BACH: Bi‐Stage Data‐Driven Piano Performance Animation for Controllable Hand Motion
ABSTRACT This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorpor...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorporating musical temporal context, the keyframe predictor is leveraged to learn keyframe motion guidance. Meanwhile, the second stage synthesizes smooth transitions between these keyframes via an inter‐frame sequence generator. Additionally, a Laplacian operator‐based motion retargeting technique is introduced, ensuring that the generated animations can be adapted to different digital human models. We demonstrate the effectiveness of the system through an audiovisual multimedia application. Our approach provides an efficient, scalable method for generating realistic piano animations and holds promise for broader applications in animation tasks driven by sparse control signals.
Illustration of our animation generation pipeline. |
---|---|
AbstractList | This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorporating musical temporal context, the keyframe predictor is leveraged to learn keyframe motion guidance. Meanwhile, the second stage synthesizes smooth transitions between these keyframes via an inter‐frame sequence generator. Additionally, a Laplacian operator‐based motion retargeting technique is introduced, ensuring that the generated animations can be adapted to different digital human models. We demonstrate the effectiveness of the system through an audiovisual multimedia application. Our approach provides an efficient, scalable method for generating realistic piano animations and holds promise for broader applications in animation tasks driven by sparse control signals. ABSTRACT This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data, the framework transforms sparse control signals into continuous, natural hand motions. Specifically, in the first stage, by incorporating musical temporal context, the keyframe predictor is leveraged to learn keyframe motion guidance. Meanwhile, the second stage synthesizes smooth transitions between these keyframes via an inter‐frame sequence generator. Additionally, a Laplacian operator‐based motion retargeting technique is introduced, ensuring that the generated animations can be adapted to different digital human models. We demonstrate the effectiveness of the system through an audiovisual multimedia application. Our approach provides an efficient, scalable method for generating realistic piano animations and holds promise for broader applications in animation tasks driven by sparse control signals. Illustration of our animation generation pipeline. |
Author | Jiao, Jihui Pan, Junjun Dai, Ju Zeng, Rui |
Author_xml | – sequence: 1 givenname: Jihui orcidid: 0009-0001-9420-7939 surname: Jiao fullname: Jiao, Jihui organization: Beihang University – sequence: 2 givenname: Rui orcidid: 0000-0001-9688-5875 surname: Zeng fullname: Zeng, Rui organization: Peng Cheng Laboratory – sequence: 3 givenname: Ju orcidid: 0000-0002-9397-8539 surname: Dai fullname: Dai, Ju email: daij@pcl.ac.cn organization: Peng Cheng Laboratory – sequence: 4 givenname: Junjun surname: Pan fullname: Pan, Junjun email: pan_junjun@buaa.edu.cn organization: Peng Cheng Laboratory |
BookMark | eNp1kEtOwzAQhi1UJNrCghtYYsUireM4D7NLU6BIRVTiubMcZ4JSpXZx0qLuOAJn5CS4BLFjNa9v_tH8A9TTRgNCpz4Z-YTQsZLbUUwIYweo74cs8hiNX3p_eeQfoUHTLB0aUZ_00fMkzWYXeFJ9fXzet_IV8FS20hVTW21B40UltcELsKWxK6kV4FRXK9lWRmPXwpnRrTV1LfMa8EzqAt-a_fAYHZaybuDkNw7R49XlQzbz5nfXN1k69xQNOfNKljAKSchpHClFFDBSEBbIoOA5REkUlCrhYVEkeV6wkBcxxCFXIOOEJ5xzGQzRWae7tuZtA00rlmZjtTspAkodFYc-cdR5RylrmsZCKdbWfWF3widi75twvokf3xw77tj3qobd_6DI0qdu4xsYTHE_ |
Cites_doi | 10.1145/3450626.3459932 10.1109/CVPR.2018.00790 10.1109/TVCG.2021.3115902 10.1145/3072959.3073663 10.1145/1778765.1778770 10.1002/cav.1477 10.1371/journal.pone.0250299 10.1145/1599301.1599304 10.1109/IROS.2010.5650193 10.1109/CVPR.2018.00901 10.1145/3386569.3392462 10.1145/3544549.3585838 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70044 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70044 CAV70044 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Beijing Municipal Science & Technology Commission funderid: Z221100007422005 – fundername: National Natural Science Foundation of China funderid: 62172437; 62272017; 62102208 – fundername: National Key Research and Development Program of China funderid: 2022ZD0115902 – fundername: Young Elite Scientists Sponsorship Program by BAST funderid: BYESS2023382 – fundername: Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University funderid: VRLAB2024C06 – fundername: Beijing Natural Science Foundation funderid: L232065; L232135 – fundername: Beijing Emerging Interdisciplinary Platform for Medicine and Engineering in Sports |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2594-f4842e859276cc0ce40d043a3d9be6863fc895dd8bbd459d7e759cea7898999a3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 12:22:30 EDT 2025 Thu Jul 03 08:30:23 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2594-f4842e859276cc0ce40d043a3d9be6863fc895dd8bbd459d7e759cea7898999a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-9420-7939 0000-0001-9688-5875 0000-0002-9397-8539 |
PQID | 3228987510 |
PQPubID | 2034909 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3228987510 crossref_primary_10_1002_cav_70044 wiley_primary_10_1002_cav_70044_CAV70044 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 16 2023 2023; 29 2017; 36 2010 2013; 24 2010; 29 2009 2020; 39 2018 2015 2024 2021; 40 e_1_2_10_12_1 e_1_2_10_10_1 e_1_2_10_11_1 Li B. (e_1_2_10_13_1) 2018 Tits M. (e_1_2_10_9_1) 2015 Zakka K. (e_1_2_10_14_1) 2023 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 Wang R. (e_1_2_10_15_1) 2024 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_7_1 |
References_xml | – volume: 16 issue: 5 year: 2021 article-title: Quantitative Analysis of Piano Performance Proficiency Focusing on Difference Between Hands publication-title: PLoS One – volume: 36 start-page: 42:1 issue: 4 year: 2017 end-page: 42:13 article-title: Phase‐Functioned Neural Networks for Character Control publication-title: ACM Transactions on Graphics – volume: 24 start-page: 445 issue: 5 year: 2013 end-page: 457 article-title: A System for Automatic Animation of Piano Performances publication-title: Computer Animation and Virtual Worlds – year: 2009 – start-page: 3513 year: 2010 end-page: 3518 – start-page: 218 year: 2018 end-page: 224 – start-page: 8639 year: 2018 end-page: 8648 – start-page: 141:1 year: 2023 end-page: 141:8 – year: 2023 – year: 2024 – volume: 29 start-page: 1400 issue: 2 year: 2023 end-page: 1414 article-title: A Music‐Driven Deep Generative Adversarial Model for Guzheng Playing Animation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 29 start-page: 33:1 issue: 4 year: 2010 end-page: 33:8 article-title: Spatial Relationship Preserving Character Motion Adaptation publication-title: ACM Transactions on Graphics – volume: 40 start-page: 145:1 issue: 4 year: 2021 end-page: 145:13 article-title: ChoreoMaster: Choreography‐Oriented Music‐Driven Dance Synthesis publication-title: ACM Transactions on Graphics – start-page: 2975 year: 2023 end-page: 2994 – start-page: 77:1 year: 2024 end-page: 77:11 – start-page: 7574 year: 2018 end-page: 7583 – volume: 39 issue: 4 year: 2020 article-title: Skeleton‐Aware Networks for Deep Motion Retargeting publication-title: ACM Transactions on Graphics – year: 2015 – ident: e_1_2_10_6_1 doi: 10.1145/3450626.3459932 – ident: e_1_2_10_12_1 doi: 10.1109/CVPR.2018.00790 – ident: e_1_2_10_5_1 doi: 10.1109/TVCG.2021.3115902 – ident: e_1_2_10_19_1 doi: 10.1145/3072959.3073663 – start-page: 2975 volume-title: Conference on Robot Learning, CoRL 2023, 6‐9 November 2023, Atlanta, GA, USA. 229 of Proceedings of Machine Learning Research year: 2023 ident: e_1_2_10_14_1 – start-page: 77:1 volume-title: FürElise: Capturing and Physically Synthesizing Hand Motion of Piano Performance year: 2024 ident: e_1_2_10_15_1 – ident: e_1_2_10_7_1 doi: 10.1145/1778765.1778770 – ident: e_1_2_10_4_1 – ident: e_1_2_10_3_1 doi: 10.1002/cav.1477 – volume-title: ICMC year: 2015 ident: e_1_2_10_9_1 – ident: e_1_2_10_18_1 doi: 10.1371/journal.pone.0250299 – ident: e_1_2_10_8_1 doi: 10.1145/1599301.1599304 – ident: e_1_2_10_2_1 doi: 10.1109/IROS.2010.5650193 – ident: e_1_2_10_16_1 doi: 10.1109/CVPR.2018.00901 – ident: e_1_2_10_17_1 doi: 10.1145/3386569.3392462 – ident: e_1_2_10_10_1 doi: 10.1145/3544549.3585838 – ident: e_1_2_10_11_1 – start-page: 218 volume-title: Skeleton Plays Piano: Online Generation of Pianist Body Movements From MIDI Performance year: 2018 ident: e_1_2_10_13_1 |
SSID | ssj0026210 |
Score | 2.371659 |
Snippet | ABSTRACT
This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical... This paper presents a novel framework for generating piano performance animations using a two‐stage deep learning model. By using discrete musical score data,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Animation Controllability deep learning Laplace transforms Musical scores music‐driven motion piano performance animation Pianos Virtual humans |
Title | BACH: Bi‐Stage Data‐Driven Piano Performance Animation for Controllable Hand Motion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70044 https://www.proquest.com/docview/3228987510 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jJz34LU6nBPHgpVtN07TRU9c5ijAZ4uYOQknSVIbSydZ58ORP8Df6S0yadVNBEG9t6Ef65v14Ut73eQE4saVQuDzFlnQcbmHKseX7rrAQSiUh0vME1fXO3WsS9fHV0B1WwEVZC2P4IRY_3LRlFP5aGzjj0-aSNFSwl4bmZtdcoDpXSwOimwV1FCLIMBG4mFh6m1CyCtmoubjzeyxaAsyvMLWIM511cF_O0KSXPDZmOW-I1x_kjf_8hA2wNsefMDAKswkqMtsCq4PRdGZGp9vgrhWE0TlsjT7e3hUWfZCwzXKmTtoT7RphT2nUGPaWFQcwyEamAhKqIRia7PcnXZQFI5YlsFu0CtoB_c7lbRhZ8_4LllCbImyl2MdI-i5FHhHCFhLbiY0d5iSUS-ITJxU-dZPE5zzBLk086blUSObplpSUMmcXVLNxJvcAlLo9PWFSSKUXKm4ykp6lDvFSBS8Qx6wGjsuViJ8NzUZsCJVRrKQUF1KqgXq5RvHc0qaxckjqdZ5yLTVwWgj79wfEYTAoDvb_fukBWEG65W-R41gH1Xwyk4cKh-T8qFC4T0V62QA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VOAAHdkRZLcSBS0pwHCdGXEoBBWhRhcpyQZHjOKgCBURbDpz4BL6RL8FL0wISEuKWWFnHM-M31swbgC1XCoXLM-JIz0scwhLihKEvHIwzSakMAsF0vXPjnEaX5PTGvynBflELY_khBhtu2jKMv9YGrjekd4asoYK_VDQ5OxmBMd3R2wRUFwPyKEyx5SLwCXV0oFDwCrl4Z3Dr99VoCDG_AlWz0hxPw23xjTbB5L7S6yYV8fqDvvG_PzEDU30IiqpWZ2ahJPM5mLxqd3p2tDMP1wfVWrSHDtofb-8Kjt5JdMi7XJ0cPmvviJpKqR5Rc1h0gKp52xZBIjWEajYB_kHXZaGI5ylqmG5BC3B5fNSqRU6_BYMjVFxEnIyEBMvQZzigQrhCEjd1ice9lCWShtTLRMj8NA2TJCU-SwMZ-ExIHuiulIxxbxFG88dcLgGSukM95VJIpRpq6eQ02808GmQKYeCE8DJsFlMRP1mmjdhyKuNYSSk2UirDajFJcd_YOrHySep1gfIuZdg20v79AXGtemUOlv9-6QaMR61GPa6fnJ-twATWHYBNyuMqjHafe3JNwZJusm607xPcj90b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAc2BGFAhbiwCUlOI4Tw6lNqMqqCrEdkCLHcVAFCqgLB058At_Il2DHTQtISIhbYmVxxrM8RzNvALZtKRQuT4klHSe2CIuJ5fuusDBOJaXS8wTT9c5n57R5RY5v3dsxOChqYQw_xPCHm7aM3F9rA39O0t0RaajgL1XNzU7GYYJQ29cqHV4MuaMwxYaKwCXU0vuEglbIxrvDW78HoxHC_IpT80DTmIW7Yoomv-Sh2u_FVfH6g73xn98wBzMDAIpqRmPmYUxmCzB93e72zWh3EW7qtaC5j-rtj7d3BUbvJQp5j6uTsKN9I2oplXpCrVHJAaplbVMCidQQCkz6-6OuykJNniXoLO8VtARXjcPLoGkNGjBYQu2KiJUSn2Dpuwx7VAhbSGInNnG4k7BYUp86qfCZmyR-HCfEZYknPZcJyT3dk5Ix7ixDKXvK5AogqfvTUy6FVIqhAien6V7qUC9V-ALHhJdhq1iJ6NnwbESGURlHSkpRLqUyVIo1igam1o2UR1Kv85RvKcNOLuzfHxAFtev8YPXvl27CZCtsRKdH5ydrMIV1-98837ECpV6nL9cVJunFG7nufQJ-zNvT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BACH%3A+Bi%E2%80%90Stage+Data%E2%80%90Driven+Piano+Performance+Animation+for+Controllable+Hand+Motion&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Jiao%2C+Jihui&rft.au=Zeng%2C+Rui&rft.au=Dai%2C+Ju&rft.au=Pan%2C+Junjun&rft.date=2025-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70044&rft.externalDBID=10.1002%252Fcav.70044&rft.externalDocID=CAV70044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |