FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things
•We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The performance of each classifier is evaluated using three recent real datasets.•The results show that the FELIDS system outperforms the central...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 165; pp. 17 - 31 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The performance of each classifier is evaluated using three recent real datasets.•The results show that the FELIDS system outperforms the centralized versions.•The proposed FELIDS model achieves the highest accuracy in detecting attacks.
In this paper, we propose a federated learning-based intrusion detection system, named FELIDS, for securing agricultural-IoT infrastructures. Specifically, the FELIDS system protects data privacy through local learning, where devices benefit from the knowledge of their peers by sharing only updates from their model with an aggregation server that produces an improved detection model. In order to prevent Agricultural IoTs attacks, the FELIDS system employs three deep learning classifiers, namely, deep neural networks, convolutional neural networks, and recurrent neural networks. We study the performance of the proposed IDS on three different sources, including, CSE-CIC-IDS2018, MQTTset, and InSDN. The results demonstrate that the FELIDS system outperforms the classic/centralized versions of machine learning (non-federated learning) in protecting the privacy of IoT devices data and achieves the highest accuracy in detecting attacks. |
---|---|
AbstractList | •We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The performance of each classifier is evaluated using three recent real datasets.•The results show that the FELIDS system outperforms the centralized versions.•The proposed FELIDS model achieves the highest accuracy in detecting attacks.
In this paper, we propose a federated learning-based intrusion detection system, named FELIDS, for securing agricultural-IoT infrastructures. Specifically, the FELIDS system protects data privacy through local learning, where devices benefit from the knowledge of their peers by sharing only updates from their model with an aggregation server that produces an improved detection model. In order to prevent Agricultural IoTs attacks, the FELIDS system employs three deep learning classifiers, namely, deep neural networks, convolutional neural networks, and recurrent neural networks. We study the performance of the proposed IDS on three different sources, including, CSE-CIC-IDS2018, MQTTset, and InSDN. The results demonstrate that the FELIDS system outperforms the classic/centralized versions of machine learning (non-federated learning) in protecting the privacy of IoT devices data and achieves the highest accuracy in detecting attacks. |
Author | Shu, Lei Ferrag, Mohamed Amine Nafaa, Mehdi Maglaras, Leandros Choo, Kim-Kwang Raymond Friha, Othmane |
Author_xml | – sequence: 1 givenname: Othmane orcidid: 0000-0002-1160-2846 surname: Friha fullname: Friha, Othmane email: othmane.friha@univ-annaba.org organization: Networks and Systems Laboratory (LRS), Badji Mokhtar-Annaba University, B.P.12, Annaba 23000, Algeria – sequence: 2 givenname: Mohamed Amine orcidid: 0000-0002-0632-3172 surname: Ferrag fullname: Ferrag, Mohamed Amine email: ferrag.mohamedamine@univ-guelma.dz organization: Department of Computer Science, Guelma University, B.P. 401, 24000, Algeria – sequence: 3 givenname: Lei surname: Shu fullname: Shu, Lei email: lei.shu@ieee.org organization: College of Engineering, Nanjing Agricultural University, Nanjing, China – sequence: 4 givenname: Leandros orcidid: 0000-0001-5360-9782 surname: Maglaras fullname: Maglaras, Leandros email: leandrosmag@gmail.com organization: School of Computer Science and Informatics, De Montfort University, Leicester, UK – sequence: 5 givenname: Kim-Kwang Raymond surname: Choo fullname: Choo, Kim-Kwang Raymond email: raymond.choo@fulbrightmail.org organization: Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA – sequence: 6 givenname: Mehdi orcidid: 0000-0002-1233-9031 surname: Nafaa fullname: Nafaa, Mehdi email: mehdi.nafaa@gmail.com organization: Networks and Systems Laboratory (LRS), Badji Mokhtar-Annaba University, B.P.12, Annaba 23000, Algeria |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyDyT4EScpYoNKC5UqsaB7y7EnxVHqVLaL1L_HUVmx6GpmFufqzpmhiRscIPRISU4JLZ-6vDsanTPCWE54Tgi_QVNKFmVG6qKeoCmpCp5VnIo7NAuhI4RSUdVTJNer7ebt6xmvwYBXEQzuQXln3T5rVEinddGfgh0cNhBBx3EL5xDhgNvBY7X3Vp_6ePKqxxsXwTuIeGjx7jtlhHt026o-wMPfnKPderVbfmTbz_fN8nWbaSYWPNMlABdKVKmnEYIV1JCGNrTSBeOUiNIoSjUsimZhas1Acw1GlZUGKBqj-ByxS6z2QwgeWnn09qD8WVIiR0Oyk6MhORqShMtkKEH1P0jbqMYHo1e2v46-XFBIP_1Y8DJoCy6Vsj45kmaw1_BfNuyFew |
CitedBy_id | crossref_primary_10_1145_3701724 crossref_primary_10_1016_j_future_2024_07_026 crossref_primary_10_1007_s10462_024_11082_w crossref_primary_10_1002_ett_5030 crossref_primary_10_1145_3695998 crossref_primary_10_1007_s12083_022_01374_9 crossref_primary_10_1109_ACCESS_2023_3235389 crossref_primary_10_1109_JIOT_2024_3485208 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_1016_j_comnet_2025_111179 crossref_primary_10_1371_journal_pone_0314921 crossref_primary_10_1109_ACCESS_2023_3324657 crossref_primary_10_1109_ACCESS_2025_3550800 crossref_primary_10_1080_1206212X_2024_2443504 crossref_primary_10_3390_app13116753 crossref_primary_10_1109_JAS_2023_123870 crossref_primary_10_1038_s41598_025_93501_8 crossref_primary_10_1007_s00500_023_08397_1 crossref_primary_10_1155_2023_8068038 crossref_primary_10_1007_s10207_023_00785_w crossref_primary_10_1016_j_procs_2025_02_119 crossref_primary_10_1016_j_cose_2024_104161 crossref_primary_10_2174_0126662558279673240515054741 crossref_primary_10_1007_s00521_024_10136_y crossref_primary_10_1109_TNSM_2024_3385385 crossref_primary_10_3390_electronics12163382 crossref_primary_10_1109_ACCESS_2024_3516814 crossref_primary_10_1016_j_iot_2023_100709 crossref_primary_10_1038_s41598_025_88163_5 crossref_primary_10_3390_ani14142021 crossref_primary_10_1155_2023_7690322 crossref_primary_10_3390_s23239566 crossref_primary_10_1016_j_iotcps_2022_12_003 crossref_primary_10_1109_ACCESS_2024_3404651 crossref_primary_10_1007_s10207_023_00805_9 crossref_primary_10_1109_ACCESS_2023_3318866 crossref_primary_10_1016_j_pmcj_2022_101738 crossref_primary_10_1016_j_iot_2024_101088 crossref_primary_10_3390_app122412941 crossref_primary_10_1109_JIOT_2024_3452421 crossref_primary_10_1016_j_comnet_2025_111116 crossref_primary_10_1016_j_cose_2023_103597 crossref_primary_10_1016_j_atech_2024_100727 crossref_primary_10_1007_s10207_024_00935_8 crossref_primary_10_1109_TNSM_2023_3299606 crossref_primary_10_1016_j_pmcj_2023_101750 crossref_primary_10_32604_cmc_2024_048621 crossref_primary_10_1109_ACCESS_2023_3346299 crossref_primary_10_1007_s42979_025_03672_4 crossref_primary_10_3390_rs15143611 crossref_primary_10_1007_s10462_023_10417_3 crossref_primary_10_1007_s42979_025_03797_6 crossref_primary_10_1016_j_jpdc_2024_104992 crossref_primary_10_1109_TCE_2024_3370373 crossref_primary_10_1109_ACCESS_2025_3535952 crossref_primary_10_3389_fenrg_2023_1061779 crossref_primary_10_1007_s13369_023_08439_8 crossref_primary_10_1016_j_eswa_2024_124982 crossref_primary_10_1038_s41598_024_72982_z crossref_primary_10_1109_ACCESS_2024_3454211 crossref_primary_10_1002_spy2_445 crossref_primary_10_1016_j_cose_2023_103381 crossref_primary_10_1145_3723039 crossref_primary_10_1038_s41598_023_42678_x crossref_primary_10_1016_j_comnet_2023_109724 crossref_primary_10_1109_LNET_2025_3525901 crossref_primary_10_3390_ai6040063 crossref_primary_10_1007_s10586_024_04616_y crossref_primary_10_1016_j_cosrev_2024_100717 crossref_primary_10_1007_s10207_023_00771_2 crossref_primary_10_1016_j_iswa_2023_200232 crossref_primary_10_1016_j_cose_2023_103097 crossref_primary_10_1109_ACCESS_2023_3269880 crossref_primary_10_1109_OJCOMS_2024_3456549 crossref_primary_10_1007_s11042_024_19695_7 crossref_primary_10_1109_ACCESS_2023_3306452 crossref_primary_10_1007_s00500_023_09610_x crossref_primary_10_1016_j_ecoinf_2023_102217 crossref_primary_10_3390_a15070247 crossref_primary_10_1007_s10586_024_04498_0 crossref_primary_10_3934_era_2024021 crossref_primary_10_3390_math10122141 crossref_primary_10_32604_cmc_2023_041667 crossref_primary_10_3390_s24175834 crossref_primary_10_1016_j_vehcom_2024_100812 crossref_primary_10_1016_j_icte_2023_03_006 crossref_primary_10_1007_s10722_024_02083_3 crossref_primary_10_3390_s23167191 crossref_primary_10_1016_j_dcan_2023_05_006 crossref_primary_10_3389_fagro_2024_1410829 crossref_primary_10_1007_s10586_024_04711_0 crossref_primary_10_1109_ACCESS_2024_3363469 crossref_primary_10_1109_ACCESS_2025_3529894 crossref_primary_10_1016_j_comnet_2023_109982 crossref_primary_10_32604_cmc_2023_032591 crossref_primary_10_1016_j_compag_2025_110180 crossref_primary_10_1109_ACCESS_2024_3460468 crossref_primary_10_3390_electronics13234744 crossref_primary_10_3233_JIFS_240571 crossref_primary_10_1016_j_comcom_2024_04_024 crossref_primary_10_1016_j_inffus_2024_102820 crossref_primary_10_1145_3687124 crossref_primary_10_1109_COMST_2023_3317242 crossref_primary_10_1016_j_cose_2023_103315 crossref_primary_10_55529_ijitc_43_36_48 crossref_primary_10_7717_peerj_cs_2414 crossref_primary_10_1109_JIOT_2024_3362972 crossref_primary_10_55529_ijitc_43_36_47 crossref_primary_10_1142_S0218126624501627 crossref_primary_10_1016_j_jpdc_2022_09_014 crossref_primary_10_1007_s13369_024_08835_8 crossref_primary_10_1002_ett_5018 crossref_primary_10_1109_ACCESS_2024_3410046 crossref_primary_10_3390_s25061752 |
Cites_doi | 10.1038/nature14539 10.1016/j.ipm.2021.102526 10.1145/3298981 10.3390/fi12030044 10.1162/neco.1997.9.8.1735 10.3390/app8122663 10.3390/electronics10151787 10.1016/j.phycom.2020.101157 10.1109/ACCESS.2021.3058528 10.1109/JIOT.2019.2956615 10.1109/JAS.2021.1003925 10.3390/electronics10111257 10.1016/j.ins.2019.10.069 10.1109/ACCESS.2020.3022633 10.3390/s20226578 10.1109/JPROC.2014.2371999 10.1016/j.inffus.2020.07.009 10.1109/MNET.011.2000286 10.1109/TSMC.2020.3042898 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpdc.2022.03.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1096-0848 |
EndPage | 31 |
ExternalDocumentID | 10_1016_j_jpdc_2022_03_003 S0743731522000570 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c2593-c6ee35a57074d55241d0b1b17c4231056da11ce94b9d8c2ec3ceda67cee4bda3 |
IEDL.DBID | .~1 |
ISSN | 0743-7315 |
IngestDate | Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 03:20:51 EDT 2025 Fri Feb 23 02:41:05 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Privacy Federated learning Internet of Things Security |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2593-c6ee35a57074d55241d0b1b17c4231056da11ce94b9d8c2ec3ceda67cee4bda3 |
ORCID | 0000-0001-5360-9782 0000-0002-1233-9031 0000-0002-1160-2846 0000-0002-0632-3172 |
OpenAccessLink | https://hdl.handle.net/2086/21733 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_jpdc_2022_03_003 crossref_citationtrail_10_1016_j_jpdc_2022_03_003 elsevier_sciencedirect_doi_10_1016_j_jpdc_2022_03_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Anthony, Kanding, Selvan (br0380) 2020 Cusack, Michel, Keller (br0160) 2018 br0300 Huong, Bac, Long, Thang, Binh, Luong, Phuc (br0210) 2021; 9 Nguyen, Marchal, Miettinen, Fereidooni, Asokan, Sadeghi (br0180) 2019 Preuveneers, Rimmer, Tsingenopoulos, Spooren, Joosen, Ilie-Zudor (br0040) 2018; 8 Sharafaldin, Lashkari, Ghorbani (br0330) 2018 Kingma, Ba (br0260) 2014 Mills, Hu, Min (br0100) 2019; 7 Rahman, Tout, Talhi, Mourad (br0170) 2020; 34 Fortino, Savaglio, Spezzano, Zhou (br0030) 2020; 51 Ferrag, Maglaras, Ahmim, Derdour, Janicke (br0120) 2020; 12 br0360 Pascanu, Gulcehre, Cho, Bengio (br0280) 2013 Li, Wu, Song, Lu, Li, Zhao (br0190) 2020 Hassan, Gumaei, Alsanad, Alrubaian, Fortino (br0060) 2020; 513 Friha, Ferrag, Shu, Maglaras, Wang (br0020) 2021; 8 LeCun, Bengio, Hinton (br0250) 2015; 521 Nanda, Zafari, DeCusatis, Wedaa, Yang (br0150) 2016 Mînea (br0310) 2021 Barka, Dahmane, Kerrache, Khayat, Sallabi (br0230) 2021; 10 Vaccari, Chiola, Aiello, Mongelli, Cambiaso (br0340) 2020; 20 Friha, Ferrag, Shu, Nafa (br0140) 2020 Suk (br0270) 2017 Rathee, Ahmad, Sandhu, Kerrache, Azad (br0240) 2021; 58 Rodríguez-Barroso, Stipcich, Jiménez-López, Ruiz-Millán, Martínez-Cámara, González-Seco, Luzón, Veganzones, Herrera (br0370) 2020; 64 br0090 Ferrag, Friha, Hamouda, Maglaras, Janicke (br0390) 2022 Elsayed, Le-Khac, Jurcut (br0350) 2020; 8 Hochreiter, Schmidhuber (br0290) 1997; 9 McMahan, Moore, Ramage, Hampson, y Arcas (br0080) 2017 Schneble, Thamilarasu (br0200) 2019 Yang, Liu, Chen, Tong (br0070) 2019; 10 br0010 Ferrag, Shu, Djallel, Choo (br0110) 2021; 10 Kreutz, Ramos, Verissimo, Rothenberg, Azodolmolky, Uhlig (br0130) 2014; 103 br0050 Qiu, Parcollet, Fernandez-Marques, de Gusmao, Beutel, Topal, Mathur, Lane (br0320) 2021 Zhao, Yin, Shi, Xue (br0220) 2020; 42 Anthony (10.1016/j.jpdc.2022.03.003_br0380) Ferrag (10.1016/j.jpdc.2022.03.003_br0390) 2022 Nanda (10.1016/j.jpdc.2022.03.003_br0150) 2016 Cusack (10.1016/j.jpdc.2022.03.003_br0160) 2018 LeCun (10.1016/j.jpdc.2022.03.003_br0250) 2015; 521 Ferrag (10.1016/j.jpdc.2022.03.003_br0110) 2021; 10 Friha (10.1016/j.jpdc.2022.03.003_br0020) 2021; 8 Mills (10.1016/j.jpdc.2022.03.003_br0100) 2019; 7 Mînea (10.1016/j.jpdc.2022.03.003_br0310) 2021 Fortino (10.1016/j.jpdc.2022.03.003_br0030) 2020; 51 Barka (10.1016/j.jpdc.2022.03.003_br0230) 2021; 10 Elsayed (10.1016/j.jpdc.2022.03.003_br0350) 2020; 8 Kreutz (10.1016/j.jpdc.2022.03.003_br0130) 2014; 103 Rodríguez-Barroso (10.1016/j.jpdc.2022.03.003_br0370) 2020; 64 Li (10.1016/j.jpdc.2022.03.003_br0190) 2020 Zhao (10.1016/j.jpdc.2022.03.003_br0220) 2020; 42 Yang (10.1016/j.jpdc.2022.03.003_br0070) 2019; 10 Friha (10.1016/j.jpdc.2022.03.003_br0140) 2020 Ferrag (10.1016/j.jpdc.2022.03.003_br0120) 2020; 12 Preuveneers (10.1016/j.jpdc.2022.03.003_br0040) 2018; 8 McMahan (10.1016/j.jpdc.2022.03.003_br0080) 2017 Pascanu (10.1016/j.jpdc.2022.03.003_br0280) Schneble (10.1016/j.jpdc.2022.03.003_br0200) 2019 Suk (10.1016/j.jpdc.2022.03.003_br0270) 2017 Hassan (10.1016/j.jpdc.2022.03.003_br0060) 2020; 513 Rathee (10.1016/j.jpdc.2022.03.003_br0240) 2021; 58 Sharafaldin (10.1016/j.jpdc.2022.03.003_br0330) 2018 Nguyen (10.1016/j.jpdc.2022.03.003_br0180) 2019 Qiu (10.1016/j.jpdc.2022.03.003_br0320) Rahman (10.1016/j.jpdc.2022.03.003_br0170) 2020; 34 Hochreiter (10.1016/j.jpdc.2022.03.003_br0290) 1997; 9 Kingma (10.1016/j.jpdc.2022.03.003_br0260) Huong (10.1016/j.jpdc.2022.03.003_br0210) 2021; 9 Vaccari (10.1016/j.jpdc.2022.03.003_br0340) 2020; 20 |
References_xml | – volume: 9 start-page: 29 year: 2021 end-page: 29 ident: br0210 article-title: Lockedge: low-complexity cyberattack detection in iot edge computing publication-title: IEEE Access – start-page: 167 year: 2016 end-page: 172 ident: br0150 article-title: Predicting network attack patterns in sdn using machine learning approach publication-title: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN) – volume: 8 start-page: 2663 year: 2018 ident: br0040 article-title: Chained anomaly detection models for federated learning: an intrusion detection case study publication-title: Appl. Sci. – volume: 8 start-page: 263 year: 2020 end-page: 165 284 ident: br0350 article-title: Insdn: a novel sdn intrusion dataset publication-title: IEEE Access – volume: 58 year: 2021 ident: br0240 article-title: On the design and implementation of a secure blockchain-based hybrid framework for industrial Internet-of-things publication-title: Inf. Process. Manag. – volume: 7 start-page: 5986 year: 2019 end-page: 5994 ident: br0100 article-title: Communication-efficient federated learning for wireless edge intelligence in iot publication-title: IEEE Int. Things J. – year: 2013 ident: br0280 article-title: How to construct deep recurrent neural networks – year: 2021 ident: br0320 article-title: A first look into the carbon footprint of federated learning – volume: 12 start-page: 44 year: 2020 ident: br0120 article-title: Rdtids: rules and decision tree-based intrusion detection system for Internet-of-things networks publication-title: Future Internet – start-page: 1 year: 2018 end-page: 6 ident: br0160 article-title: Machine learning-based detection of ransomware using sdn publication-title: Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization – start-page: 1 year: 2020 end-page: 5 ident: br0140 article-title: A robust security framework based on blockchain and sdn for fog computing enabled agricultural Internet of things publication-title: 2020 International Conference on Internet of Things and Intelligent Applications (ITIA) – year: 2021 ident: br0310 article-title: A Study on Privacy-Preserving Federated Learning and Enhancement Through Transfer Learning – volume: 34 start-page: 310 year: 2020 end-page: 317 ident: br0170 article-title: Internet of things intrusion detection: centralized, on-device, or federated learning? publication-title: IEEE Netw. – volume: 8 start-page: 718 year: 2021 end-page: 752 ident: br0020 article-title: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies publication-title: IEEE/CAA J. Autom. Sin. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: br0290 article-title: Long short-term memory publication-title: Neural Comput. – year: 2020 ident: br0380 article-title: Carbontracker: tracking and predicting the carbon footprint of training deep learning models – volume: 10 start-page: 1257 year: 2021 ident: br0110 article-title: Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0 publication-title: Electronics – ident: br0010 article-title: More people, more food, worse water? – ident: br0050 article-title: Jbs: cyber-attack hits world's largest meat supplier – volume: 10 start-page: 1 year: 2019 end-page: 19 ident: br0070 article-title: Federated machine learning: concept and applications publication-title: ACM Trans. Intell. Syst. Technol. – ident: br0360 article-title: Google colaboratory – ident: br0300 article-title: grpc – volume: 513 start-page: 386 year: 2020 end-page: 396 ident: br0060 article-title: A hybrid deep learning model for efficient intrusion detection in big data environment publication-title: Inf. Sci. – start-page: 1 year: 2019 end-page: 8 ident: br0200 article-title: Attack detection using federated learning in medical cyber-physical systems publication-title: 2019 28th International Conference on Computer Communication and Networks, ICCCN – start-page: 1273 year: 2017 end-page: 1282 ident: br0080 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial Intelligence and Statistics – volume: 42 year: 2020 ident: br0220 article-title: Intelligent intrusion detection based on federated learning aided long short-term memory publication-title: Phys. Commun. – volume: 20 start-page: 6578 year: 2020 ident: br0340 article-title: Mqttset, a new dataset for machine learning techniques on mqtt publication-title: Sensors – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0250 article-title: Deep learning publication-title: Nature – ident: br0090 article-title: Federated learning: collaborative machine learning without centralized training data – start-page: 756 year: 2019 end-page: 767 ident: br0180 article-title: Dïot: a federated self-learning anomaly detection system for iot publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) – volume: 64 start-page: 270 year: 2020 end-page: 292 ident: br0370 article-title: Federated learning and differential privacy: software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy publication-title: Inf. Fusion – year: 2014 ident: br0260 article-title: Adam: a method for stochastic optimization – volume: 103 start-page: 14 year: 2014 end-page: 76 ident: br0130 article-title: Software-defined networking: a comprehensive survey publication-title: Proc. IEEE – year: 2020 ident: br0190 article-title: Deepfed: federated deep learning for intrusion detection in industrial cyber-physical systems publication-title: IEEE Trans. Ind. Inform. – start-page: 3 year: 2017 end-page: 24 ident: br0270 article-title: An introduction to neural networks and deep learning publication-title: Deep Learning for Medical Image Analysis – volume: 51 start-page: 223 year: 2020 end-page: 236 ident: br0030 article-title: Internet of things as system of systems: a review of methodologies, frameworks, platforms, and tools publication-title: IEEE Trans. Syst. Man Cybern. Syst. – year: 2022 ident: br0390 article-title: Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning – volume: 10 start-page: 1787 year: 2021 ident: br0230 article-title: Sthm: a secured and trusted healthcare monitoring architecture using sdn and blockchain publication-title: Electronics – start-page: 108 year: 2018 end-page: 116 ident: br0330 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: ICISSp – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.jpdc.2022.03.003_br0250 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 58 issue: 3 year: 2021 ident: 10.1016/j.jpdc.2022.03.003_br0240 article-title: On the design and implementation of a secure blockchain-based hybrid framework for industrial Internet-of-things publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102526 – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.jpdc.2022.03.003_br0070 article-title: Federated machine learning: concept and applications publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3298981 – start-page: 3 year: 2017 ident: 10.1016/j.jpdc.2022.03.003_br0270 article-title: An introduction to neural networks and deep learning – volume: 12 start-page: 44 issue: 3 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0120 article-title: Rdtids: rules and decision tree-based intrusion detection system for Internet-of-things networks publication-title: Future Internet doi: 10.3390/fi12030044 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.jpdc.2022.03.003_br0290 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 1 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0140 article-title: A robust security framework based on blockchain and sdn for fog computing enabled agricultural Internet of things – volume: 8 start-page: 2663 issue: 12 year: 2018 ident: 10.1016/j.jpdc.2022.03.003_br0040 article-title: Chained anomaly detection models for federated learning: an intrusion detection case study publication-title: Appl. Sci. doi: 10.3390/app8122663 – volume: 10 start-page: 1787 issue: 15 year: 2021 ident: 10.1016/j.jpdc.2022.03.003_br0230 article-title: Sthm: a secured and trusted healthcare monitoring architecture using sdn and blockchain publication-title: Electronics doi: 10.3390/electronics10151787 – year: 2021 ident: 10.1016/j.jpdc.2022.03.003_br0310 – volume: 42 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0220 article-title: Intelligent intrusion detection based on federated learning aided long short-term memory publication-title: Phys. Commun. doi: 10.1016/j.phycom.2020.101157 – volume: 9 start-page: 29696 year: 2021 ident: 10.1016/j.jpdc.2022.03.003_br0210 article-title: Lockedge: low-complexity cyberattack detection in iot edge computing publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058528 – ident: 10.1016/j.jpdc.2022.03.003_br0280 – year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0190 article-title: Deepfed: federated deep learning for intrusion detection in industrial cyber-physical systems publication-title: IEEE Trans. Ind. Inform. – volume: 7 start-page: 5986 issue: 7 year: 2019 ident: 10.1016/j.jpdc.2022.03.003_br0100 article-title: Communication-efficient federated learning for wireless edge intelligence in iot publication-title: IEEE Int. Things J. doi: 10.1109/JIOT.2019.2956615 – volume: 8 start-page: 718 issue: 4 year: 2021 ident: 10.1016/j.jpdc.2022.03.003_br0020 article-title: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1003925 – volume: 10 start-page: 1257 issue: 11 year: 2021 ident: 10.1016/j.jpdc.2022.03.003_br0110 article-title: Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0 publication-title: Electronics doi: 10.3390/electronics10111257 – start-page: 108 year: 2018 ident: 10.1016/j.jpdc.2022.03.003_br0330 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization – volume: 513 start-page: 386 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0060 article-title: A hybrid deep learning model for efficient intrusion detection in big data environment publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.069 – ident: 10.1016/j.jpdc.2022.03.003_br0260 – start-page: 167 year: 2016 ident: 10.1016/j.jpdc.2022.03.003_br0150 article-title: Predicting network attack patterns in sdn using machine learning approach – volume: 8 start-page: 263 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0350 article-title: Insdn: a novel sdn intrusion dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3022633 – volume: 20 start-page: 6578 issue: 22 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0340 article-title: Mqttset, a new dataset for machine learning techniques on mqtt publication-title: Sensors doi: 10.3390/s20226578 – volume: 103 start-page: 14 issue: 1 year: 2014 ident: 10.1016/j.jpdc.2022.03.003_br0130 article-title: Software-defined networking: a comprehensive survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2371999 – volume: 64 start-page: 270 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0370 article-title: Federated learning and differential privacy: software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.07.009 – start-page: 756 year: 2019 ident: 10.1016/j.jpdc.2022.03.003_br0180 article-title: Dïot: a federated self-learning anomaly detection system for iot – volume: 34 start-page: 310 issue: 6 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0170 article-title: Internet of things intrusion detection: centralized, on-device, or federated learning? publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000286 – start-page: 1 year: 2018 ident: 10.1016/j.jpdc.2022.03.003_br0160 article-title: Machine learning-based detection of ransomware using sdn – volume: 51 start-page: 223 issue: 1 year: 2020 ident: 10.1016/j.jpdc.2022.03.003_br0030 article-title: Internet of things as system of systems: a review of methodologies, frameworks, platforms, and tools publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2020.3042898 – year: 2022 ident: 10.1016/j.jpdc.2022.03.003_br0390 – start-page: 1 year: 2019 ident: 10.1016/j.jpdc.2022.03.003_br0200 article-title: Attack detection using federated learning in medical cyber-physical systems – ident: 10.1016/j.jpdc.2022.03.003_br0380 – start-page: 1273 year: 2017 ident: 10.1016/j.jpdc.2022.03.003_br0080 article-title: Communication-efficient learning of deep networks from decentralized data – ident: 10.1016/j.jpdc.2022.03.003_br0320 |
SSID | ssj0011578 |
Score | 2.665541 |
Snippet | •We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | Deep learning Federated learning Internet of Things Privacy Security |
Title | FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things |
URI | https://dx.doi.org/10.1016/j.jpdc.2022.03.003 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEA5iL730XWofkkNvJXXXJPvoTVoX7cOLFryFvBSlrFI897c3s8lKC8VDj7tkYJmZzDezzHyD0C3l1FKaMqLzmSYu-uUkm2WaOKRSrp6gcVLtIngbJYN39jzl0wZ6rGdhoK0yxH4f06toHd50gjY768WiMwbwS6nDH5g24SnU7Yyl4OX3X9s2D-CSyWoqTjgdBmd8j9dybYDGsNv1RKf0b3D6ATjFEToImSLu-Y85Rg1bnqDDegsDDpfyFImi_zp8Gj_gAnghXOpocFgFMSeAUQYvSpiscAbAxm6q1qsSewZn7FJWLOefWwIO7P8Q2g1ezbDf6XmGJkV_8jggYW0C0a6WoUQn1lIunUZSZjh3EG0iFas41QySOZ4YGcfa5kzlJtNdq6nTtUxSB5dMGUnPUbNclfYCYa5mUaIllcxVaTqyKlPU6jznWjKjVNJCca0uoQOlOGy2-BB179hSgIoFqFhEFIhIW-huK7P2hBo7T_PaCuKXWwgX8XfIXf5T7grtw5Pvx71GTWcee-Oyjo1qV27VRnu94ctg9A1nyNcj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPTiW6zPPehJYpPsbh6CB7GWVqsXK3hbso9KRdKiBfHij_IXOtvdFAXpQfCaZMJmZplvNnzzDcAh5dRQmrJA5T0VYPbLg6yXqQCRSuJ5gkbJeBbBzW3SumdXD_xhBj6rXhhLq_S53-X0cbb2V-rem_Vhv1-_s-CXUsQf223C09AzK6_N-xue217P2g0M8lEcNy-7F63AjxYIFNb7NFCJMZQXaJUyzTnCmA5lJKNUMVvw8EQXUaRMzmSuMxUbRXE9RZIipDCpC4qvnYV5htnCTk04-ZjQSqx2TVZJf9rV-UYdxyl7GmormxjHTliV_g6G3wCuuQJLvjIl5-7jV2HGlGuwXE19ID4JrINoXnbajbtT0rQ6FFiqauJHTzwGFhM16Ze2kwMDTrQZjaleJXGK0QRLZFI8vkwEP4j7I2lGZNAjboboBnT_w5ebMFcOSrMFhMtemKiCFgxPhSo0MpPUqDznqmBayqQGUeUuobyEuZ2k8SwqrtqTsC4W1sUipFb4tAbHE5uhE_CY-jSvoiB-bEOBCDPFbvuPdgew0OredESnfXu9A4v2juMC78IchsrsYcUzkvvjLUZA_POW_gKCVxL- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FELIDS%3A+Federated+learning-based+intrusion+detection+system+for+agricultural+Internet+of+Things&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Friha%2C+Othmane&rft.au=Ferrag%2C+Mohamed+Amine&rft.au=Shu%2C+Lei&rft.au=Maglaras%2C+Leandros&rft.date=2022-07-01&rft.issn=0743-7315&rft.volume=165&rft.spage=17&rft.epage=31&rft_id=info:doi/10.1016%2Fj.jpdc.2022.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2022_03_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |