BACH: Bi‐Stage Data‐Driven Piano Performance Animation for Controllable Hand Motion

ABSTRACT This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorpor...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Jiao, Jihui, Zeng, Rui, Dai, Ju, Pan, Junjun
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorporating musical temporal context, the keyframe predictor is leveraged to learn keyframe motion guidance. Meanwhile, the second stage synthesizes smooth transitions between these keyframes via an inter‐frame sequence generator. Additionally, a Laplacian operator‐based motion retargeting technique is introduced, ensuring that the generated animations can be adapted to different digital human models. We demonstrate the effectiveness of the system through an audiovisual multimedia application. Our approach provides an efficient, scalable method for generating realistic piano animations and holds promise for broader applications in animation tasks driven by sparse control signals. Illustration of our animation generation pipeline.
AbstractList This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorporating musical temporal context, the keyframe predictor is leveraged to learn keyframe motion guidance. Meanwhile, the second stage synthesizes smooth transitions between these keyframes via an inter‐frame sequence generator. Additionally, a Laplacian operator‐based motion retargeting technique is introduced, ensuring that the generated animations can be adapted to different digital human models. We demonstrate the effectiveness of the system through an audiovisual multimedia application. Our approach provides an efficient, scalable method for generating realistic piano animations and holds promise for broader applications in animation tasks driven by sparse control signals.
ABSTRACT This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorporating musical temporal context, the keyframe predictor is leveraged to learn keyframe motion guidance. Meanwhile, the second stage synthesizes smooth transitions between these keyframes via an inter‐frame sequence generator. Additionally, a Laplacian operator‐based motion retargeting technique is introduced, ensuring that the generated animations can be adapted to different digital human models. We demonstrate the effectiveness of the system through an audiovisual multimedia application. Our approach provides an efficient, scalable method for generating realistic piano animations and holds promise for broader applications in animation tasks driven by sparse control signals. Illustration of our animation generation pipeline.
Author Jiao, Jihui
Pan, Junjun
Dai, Ju
Zeng, Rui
Author_xml – sequence: 1
  givenname: Jihui
  orcidid: 0009-0001-9420-7939
  surname: Jiao
  fullname: Jiao, Jihui
  organization: Beihang University
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-9688-5875
  surname: Zeng
  fullname: Zeng, Rui
  organization: Peng Cheng Laboratory
– sequence: 3
  givenname: Ju
  orcidid: 0000-0002-9397-8539
  surname: Dai
  fullname: Dai, Ju
  email: daij@pcl.ac.cn
  organization: Peng Cheng Laboratory
– sequence: 4
  givenname: Junjun
  surname: Pan
  fullname: Pan, Junjun
  email: pan_junjun@buaa.edu.cn
  organization: Peng Cheng Laboratory
BookMark eNp1kEtOwzAQhi1UJNrCghtYYsUireM4D7NLU6BIRVTiubMcZ4JSpXZx0qLuOAJn5CS4BLFjNa9v_tH8A9TTRgNCpz4Z-YTQsZLbUUwIYweo74cs8hiNX3p_eeQfoUHTLB0aUZ_00fMkzWYXeFJ9fXzet_IV8FS20hVTW21B40UltcELsKWxK6kV4FRXK9lWRmPXwpnRrTV1LfMa8EzqAt-a_fAYHZaybuDkNw7R49XlQzbz5nfXN1k69xQNOfNKljAKSchpHClFFDBSEBbIoOA5REkUlCrhYVEkeV6wkBcxxCFXIOOEJ5xzGQzRWae7tuZtA00rlmZjtTspAkodFYc-cdR5RylrmsZCKdbWfWF3widi75twvokf3xw77tj3qobd_6DI0qdu4xsYTHE_
Cites_doi 10.1145/3450626.3459932
10.1109/CVPR.2018.00790
10.1109/TVCG.2021.3115902
10.1145/3072959.3073663
10.1145/1778765.1778770
10.1002/cav.1477
10.1371/journal.pone.0250299
10.1145/1599301.1599304
10.1109/IROS.2010.5650193
10.1109/CVPR.2018.00901
10.1145/3386569.3392462
10.1145/3544549.3585838
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70044
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70044
CAV70044
Genre researchArticle
GrantInformation_xml – fundername: Beijing Municipal Science & Technology Commission
  funderid: Z221100007422005
– fundername: National Natural Science Foundation of China
  funderid: 62172437; 62272017; 62102208
– fundername: National Key Research and Development Program of China
  funderid: 2022ZD0115902
– fundername: Young Elite Scientists Sponsorship Program by BAST
  funderid: BYESS2023382
– fundername: Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
  funderid: VRLAB2024C06
– fundername: Beijing Natural Science Foundation
  funderid: L232065; L232135
– fundername: Beijing Emerging Interdisciplinary Platform for Medicine and Engineering in Sports
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2594-f4842e859276cc0ce40d043a3d9be6863fc895dd8bbd459d7e759cea7898999a3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 12:22:30 EDT 2025
Thu Jul 03 08:30:23 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2594-f4842e859276cc0ce40d043a3d9be6863fc895dd8bbd459d7e759cea7898999a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-9420-7939
0000-0001-9688-5875
0000-0002-9397-8539
PQID 3228987510
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_3228987510
crossref_primary_10_1002_cav_70044
wiley_primary_10_1002_cav_70044_CAV70044
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 16
2023
2023; 29
2017; 36
2010
2013; 24
2010; 29
2009
2020; 39
2018
2015
2024
2021; 40
e_1_2_10_12_1
e_1_2_10_10_1
e_1_2_10_11_1
Li B. (e_1_2_10_13_1) 2018
Tits M. (e_1_2_10_9_1) 2015
Zakka K. (e_1_2_10_14_1) 2023
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
Wang R. (e_1_2_10_15_1) 2024
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_7_1
References_xml – volume: 16
  issue: 5
  year: 2021
  article-title: Quantitative Analysis of Piano Performance Proficiency Focusing on Difference Between Hands
  publication-title: PLoS One
– volume: 36
  start-page: 42:1
  issue: 4
  year: 2017
  end-page: 42:13
  article-title: Phase‐Functioned Neural Networks for Character Control
  publication-title: ACM Transactions on Graphics
– volume: 24
  start-page: 445
  issue: 5
  year: 2013
  end-page: 457
  article-title: A System for Automatic Animation of Piano Performances
  publication-title: Computer Animation and Virtual Worlds
– year: 2009
– start-page: 3513
  year: 2010
  end-page: 3518
– start-page: 218
  year: 2018
  end-page: 224
– start-page: 8639
  year: 2018
  end-page: 8648
– start-page: 141:1
  year: 2023
  end-page: 141:8
– year: 2023
– year: 2024
– volume: 29
  start-page: 1400
  issue: 2
  year: 2023
  end-page: 1414
  article-title: A Music‐Driven Deep Generative Adversarial Model for Guzheng Playing Animation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 29
  start-page: 33:1
  issue: 4
  year: 2010
  end-page: 33:8
  article-title: Spatial Relationship Preserving Character Motion Adaptation
  publication-title: ACM Transactions on Graphics
– volume: 40
  start-page: 145:1
  issue: 4
  year: 2021
  end-page: 145:13
  article-title: ChoreoMaster: Choreography‐Oriented Music‐Driven Dance Synthesis
  publication-title: ACM Transactions on Graphics
– start-page: 2975
  year: 2023
  end-page: 2994
– start-page: 77:1
  year: 2024
  end-page: 77:11
– start-page: 7574
  year: 2018
  end-page: 7583
– volume: 39
  issue: 4
  year: 2020
  article-title: Skeleton‐Aware Networks for Deep Motion Retargeting
  publication-title: ACM Transactions on Graphics
– year: 2015
– ident: e_1_2_10_6_1
  doi: 10.1145/3450626.3459932
– ident: e_1_2_10_12_1
  doi: 10.1109/CVPR.2018.00790
– ident: e_1_2_10_5_1
  doi: 10.1109/TVCG.2021.3115902
– ident: e_1_2_10_19_1
  doi: 10.1145/3072959.3073663
– start-page: 2975
  volume-title: Conference on Robot Learning, CoRL 2023, 6‐9 November 2023, Atlanta, GA, USA. 229 of Proceedings of Machine Learning Research
  year: 2023
  ident: e_1_2_10_14_1
– start-page: 77:1
  volume-title: FürElise: Capturing and Physically Synthesizing Hand Motion of Piano Performance
  year: 2024
  ident: e_1_2_10_15_1
– ident: e_1_2_10_7_1
  doi: 10.1145/1778765.1778770
– ident: e_1_2_10_4_1
– ident: e_1_2_10_3_1
  doi: 10.1002/cav.1477
– volume-title: ICMC
  year: 2015
  ident: e_1_2_10_9_1
– ident: e_1_2_10_18_1
  doi: 10.1371/journal.pone.0250299
– ident: e_1_2_10_8_1
  doi: 10.1145/1599301.1599304
– ident: e_1_2_10_2_1
  doi: 10.1109/IROS.2010.5650193
– ident: e_1_2_10_16_1
  doi: 10.1109/CVPR.2018.00901
– ident: e_1_2_10_17_1
  doi: 10.1145/3386569.3392462
– ident: e_1_2_10_10_1
  doi: 10.1145/3544549.3585838
– ident: e_1_2_10_11_1
– start-page: 218
  volume-title: Skeleton Plays Piano: Online Generation of Pianist Body Movements From MIDI Performance
  year: 2018
  ident: e_1_2_10_13_1
SSID ssj0026210
Score 2.371659
Snippet ABSTRACT This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical...
This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Animation
Controllability
deep learning
Laplace transforms
Musical scores
music‐driven motion
piano performance animation
Pianos
Virtual humans
Title BACH: Bi‐Stage Data‐Driven Piano Performance Animation for Controllable Hand Motion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70044
https://www.proquest.com/docview/3228987510
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jJz34LU6nBPHgpVtN07TRU9c5ijAZ4uYOQknSVIbSydZ58ORP8Df6S0yadVNBEG9t6Ef65v14Ut73eQE4saVQuDzFlnQcbmHKseX7rrAQSiUh0vME1fXO3WsS9fHV0B1WwEVZC2P4IRY_3LRlFP5aGzjj0-aSNFSwl4bmZtdcoDpXSwOimwV1FCLIMBG4mFh6m1CyCtmoubjzeyxaAsyvMLWIM511cF_O0KSXPDZmOW-I1x_kjf_8hA2wNsefMDAKswkqMtsCq4PRdGZGp9vgrhWE0TlsjT7e3hUWfZCwzXKmTtoT7RphT2nUGPaWFQcwyEamAhKqIRia7PcnXZQFI5YlsFu0CtoB_c7lbRhZ8_4LllCbImyl2MdI-i5FHhHCFhLbiY0d5iSUS-ITJxU-dZPE5zzBLk086blUSObplpSUMmcXVLNxJvcAlLo9PWFSSKUXKm4ykp6lDvFSBS8Qx6wGjsuViJ8NzUZsCJVRrKQUF1KqgXq5RvHc0qaxckjqdZ5yLTVwWgj79wfEYTAoDvb_fukBWEG65W-R41gH1Xwyk4cKh-T8qFC4T0V62QA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VOAAHdkRZLcSBS0pwHCdGXEoBBWhRhcpyQZHjOKgCBURbDpz4BL6RL8FL0wISEuKWWFnHM-M31swbgC1XCoXLM-JIz0scwhLihKEvHIwzSakMAsF0vXPjnEaX5PTGvynBflELY_khBhtu2jKMv9YGrjekd4asoYK_VDQ5OxmBMd3R2wRUFwPyKEyx5SLwCXV0oFDwCrl4Z3Dr99VoCDG_AlWz0hxPw23xjTbB5L7S6yYV8fqDvvG_PzEDU30IiqpWZ2ahJPM5mLxqd3p2tDMP1wfVWrSHDtofb-8Kjt5JdMi7XJ0cPmvviJpKqR5Rc1h0gKp52xZBIjWEajYB_kHXZaGI5ylqmG5BC3B5fNSqRU6_BYMjVFxEnIyEBMvQZzigQrhCEjd1ice9lCWShtTLRMj8NA2TJCU-SwMZ-ExIHuiulIxxbxFG88dcLgGSukM95VJIpRpq6eQ02808GmQKYeCE8DJsFlMRP1mmjdhyKuNYSSk2UirDajFJcd_YOrHySep1gfIuZdg20v79AXGtemUOlv9-6QaMR61GPa6fnJ-twATWHYBNyuMqjHafe3JNwZJusm607xPcj90b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAc2BGFAhbiwCUlOI4Tw6lNqMqqCrEdkCLHcVAFCqgLB058At_Il2DHTQtISIhbYmVxxrM8RzNvALZtKRQuT4klHSe2CIuJ5fuusDBOJaXS8wTT9c5n57R5RY5v3dsxOChqYQw_xPCHm7aM3F9rA39O0t0RaajgL1XNzU7GYYJQ29cqHV4MuaMwxYaKwCXU0vuEglbIxrvDW78HoxHC_IpT80DTmIW7Yoomv-Sh2u_FVfH6g73xn98wBzMDAIpqRmPmYUxmCzB93e72zWh3EW7qtaC5j-rtj7d3BUbvJQp5j6uTsKN9I2oplXpCrVHJAaplbVMCidQQCkz6-6OuykJNniXoLO8VtARXjcPLoGkNGjBYQu2KiJUSn2Dpuwx7VAhbSGInNnG4k7BYUp86qfCZmyR-HCfEZYknPZcJyT3dk5Ix7ixDKXvK5AogqfvTUy6FVIqhAien6V7qUC9V-ALHhJdhq1iJ6NnwbESGURlHSkpRLqUyVIo1igam1o2UR1Kv85RvKcNOLuzfHxAFtev8YPXvl27CZCtsRKdH5ydrMIV1-98837ECpV6nL9cVJunFG7nufQJ-zNvT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BACH%3A+Bi%E2%80%90Stage+Data%E2%80%90Driven+Piano+Performance+Animation+for+Controllable+Hand+Motion&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Jiao%2C+Jihui&rft.au=Zeng%2C+Rui&rft.au=Dai%2C+Ju&rft.au=Pan%2C+Junjun&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70044&rft.externalDBID=10.1002%252Fcav.70044&rft.externalDocID=CAV70044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon