Talking Face Generation With Lip and Identity Priors

ABSTRACT Speech‐driven talking face video generation has attracted growing interest in recent research. While person‐specific approaches yield high‐fidelity results, they require extensive training data from each individual speaker. In contrast, general‐purpose methods often struggle with accurate l...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Wu, Jiajie, Li, Frederick W. B., Tam, Gary K. L., Yang, Bailin, Nan, Fangzhe, Pan, Jiahao
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Speech‐driven talking face video generation has attracted growing interest in recent research. While person‐specific approaches yield high‐fidelity results, they require extensive training data from each individual speaker. In contrast, general‐purpose methods often struggle with accurate lip synchronization, identity preservation, and natural facial movements. To address these limitations, we propose a novel architecture that combines an alignment model with a rendering model. The rendering model synthesizes identity‐consistent lip movements by leveraging facial landmarks derived from speech, a partially occluded target face, multi‐reference lip features, and the input audio. Concurrently, the alignment model estimates optical flow using the occluded face and a static reference image, enabling precise alignment of facial poses and lip shapes. This collaborative design enhances the rendering process, resulting in more realistic and identity‐preserving outputs. Extensive experiments demonstrate that our method significantly improves lip synchronization and identity retention, establishing a new benchmark in talking face video generation. We propose a speech‐driven talking face generation framework that integrates optical flow‐based alignment and audio‐aware rendering with multi‐reference lip features. Our method effectively improves lip detail and identity preservation.
AbstractList Speech‐driven talking face video generation has attracted growing interest in recent research. While person‐specific approaches yield high‐fidelity results, they require extensive training data from each individual speaker. In contrast, general‐purpose methods often struggle with accurate lip synchronization, identity preservation, and natural facial movements. To address these limitations, we propose a novel architecture that combines an alignment model with a rendering model. The rendering model synthesizes identity‐consistent lip movements by leveraging facial landmarks derived from speech, a partially occluded target face, multi‐reference lip features, and the input audio. Concurrently, the alignment model estimates optical flow using the occluded face and a static reference image, enabling precise alignment of facial poses and lip shapes. This collaborative design enhances the rendering process, resulting in more realistic and identity‐preserving outputs. Extensive experiments demonstrate that our method significantly improves lip synchronization and identity retention, establishing a new benchmark in talking face video generation.
ABSTRACT Speech‐driven talking face video generation has attracted growing interest in recent research. While person‐specific approaches yield high‐fidelity results, they require extensive training data from each individual speaker. In contrast, general‐purpose methods often struggle with accurate lip synchronization, identity preservation, and natural facial movements. To address these limitations, we propose a novel architecture that combines an alignment model with a rendering model. The rendering model synthesizes identity‐consistent lip movements by leveraging facial landmarks derived from speech, a partially occluded target face, multi‐reference lip features, and the input audio. Concurrently, the alignment model estimates optical flow using the occluded face and a static reference image, enabling precise alignment of facial poses and lip shapes. This collaborative design enhances the rendering process, resulting in more realistic and identity‐preserving outputs. Extensive experiments demonstrate that our method significantly improves lip synchronization and identity retention, establishing a new benchmark in talking face video generation. We propose a speech‐driven talking face generation framework that integrates optical flow‐based alignment and audio‐aware rendering with multi‐reference lip features. Our method effectively improves lip detail and identity preservation.
Author Yang, Bailin
Tam, Gary K. L.
Nan, Fangzhe
Wu, Jiajie
Li, Frederick W. B.
Pan, Jiahao
Author_xml – sequence: 1
  givenname: Jiajie
  orcidid: 0009-0006-5947-2813
  surname: Wu
  fullname: Wu, Jiajie
  organization: Zhejiang Gongshang University
– sequence: 2
  givenname: Frederick W. B.
  orcidid: 0000-0002-4283-4228
  surname: Li
  fullname: Li, Frederick W. B.
  organization: University of Durham
– sequence: 3
  givenname: Gary K. L.
  surname: Tam
  fullname: Tam, Gary K. L.
  organization: Swansea University
– sequence: 4
  givenname: Bailin
  surname: Yang
  fullname: Yang, Bailin
  email: ybl@zjgsu.edu.cn
  organization: Zhejiang Gongshang University
– sequence: 5
  givenname: Fangzhe
  surname: Nan
  fullname: Nan, Fangzhe
  organization: Zhejiang Gongshang University
– sequence: 6
  givenname: Jiahao
  surname: Pan
  fullname: Pan, Jiahao
  organization: Zhejiang Gongshang University
BookMark eNp1kE1PAjEQhhuDiYAe_AdNPHlY2Ha3X0dCBElI9IAft6ZuZ7WIXWwXDP_e4hpvzmXew_POJM8A9XzjAaFLko9IntNxZfYjkQI_QX3CSp6VVDz3_jInZ2gQ4_pIUJL3Ubkym3fnX_HMVIDn4CGY1jUeP7n2DS_dFhtv8cKCb117wPfBNSGeo9PabCJc_O4hepjdrKa32fJuvphOlllFmeJZIaUtBLcmjWSEAM-VZYxzZWwhQb2UooaSEEaZLCQHK0itiDCGpoIlUAzRVXd3G5rPHcRWr5td8OmlLiiVSgolWKKuO6oKTYwBar0N7sOEgya5PkrRSYr-kZLYccd-uQ0c_gf1dPLYNb4BYdhi7g
Cites_doi 10.1109/CVPR.2019.00802
10.1145/3394171.3413532
10.1145/3072959.3073640
10.1109/ICCV48922.2021.00384
10.1145/3474085.3475318
10.1145/3414685.3417774
10.1145/3503161.3551574
10.1145/3490035.3490305
10.1145/3478513.3480484
10.1109/CVPR.2016.207
10.1007/978-3-031-19836-6_7
10.1109/CVPR.2018.00917
10.1109/CVPR.2018.00068
10.1145/3607541.3616812
10.1109/CVPR46437.2021.01386
10.1109/ICCV48922.2021.00573
10.1109/ICASSP48485.2024.10446049
10.1145/3596711.3596730
10.1109/CVPR.2019.00244
10.1109/CVPR52729.2023.00197
10.1145/3503250
10.1109/CVPR52729.2023.01408
10.1007/978-3-030-58545-7_3
10.1609/aaai.v36i2.20102
10.1007/978-3-319-54184-6_6
10.1109/CVPR46437.2021.00416
10.1109/TPAMI.2018.2889052
10.1109/TIP.2003.819861
10.1007/978-3-031-19775-8_39
10.1145/3528233.3530745
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70026
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70026
CAV70026
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62172366
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LD24F020003
– fundername: Major Sci‐Tech Innovation Project of Hangzhou City
  funderid: 2022AIZD0110
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2596-388d376daaaa8511e609d55669ad38e9b47fe4115258386ed71f917aa2aaad1e3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 13:22:39 EDT 2025
Thu Jul 03 08:37:46 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2596-388d376daaaa8511e609d55669ad38e9b47fe4115258386ed71f917aa2aaad1e3
Notes Funding
This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LD24F020003), the National Natural Science Foundation of China (Grant No. 62172366) and Major Sci‐Tech Innovation Project of Hangzhou City (2022AIZD0110).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-5947-2813
0000-0002-4283-4228
PQID 3228987975
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_3228987975
crossref_primary_10_1002_cav_70026
wiley_primary_10_1002_cav_70026_CAV70026
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 30
2021; 65
2023
2022
2017; 36
2021
2020
2004; 13
2020; 39
2019
2022; 36
2018
2017
2016
2024
2018; 44
2021; 40
e_1_2_9_30_1
e_1_2_9_31_1
Thies J. (e_1_2_9_5_1) 2020
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Zhou Y. (e_1_2_9_6_1) 2020; 39
Vaswani A. (e_1_2_9_24_1) 2017; 30
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Prajwal K. R. (e_1_2_9_2_1) 2019
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_4_1
e_1_2_9_3_1
Heusel M. (e_1_2_9_37_1) 2017; 30
e_1_2_9_9_1
Zhong W. (e_1_2_9_15_1) 2023
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Chung J. S. (e_1_2_9_38_1) 2017
e_1_2_9_29_1
References_xml – start-page: 1428
  year: 2019
  end-page: 1436
– start-page: 2337
  year: 2019
  end-page: 2346
– start-page: 14653
  year: 2023
  end-page: 14662
– start-page: 157
  year: 2023
  end-page: 164
– start-page: 484
  year: 2020
  end-page: 492
– start-page: 35
  year: 2020
  end-page: 51
– start-page: 586
  year: 2018
  end-page: 595
– start-page: 9729
  year: 2023
  end-page: 9738
– start-page: 106
  year: 2022
  end-page: 125
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 13
  article-title: Synthesizing Obama: Learning Lip Sync From Audio
  publication-title: ACM Transactions on Graphics (ToG)
– start-page: 87
  year: 2017
  end-page: 103
– start-page: 1874
  year: 2016
  end-page: 1883
– volume: 30
  year: 2017
  article-title: Attention Is All You Need
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3630
  year: 2024
  end-page: 3634
– start-page: 7035
  year: 2022
  end-page: 7039
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image Quality Assessment: From Error Visibility to Structural Similarity
  publication-title: IEEE Transactions on Image Processing
– start-page: 251
  year: 2017
  end-page: 263
– start-page: 716
  year: 2020
  end-page: 731
– volume: 40
  start-page: 1
  issue: 6
  year: 2021
  end-page: 17
  article-title: Live Speech Portraits: Real‐Time Photorealistic Talking‐Head Animation
  publication-title: ACM Transactions on Graphics (ToG)
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  end-page: 15
  article-title: Makelttalk: Speaker‐Aware Talking‐Head Animation
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 1
  year: 2021
  end-page: 9
– volume: 65
  start-page: 99
  issue: 1
  year: 2021
  end-page: 106
  article-title: Nerf: Representing Scenes as Neural Radiance Fields for View Synthesis
  publication-title: Communications of the ACM
– year: 2023
– volume: 36
  start-page: 2062
  issue: 2
  year: 2022
  end-page: 2070
  article-title: Synctalkface: Talking Face Generation With Precise Lip‐Syncing via Audio‐Lip Memory
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 666
  year: 2022
  end-page: 682
– start-page: 81
  year: 2023
  end-page: 90
– year: 2017
– volume: 30
  year: 2017
  article-title: Gans Trained by a Two Time‐Scale Update Rule Converge to a Local Nash Equilibrium
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  start-page: 8717
  issue: 12
  year: 2018
  end-page: 8727
  article-title: Deep audio‐visual speech recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 8798
  year: 2018
  end-page: 8807
– ident: e_1_2_9_22_1
  doi: 10.1109/CVPR.2019.00802
– ident: e_1_2_9_3_1
  doi: 10.1145/3394171.3413532
– ident: e_1_2_9_29_1
  doi: 10.1145/3072959.3073640
– ident: e_1_2_9_25_1
– ident: e_1_2_9_11_1
  doi: 10.1109/ICCV48922.2021.00384
– ident: e_1_2_9_4_1
  doi: 10.1145/3474085.3475318
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  ident: e_1_2_9_6_1
  article-title: Makelttalk: Speaker‐Aware Talking‐Head Animation
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3414685.3417774
– ident: e_1_2_9_12_1
  doi: 10.1145/3503161.3551574
– ident: e_1_2_9_20_1
  doi: 10.1145/3490035.3490305
– start-page: 251
  volume-title: Out of Time: Automated Lip Sync in the Wild
  year: 2017
  ident: e_1_2_9_38_1
– ident: e_1_2_9_9_1
  doi: 10.1145/3478513.3480484
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR.2016.207
– ident: e_1_2_9_8_1
  doi: 10.1007/978-3-031-19836-6_7
– ident: e_1_2_9_32_1
  doi: 10.1109/CVPR.2018.00917
– ident: e_1_2_9_36_1
  doi: 10.1109/CVPR.2018.00068
– ident: e_1_2_9_19_1
– start-page: 1428
  volume-title: Proceedings of the 27th ACM International Conference on Multimedia
  year: 2019
  ident: e_1_2_9_2_1
– ident: e_1_2_9_39_1
  doi: 10.1145/3607541.3616812
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR46437.2021.01386
– ident: e_1_2_9_7_1
  doi: 10.1109/ICCV48922.2021.00573
– volume: 30
  year: 2017
  ident: e_1_2_9_37_1
  article-title: Gans Trained by a Two Time‐Scale Update Rule Converge to a Local Nash Equilibrium
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_18_1
  doi: 10.1109/ICASSP48485.2024.10446049
– ident: e_1_2_9_26_1
  doi: 10.1145/3596711.3596730
– ident: e_1_2_9_30_1
  doi: 10.1109/CVPR.2019.00244
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR52729.2023.00197
– ident: e_1_2_9_27_1
  doi: 10.1145/3503250
– ident: e_1_2_9_14_1
  doi: 10.1109/CVPR52729.2023.01408
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-030-58545-7_3
– ident: e_1_2_9_13_1
  doi: 10.1609/aaai.v36i2.20102
– start-page: 9729
  volume-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2023
  ident: e_1_2_9_15_1
– volume: 30
  year: 2017
  ident: e_1_2_9_24_1
  article-title: Attention Is All You Need
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-319-54184-6_6
– ident: e_1_2_9_16_1
  doi: 10.1109/CVPR46437.2021.00416
– ident: e_1_2_9_33_1
  doi: 10.1109/TPAMI.2018.2889052
– start-page: 716
  volume-title: Neural Voice Puppetry: Audio‐Driven Facial Reenactment
  year: 2020
  ident: e_1_2_9_5_1
– ident: e_1_2_9_35_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_9_10_1
  doi: 10.1007/978-3-031-19775-8_39
– ident: e_1_2_9_28_1
  doi: 10.1145/3528233.3530745
SSID ssj0026210
Score 2.3711364
Snippet ABSTRACT Speech‐driven talking face video generation has attracted growing interest in recent research. While person‐specific approaches yield high‐fidelity...
Speech‐driven talking face video generation has attracted growing interest in recent research. While person‐specific approaches yield high‐fidelity results,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Alignment
lip and identity priors
Optical flow (image analysis)
Rendering
Speech
speech‐driven
Synchronism
Talking
talking face generation
Title Talking Face Generation With Lip and Identity Priors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70026
https://www.proquest.com/docview/3228987975
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DJ33wW5xOCeKDL9n6kaYpPo3hGKIiss09CCVfxaJ0Y-0E_etNmnZTQRD7VEpTmkvu8rvj7ncAnJuqXCKJRFRQjnASJoglykVRIn1H8iQU0gT0b-_IYISvJ8GkAS7rWhjLD7EMuBnNKO21UXDG886KNFSwt3ZoXAhtf02ulgFED0vqKI94lokgwAQZN6FmFXK8znLk97NoBTC_wtTynOlvgaf6D216yUt7UfC2-PhB3vjPKWyDzQp_wq7dMDugobJdsDFO84V9mu8BPGSvJoAO-0woaHmpzfLBx7R4hjfpDLJMwqrC9x3ez9PpPN8Ho_7VsDdAVXMFJLTHQ5BPqdTGRTJ9GdSliBPJQIO7iEmfqojjMFHYNe2RqE-JkqGbaNeOMU8PkK7yD8BaNs3UIYAB8TkTRDgh8zHHQpsEETHDhceVUgQ3wVkt5nhmOTRiy5bsxVoEcSmCJmjVCxBXapTH2trQiIZRGDTBRSnJ3z8Q97rj8ubo768eg3XP9PMtExhbYK2YL9SJBhkFPy130yesCsuQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VcgAO7IhCAQuBxCVdEsdxDhwQpSp0EUJluQXHdkQFaqumBZVv4lf4J-wsLSAhceFATlGUWNZsfuOM3wAc6FO5RBBhUE59AwdOYLBAlg03EFZJ-IHDhd7Qb7ZI7Rpf3Nl3GXhLz8LE_BCTDTftGVG81g6uN6SLU9ZQzp4Ljs4hkpLKuhy_qIQtPD6vKO0emmb1rH1aM5KeAgZXQJ8YFqVC-ZRg6tJgQ5KSK2yFaVwmLCpdHzuBxGXdFYhalEjhlAOV0TBmqg9EWVpq3BmY1R3ENVN_5WpCVmUSM-Y-sDExdGKS8hiVzOJkql9Xvymk_QyMo5WtugTvqUzigpbHwmjoF_jrN7rI_yK0ZVhMIDY6iX1iBTKyuwoLN51wFD8N1wC32ZP-R4CqjEsUU29rC0W3neEDanT6iHUFSg4xj9HloNMbhOtw_SfT3oBst9eVm4BsYvmME15ymIV9zFXU4y7TdH--lJLgHOynevX6MU2IFxNCm54SuReJPAf5VONeEilCTwVU6lLHdewcHEWq-3kA7_TkJrrZ-v2rezBXazcbXuO8Vd-GeVO3L47qNfOQHQ5GckdhqqG_G5kygvu_NoMPyU0pDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB5qBdGDb7FaNYiCl-1jN5vNHjyU1lJfpYiv25pNsliUtnRbpf4l_4o_ymQfrQqClx7c07JsQpjJTL5JMt8AHOisXCKIMCinvoEDJzBYIMuGGwirJPzA4UJv6F82SeMGn93b9xl4T3NhYn6I8YabtozIX2sD74mgOCEN5eyl4OgQIrlReS5HrypeC49Pa0q5h6ZZP7muNoykpIDBFc4nhkWpUCYlmHo01pCk5ApbQRqXCYtK18dOIHFZFwWiFiVSOOVABTSMmaqBKEtL9TsDs1g103UialdjriqTmDH1gY2JoeOSlMaoZBbHQ_2--E0Q7VdcHC1s9SX4SEUS32d5KgwHfoG__WCL_CcyW4bFBGCjSmwRK5CRnVVYuG2Hw_hruAb4mj3rEwJUZ1yimHhbz0901x48oot2D7GOQEkK8wi1-u1uP1yHm6kMewOynW5HbgKyieUzTnjJYRb2MVc-j7tMk_35UkqCc7CfqtXrxSQhXkwHbXpK5F4k8hzkU4V7iZ8IPeVOqUsd17FzcBRp7vcOvGrlNnrZ-vuvezDXqtW9i9Pm-TbMm7p2cXRZMw_ZQX8odxSgGvi70URG8DDtWfAJ_wknuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Talking+Face+Generation+With+Lip+and+Identity+Priors&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Wu%2C+Jiajie&rft.au=Li%2C+Frederick+W.+B&rft.au=Tam%2C+Gary+K.+L&rft.au=Yang%2C+Bailin&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon