2014.10.040 – volume: 496 year: 2021 ident: 10.1016/j.mser.2024.100797_bib98 article-title: Facile fabrication of compact LiFePO4/C composite with excellent atomically-efficient for high-energy-density Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229759 – volume: 72 year: 2023 ident: 10.1016/j.mser.2024.100797_bib232 article-title: Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108324 – volume: 20 start-page: 1821 year: 2016 ident: 10.1016/j.mser.2024.100797_bib101 article-title: LiFePO4 synthesized via melt synthesis using low-cost iron precursors publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-015-3049-7 – volume: 10 start-page: 39981 year: 2020 ident: 10.1016/j.mser.2024.100797_bib168 article-title: Heterogeneous synthesis and electrochemical performance of LiMnPO4/C composites as cathode materials of lithium ion batteries publication-title: RSC Adv. doi: 10.1039/D0RA08274K – ident: 10.1016/j.mser.2024.100797_bib246 – volume: 5 start-page: 3735 year: 2021 ident: 10.1016/j.mser.2024.100797_bib24 article-title: Recent progress of emerging cathode materials for sodium ion batteries publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00179E – volume: 54 start-page: 667 year: 2015 ident: 10.1016/j.mser.2024.100797_bib146 article-title: Performance improvement of lithium manganese phosphate by controllable morphology tailoring with acid-engaged nano engineering publication-title: Inorg. Chem. doi: 10.1021/ic5026075 – volume: 16 start-page: 835 year: 2012 ident: 10.1016/j.mser.2024.100797_bib155 article-title: Overview of olivines in lithium batteries for green transportation and energy storage publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1629-8 – volume: 217 year: 2023 ident: 10.1016/j.mser.2024.100797_bib35 article-title: Recent advances in lithium extraction from lithium-bearing clay minerals publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2023.106025 – volume: 9 start-page: 6551 year: 2021 ident: 10.1016/j.mser.2024.100797_bib45 article-title: Life cycle assessment and techno-economic assessment of lithium recovery from geothermal brine publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c08733 – ident: 10.1016/j.mser.2024.100797_bib263 – volume: 44 start-page: 8397 year: 2018 ident: 10.1016/j.mser.2024.100797_bib109 article-title: Continuous solid-phase synthesis of nanostructured lithium iron phosphate powders in air publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.02.032 – volume: 158 start-page: A1275 year: 2011 ident: 10.1016/j.mser.2024.100797_bib116 article-title: LiMnPO4 nanoparticles prepared through the reaction between Li3PO4 and molten aqua-complex of MnSO4 publication-title: J. Electrochem. Soc. doi: 10.1149/2.015112jes |
SSID | ssj0002455 |
Score | 2.426203 |
SecondaryResourceType | review_article |
Snippet | We conducted a comprehensive literature review of LiFePO4 (LFP) and LiMnxFe1-xPO4 (x=0.1–1) (LMFP)-based lithium-ion batteries (LIBs), focusing mostly on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100797 |
SubjectTerms | Electric vehicles Lithium iron phosphate Lithium-ion batteries Mine-to-chassis Olivine cathode materials |
Title | Sustainable LiFePO4 and LiMnxFe1-xPO4 (x=0.1–1) cathode materials for lithium-ion batteries: A systematic review from mine to chassis |
URI | https://dx.doi.org/10.1016/j.mser.2024.100797 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iCHoQn_gmBw-KxHZ3s00jeChiqW9Bhd6WzG5CV-xWtEJP4s0f4D_0lzizu7UK4sFbEpIlZIbkG_abbxjbMoENdOBJkThfCVnXVaEhwFDFUNonVLXJ66ecX9Rat_KkHbbH2OEwF4ZoleXdX9zp-W1djlTK06w8pGnluqp9pXStTSxI-vlGGexSkZfvvYxoHr7MK5_SZEGzy8SZguPVRTNjjOjLnCxAwk-_PU7fHpzmLJspkSJvFJuZY2M2m2fT3_QD59lkzt-MnxbY2_UoEYqfpU17dSm5yRJsn2eDpvXEgEa2Bwe4q4_Xd2-Hk2BrL7EcIWvhhRzxK0dU3kmfuwLNxSHX3sRQep83-EjymRfpLpwyU3gXd8P7PR53EIWnT4vstnl0c9gSZY0FEWPgo4RxoZNSm0QbsBAjXMBW1anEdwpDZxca6zmb2NgHcGhUDS6kdghGASgIlth41svsMuPO2JoCKW1IEvp1qIOvNEjQSYgfAFhh3vBwo7gUIKc6GPfRkGl2F5FBIjJIVBhkhe1-rXko5Df-nB0ObRb9cKII34c_1q3-c90am6JewRxbZ-P9x2e7gRilD5u5E26yicbxaeviEzFW5-0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB1Sh9L2ENK0oWmbdA89tJTFlrTr9RZ6MCHGaWy3kAR8EzvSLlGp5dA44GNv_QH9h_0lnZHkfEDIIbdF2hHLzjL7Br15A_DeJT6xSaRkHmIjVc92pMWEUhXHZZ_Ysa7qnzKedIen6utUT9dgf1ULw7TKJvbXMb2K1s2TdrOb7fOiaB93bGyM7U6ZBck_3x7BOqtT6Ras9w-PhpOrgByrqvkpz5ds0NTO1DSvGXma0sRYVXwB1n666366cecMNmGjAYuiX6_nOaz5cgue3ZAQ3ILHFYUzu3gBf46va6HEqBj479-UcGVO43G5HPhILvnJh-UXWtW_33-jj4I1W-e5F4Ra64MoCMIKAuZnxeVMkscEVvKblE1_Fn1xrfos6ooXwcUpYkarEYu5yM4IiBcXL-F0cHCyP5RNmwWZUe5jpAs6KGVdbh16zAgx0KgTTB4HQ9lz0M5Hwec-ixED-dVi0DzW6AyiwWQbWuW89K9ABOe7BpXymlX0e9jD2FhUaHNNH0DcgWi1uWnWaJBzK4yf6Yps9iNlh6TskLR2yA58urI5rxU47p2tVz5Lb52jlK6Ie-xeP9DuHTwZnoxH6ehwcvQGnvKbmkj2FlqLX5d-lyDLAveaI_kfJAbqng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+LiFePO4+and+LiMnxFe1-xPO4+%28x%3D0.1%E2%80%931%29+cathode+materials+for+lithium-ion+batteries%3A+A+systematic+review+from+mine+to+chassis&rft.jtitle=Materials+science+%26+engineering.+R%2C+Reports+%3A+a+review+journal&rft.au=Nekahi%2C+Atiyeh&rft.au=Kumar+M.R.%2C+Anil&rft.au=Li%2C+Xia&rft.au=Deng%2C+Sixu&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=0927-796X&rft.eissn=1879-212X&rft.volume=159&rft_id=info:doi/10.1016%2Fj.mser.2024.100797&rft.externalDocID=S0927796X24000275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-796X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-796X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-796X&client=summon |