FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things

•We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The performance of each classifier is evaluated using three recent real datasets.•The results show that the FELIDS system outperforms the central...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 165; pp. 17 - 31
Main Authors Friha, Othmane, Ferrag, Mohamed Amine, Shu, Lei, Maglaras, Leandros, Choo, Kim-Kwang Raymond, Nafaa, Mehdi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The performance of each classifier is evaluated using three recent real datasets.•The results show that the FELIDS system outperforms the centralized versions.•The proposed FELIDS model achieves the highest accuracy in detecting attacks. In this paper, we propose a federated learning-based intrusion detection system, named FELIDS, for securing agricultural-IoT infrastructures. Specifically, the FELIDS system protects data privacy through local learning, where devices benefit from the knowledge of their peers by sharing only updates from their model with an aggregation server that produces an improved detection model. In order to prevent Agricultural IoTs attacks, the FELIDS system employs three deep learning classifiers, namely, deep neural networks, convolutional neural networks, and recurrent neural networks. We study the performance of the proposed IDS on three different sources, including, CSE-CIC-IDS2018, MQTTset, and InSDN. The results demonstrate that the FELIDS system outperforms the classic/centralized versions of machine learning (non-federated learning) in protecting the privacy of IoT devices data and achieves the highest accuracy in detecting attacks.
AbstractList •We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The performance of each classifier is evaluated using three recent real datasets.•The results show that the FELIDS system outperforms the centralized versions.•The proposed FELIDS model achieves the highest accuracy in detecting attacks. In this paper, we propose a federated learning-based intrusion detection system, named FELIDS, for securing agricultural-IoT infrastructures. Specifically, the FELIDS system protects data privacy through local learning, where devices benefit from the knowledge of their peers by sharing only updates from their model with an aggregation server that produces an improved detection model. In order to prevent Agricultural IoTs attacks, the FELIDS system employs three deep learning classifiers, namely, deep neural networks, convolutional neural networks, and recurrent neural networks. We study the performance of the proposed IDS on three different sources, including, CSE-CIC-IDS2018, MQTTset, and InSDN. The results demonstrate that the FELIDS system outperforms the classic/centralized versions of machine learning (non-federated learning) in protecting the privacy of IoT devices data and achieves the highest accuracy in detecting attacks.
Author Shu, Lei
Ferrag, Mohamed Amine
Nafaa, Mehdi
Maglaras, Leandros
Choo, Kim-Kwang Raymond
Friha, Othmane
Author_xml – sequence: 1
  givenname: Othmane
  orcidid: 0000-0002-1160-2846
  surname: Friha
  fullname: Friha, Othmane
  email: othmane.friha@univ-annaba.org
  organization: Networks and Systems Laboratory (LRS), Badji Mokhtar-Annaba University, B.P.12, Annaba 23000, Algeria
– sequence: 2
  givenname: Mohamed Amine
  orcidid: 0000-0002-0632-3172
  surname: Ferrag
  fullname: Ferrag, Mohamed Amine
  email: ferrag.mohamedamine@univ-guelma.dz
  organization: Department of Computer Science, Guelma University, B.P. 401, 24000, Algeria
– sequence: 3
  givenname: Lei
  surname: Shu
  fullname: Shu, Lei
  email: lei.shu@ieee.org
  organization: College of Engineering, Nanjing Agricultural University, Nanjing, China
– sequence: 4
  givenname: Leandros
  orcidid: 0000-0001-5360-9782
  surname: Maglaras
  fullname: Maglaras, Leandros
  email: leandrosmag@gmail.com
  organization: School of Computer Science and Informatics, De Montfort University, Leicester, UK
– sequence: 5
  givenname: Kim-Kwang Raymond
  surname: Choo
  fullname: Choo, Kim-Kwang Raymond
  email: raymond.choo@fulbrightmail.org
  organization: Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA
– sequence: 6
  givenname: Mehdi
  orcidid: 0000-0002-1233-9031
  surname: Nafaa
  fullname: Nafaa, Mehdi
  email: mehdi.nafaa@gmail.com
  organization: Networks and Systems Laboratory (LRS), Badji Mokhtar-Annaba University, B.P.12, Annaba 23000, Algeria
BookMark eNp9kMtOwzAQRS1UJNrCD7DyDyT4EScpYoNKC5UqsaB7y7EnxVHqVLaL1L_HUVmx6GpmFufqzpmhiRscIPRISU4JLZ-6vDsanTPCWE54Tgi_QVNKFmVG6qKeoCmpCp5VnIo7NAuhI4RSUdVTJNer7ebt6xmvwYBXEQzuQXln3T5rVEinddGfgh0cNhBBx3EL5xDhgNvBY7X3Vp_6ePKqxxsXwTuIeGjx7jtlhHt026o-wMPfnKPderVbfmTbz_fN8nWbaSYWPNMlABdKVKmnEYIV1JCGNrTSBeOUiNIoSjUsimZhas1Acw1GlZUGKBqj-ByxS6z2QwgeWnn09qD8WVIiR0Oyk6MhORqShMtkKEH1P0jbqMYHo1e2v46-XFBIP_1Y8DJoCy6Vsj45kmaw1_BfNuyFew
CitedBy_id crossref_primary_10_1145_3701724
crossref_primary_10_1016_j_future_2024_07_026
crossref_primary_10_1007_s10462_024_11082_w
crossref_primary_10_1002_ett_5030
crossref_primary_10_1145_3695998
crossref_primary_10_1007_s12083_022_01374_9
crossref_primary_10_1109_ACCESS_2023_3235389
crossref_primary_10_1109_JIOT_2024_3485208
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_1016_j_comnet_2025_111179
crossref_primary_10_1371_journal_pone_0314921
crossref_primary_10_1109_ACCESS_2023_3324657
crossref_primary_10_1109_ACCESS_2025_3550800
crossref_primary_10_1080_1206212X_2024_2443504
crossref_primary_10_3390_app13116753
crossref_primary_10_1109_JAS_2023_123870
crossref_primary_10_1038_s41598_025_93501_8
crossref_primary_10_1007_s00500_023_08397_1
crossref_primary_10_1155_2023_8068038
crossref_primary_10_1007_s10207_023_00785_w
crossref_primary_10_1016_j_procs_2025_02_119
crossref_primary_10_1016_j_cose_2024_104161
crossref_primary_10_2174_0126662558279673240515054741
crossref_primary_10_1007_s00521_024_10136_y
crossref_primary_10_1109_TNSM_2024_3385385
crossref_primary_10_3390_electronics12163382
crossref_primary_10_1109_ACCESS_2024_3516814
crossref_primary_10_1016_j_iot_2023_100709
crossref_primary_10_1038_s41598_025_88163_5
crossref_primary_10_3390_ani14142021
crossref_primary_10_1155_2023_7690322
crossref_primary_10_3390_s23239566
crossref_primary_10_1016_j_iotcps_2022_12_003
crossref_primary_10_1109_ACCESS_2024_3404651
crossref_primary_10_1007_s10207_023_00805_9
crossref_primary_10_1109_ACCESS_2023_3318866
crossref_primary_10_1016_j_pmcj_2022_101738
crossref_primary_10_1016_j_iot_2024_101088
crossref_primary_10_3390_app122412941
crossref_primary_10_1109_JIOT_2024_3452421
crossref_primary_10_1016_j_comnet_2025_111116
crossref_primary_10_1016_j_cose_2023_103597
crossref_primary_10_1016_j_atech_2024_100727
crossref_primary_10_1007_s10207_024_00935_8
crossref_primary_10_1109_TNSM_2023_3299606
crossref_primary_10_1016_j_pmcj_2023_101750
crossref_primary_10_32604_cmc_2024_048621
crossref_primary_10_1109_ACCESS_2023_3346299
crossref_primary_10_1007_s42979_025_03672_4
crossref_primary_10_3390_rs15143611
crossref_primary_10_1007_s10462_023_10417_3
crossref_primary_10_1007_s42979_025_03797_6
crossref_primary_10_1016_j_jpdc_2024_104992
crossref_primary_10_1109_TCE_2024_3370373
crossref_primary_10_1109_ACCESS_2025_3535952
crossref_primary_10_3389_fenrg_2023_1061779
crossref_primary_10_1007_s13369_023_08439_8
crossref_primary_10_1016_j_eswa_2024_124982
crossref_primary_10_1038_s41598_024_72982_z
crossref_primary_10_1109_ACCESS_2024_3454211
crossref_primary_10_1002_spy2_445
crossref_primary_10_1016_j_cose_2023_103381
crossref_primary_10_1145_3723039
crossref_primary_10_1038_s41598_023_42678_x
crossref_primary_10_1016_j_comnet_2023_109724
crossref_primary_10_1109_LNET_2025_3525901
crossref_primary_10_3390_ai6040063
crossref_primary_10_1007_s10586_024_04616_y
crossref_primary_10_1016_j_cosrev_2024_100717
crossref_primary_10_1007_s10207_023_00771_2
crossref_primary_10_1016_j_iswa_2023_200232
crossref_primary_10_1016_j_cose_2023_103097
crossref_primary_10_1109_ACCESS_2023_3269880
crossref_primary_10_1109_OJCOMS_2024_3456549
crossref_primary_10_1007_s11042_024_19695_7
crossref_primary_10_1109_ACCESS_2023_3306452
crossref_primary_10_1007_s00500_023_09610_x
crossref_primary_10_1016_j_ecoinf_2023_102217
crossref_primary_10_3390_a15070247
crossref_primary_10_1007_s10586_024_04498_0
crossref_primary_10_3934_era_2024021
crossref_primary_10_3390_math10122141
crossref_primary_10_32604_cmc_2023_041667
crossref_primary_10_3390_s24175834
crossref_primary_10_1016_j_vehcom_2024_100812
crossref_primary_10_1016_j_icte_2023_03_006
crossref_primary_10_1007_s10722_024_02083_3
crossref_primary_10_3390_s23167191
crossref_primary_10_1016_j_dcan_2023_05_006
crossref_primary_10_3389_fagro_2024_1410829
crossref_primary_10_1007_s10586_024_04711_0
crossref_primary_10_1109_ACCESS_2024_3363469
crossref_primary_10_1109_ACCESS_2025_3529894
crossref_primary_10_1016_j_comnet_2023_109982
crossref_primary_10_32604_cmc_2023_032591
crossref_primary_10_1016_j_compag_2025_110180
crossref_primary_10_1109_ACCESS_2024_3460468
crossref_primary_10_3390_electronics13234744
crossref_primary_10_3233_JIFS_240571
crossref_primary_10_1016_j_comcom_2024_04_024
crossref_primary_10_1016_j_inffus_2024_102820
crossref_primary_10_1145_3687124
crossref_primary_10_1109_COMST_2023_3317242
crossref_primary_10_1016_j_cose_2023_103315
crossref_primary_10_55529_ijitc_43_36_48
crossref_primary_10_7717_peerj_cs_2414
crossref_primary_10_1109_JIOT_2024_3362972
crossref_primary_10_55529_ijitc_43_36_47
crossref_primary_10_1142_S0218126624501627
crossref_primary_10_1016_j_jpdc_2022_09_014
crossref_primary_10_1007_s13369_024_08835_8
crossref_primary_10_1002_ett_5018
crossref_primary_10_1109_ACCESS_2024_3410046
crossref_primary_10_3390_s25061752
Cites_doi 10.1038/nature14539
10.1016/j.ipm.2021.102526
10.1145/3298981
10.3390/fi12030044
10.1162/neco.1997.9.8.1735
10.3390/app8122663
10.3390/electronics10151787
10.1016/j.phycom.2020.101157
10.1109/ACCESS.2021.3058528
10.1109/JIOT.2019.2956615
10.1109/JAS.2021.1003925
10.3390/electronics10111257
10.1016/j.ins.2019.10.069
10.1109/ACCESS.2020.3022633
10.3390/s20226578
10.1109/JPROC.2014.2371999
10.1016/j.inffus.2020.07.009
10.1109/MNET.011.2000286
10.1109/TSMC.2020.3042898
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jpdc.2022.03.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1096-0848
EndPage 31
ExternalDocumentID 10_1016_j_jpdc_2022_03_003
S0743731522000570
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c2593-c6ee35a57074d55241d0b1b17c4231056da11ce94b9d8c2ec3ceda67cee4bda3
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 03:20:51 EDT 2025
Fri Feb 23 02:41:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Privacy
Federated learning
Internet of Things
Security
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2593-c6ee35a57074d55241d0b1b17c4231056da11ce94b9d8c2ec3ceda67cee4bda3
ORCID 0000-0001-5360-9782
0000-0002-1233-9031
0000-0002-1160-2846
0000-0002-0632-3172
OpenAccessLink https://hdl.handle.net/2086/21733
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_jpdc_2022_03_003
crossref_citationtrail_10_1016_j_jpdc_2022_03_003
elsevier_sciencedirect_doi_10_1016_j_jpdc_2022_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Anthony, Kanding, Selvan (br0380) 2020
Cusack, Michel, Keller (br0160) 2018
br0300
Huong, Bac, Long, Thang, Binh, Luong, Phuc (br0210) 2021; 9
Nguyen, Marchal, Miettinen, Fereidooni, Asokan, Sadeghi (br0180) 2019
Preuveneers, Rimmer, Tsingenopoulos, Spooren, Joosen, Ilie-Zudor (br0040) 2018; 8
Sharafaldin, Lashkari, Ghorbani (br0330) 2018
Kingma, Ba (br0260) 2014
Mills, Hu, Min (br0100) 2019; 7
Rahman, Tout, Talhi, Mourad (br0170) 2020; 34
Fortino, Savaglio, Spezzano, Zhou (br0030) 2020; 51
Ferrag, Maglaras, Ahmim, Derdour, Janicke (br0120) 2020; 12
br0360
Pascanu, Gulcehre, Cho, Bengio (br0280) 2013
Li, Wu, Song, Lu, Li, Zhao (br0190) 2020
Hassan, Gumaei, Alsanad, Alrubaian, Fortino (br0060) 2020; 513
Friha, Ferrag, Shu, Maglaras, Wang (br0020) 2021; 8
LeCun, Bengio, Hinton (br0250) 2015; 521
Nanda, Zafari, DeCusatis, Wedaa, Yang (br0150) 2016
Mînea (br0310) 2021
Barka, Dahmane, Kerrache, Khayat, Sallabi (br0230) 2021; 10
Vaccari, Chiola, Aiello, Mongelli, Cambiaso (br0340) 2020; 20
Friha, Ferrag, Shu, Nafa (br0140) 2020
Suk (br0270) 2017
Rathee, Ahmad, Sandhu, Kerrache, Azad (br0240) 2021; 58
Rodríguez-Barroso, Stipcich, Jiménez-López, Ruiz-Millán, Martínez-Cámara, González-Seco, Luzón, Veganzones, Herrera (br0370) 2020; 64
br0090
Ferrag, Friha, Hamouda, Maglaras, Janicke (br0390) 2022
Elsayed, Le-Khac, Jurcut (br0350) 2020; 8
Hochreiter, Schmidhuber (br0290) 1997; 9
McMahan, Moore, Ramage, Hampson, y Arcas (br0080) 2017
Schneble, Thamilarasu (br0200) 2019
Yang, Liu, Chen, Tong (br0070) 2019; 10
br0010
Ferrag, Shu, Djallel, Choo (br0110) 2021; 10
Kreutz, Ramos, Verissimo, Rothenberg, Azodolmolky, Uhlig (br0130) 2014; 103
br0050
Qiu, Parcollet, Fernandez-Marques, de Gusmao, Beutel, Topal, Mathur, Lane (br0320) 2021
Zhao, Yin, Shi, Xue (br0220) 2020; 42
Anthony (10.1016/j.jpdc.2022.03.003_br0380)
Ferrag (10.1016/j.jpdc.2022.03.003_br0390) 2022
Nanda (10.1016/j.jpdc.2022.03.003_br0150) 2016
Cusack (10.1016/j.jpdc.2022.03.003_br0160) 2018
LeCun (10.1016/j.jpdc.2022.03.003_br0250) 2015; 521
Ferrag (10.1016/j.jpdc.2022.03.003_br0110) 2021; 10
Friha (10.1016/j.jpdc.2022.03.003_br0020) 2021; 8
Mills (10.1016/j.jpdc.2022.03.003_br0100) 2019; 7
Mînea (10.1016/j.jpdc.2022.03.003_br0310) 2021
Fortino (10.1016/j.jpdc.2022.03.003_br0030) 2020; 51
Barka (10.1016/j.jpdc.2022.03.003_br0230) 2021; 10
Elsayed (10.1016/j.jpdc.2022.03.003_br0350) 2020; 8
Kreutz (10.1016/j.jpdc.2022.03.003_br0130) 2014; 103
Rodríguez-Barroso (10.1016/j.jpdc.2022.03.003_br0370) 2020; 64
Li (10.1016/j.jpdc.2022.03.003_br0190) 2020
Zhao (10.1016/j.jpdc.2022.03.003_br0220) 2020; 42
Yang (10.1016/j.jpdc.2022.03.003_br0070) 2019; 10
Friha (10.1016/j.jpdc.2022.03.003_br0140) 2020
Ferrag (10.1016/j.jpdc.2022.03.003_br0120) 2020; 12
Preuveneers (10.1016/j.jpdc.2022.03.003_br0040) 2018; 8
McMahan (10.1016/j.jpdc.2022.03.003_br0080) 2017
Pascanu (10.1016/j.jpdc.2022.03.003_br0280)
Schneble (10.1016/j.jpdc.2022.03.003_br0200) 2019
Suk (10.1016/j.jpdc.2022.03.003_br0270) 2017
Hassan (10.1016/j.jpdc.2022.03.003_br0060) 2020; 513
Rathee (10.1016/j.jpdc.2022.03.003_br0240) 2021; 58
Sharafaldin (10.1016/j.jpdc.2022.03.003_br0330) 2018
Nguyen (10.1016/j.jpdc.2022.03.003_br0180) 2019
Qiu (10.1016/j.jpdc.2022.03.003_br0320)
Rahman (10.1016/j.jpdc.2022.03.003_br0170) 2020; 34
Hochreiter (10.1016/j.jpdc.2022.03.003_br0290) 1997; 9
Kingma (10.1016/j.jpdc.2022.03.003_br0260)
Huong (10.1016/j.jpdc.2022.03.003_br0210) 2021; 9
Vaccari (10.1016/j.jpdc.2022.03.003_br0340) 2020; 20
References_xml – volume: 9
  start-page: 29
  year: 2021
  end-page: 29
  ident: br0210
  article-title: Lockedge: low-complexity cyberattack detection in iot edge computing
  publication-title: IEEE Access
– start-page: 167
  year: 2016
  end-page: 172
  ident: br0150
  article-title: Predicting network attack patterns in sdn using machine learning approach
  publication-title: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)
– volume: 8
  start-page: 2663
  year: 2018
  ident: br0040
  article-title: Chained anomaly detection models for federated learning: an intrusion detection case study
  publication-title: Appl. Sci.
– volume: 8
  start-page: 263
  year: 2020
  end-page: 165 284
  ident: br0350
  article-title: Insdn: a novel sdn intrusion dataset
  publication-title: IEEE Access
– volume: 58
  year: 2021
  ident: br0240
  article-title: On the design and implementation of a secure blockchain-based hybrid framework for industrial Internet-of-things
  publication-title: Inf. Process. Manag.
– volume: 7
  start-page: 5986
  year: 2019
  end-page: 5994
  ident: br0100
  article-title: Communication-efficient federated learning for wireless edge intelligence in iot
  publication-title: IEEE Int. Things J.
– year: 2013
  ident: br0280
  article-title: How to construct deep recurrent neural networks
– year: 2021
  ident: br0320
  article-title: A first look into the carbon footprint of federated learning
– volume: 12
  start-page: 44
  year: 2020
  ident: br0120
  article-title: Rdtids: rules and decision tree-based intrusion detection system for Internet-of-things networks
  publication-title: Future Internet
– start-page: 1
  year: 2018
  end-page: 6
  ident: br0160
  article-title: Machine learning-based detection of ransomware using sdn
  publication-title: Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization
– start-page: 1
  year: 2020
  end-page: 5
  ident: br0140
  article-title: A robust security framework based on blockchain and sdn for fog computing enabled agricultural Internet of things
  publication-title: 2020 International Conference on Internet of Things and Intelligent Applications (ITIA)
– year: 2021
  ident: br0310
  article-title: A Study on Privacy-Preserving Federated Learning and Enhancement Through Transfer Learning
– volume: 34
  start-page: 310
  year: 2020
  end-page: 317
  ident: br0170
  article-title: Internet of things intrusion detection: centralized, on-device, or federated learning?
  publication-title: IEEE Netw.
– volume: 8
  start-page: 718
  year: 2021
  end-page: 752
  ident: br0020
  article-title: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: br0290
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2020
  ident: br0380
  article-title: Carbontracker: tracking and predicting the carbon footprint of training deep learning models
– volume: 10
  start-page: 1257
  year: 2021
  ident: br0110
  article-title: Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0
  publication-title: Electronics
– ident: br0010
  article-title: More people, more food, worse water?
– ident: br0050
  article-title: Jbs: cyber-attack hits world's largest meat supplier
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: br0070
  article-title: Federated machine learning: concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
– ident: br0360
  article-title: Google colaboratory
– ident: br0300
  article-title: grpc
– volume: 513
  start-page: 386
  year: 2020
  end-page: 396
  ident: br0060
  article-title: A hybrid deep learning model for efficient intrusion detection in big data environment
  publication-title: Inf. Sci.
– start-page: 1
  year: 2019
  end-page: 8
  ident: br0200
  article-title: Attack detection using federated learning in medical cyber-physical systems
  publication-title: 2019 28th International Conference on Computer Communication and Networks, ICCCN
– start-page: 1273
  year: 2017
  end-page: 1282
  ident: br0080
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artificial Intelligence and Statistics
– volume: 42
  year: 2020
  ident: br0220
  article-title: Intelligent intrusion detection based on federated learning aided long short-term memory
  publication-title: Phys. Commun.
– volume: 20
  start-page: 6578
  year: 2020
  ident: br0340
  article-title: Mqttset, a new dataset for machine learning techniques on mqtt
  publication-title: Sensors
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0250
  article-title: Deep learning
  publication-title: Nature
– ident: br0090
  article-title: Federated learning: collaborative machine learning without centralized training data
– start-page: 756
  year: 2019
  end-page: 767
  ident: br0180
  article-title: Dïot: a federated self-learning anomaly detection system for iot
  publication-title: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)
– volume: 64
  start-page: 270
  year: 2020
  end-page: 292
  ident: br0370
  article-title: Federated learning and differential privacy: software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy
  publication-title: Inf. Fusion
– year: 2014
  ident: br0260
  article-title: Adam: a method for stochastic optimization
– volume: 103
  start-page: 14
  year: 2014
  end-page: 76
  ident: br0130
  article-title: Software-defined networking: a comprehensive survey
  publication-title: Proc. IEEE
– year: 2020
  ident: br0190
  article-title: Deepfed: federated deep learning for intrusion detection in industrial cyber-physical systems
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 3
  year: 2017
  end-page: 24
  ident: br0270
  article-title: An introduction to neural networks and deep learning
  publication-title: Deep Learning for Medical Image Analysis
– volume: 51
  start-page: 223
  year: 2020
  end-page: 236
  ident: br0030
  article-title: Internet of things as system of systems: a review of methodologies, frameworks, platforms, and tools
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– year: 2022
  ident: br0390
  article-title: Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning
– volume: 10
  start-page: 1787
  year: 2021
  ident: br0230
  article-title: Sthm: a secured and trusted healthcare monitoring architecture using sdn and blockchain
  publication-title: Electronics
– start-page: 108
  year: 2018
  end-page: 116
  ident: br0330
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: ICISSp
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.jpdc.2022.03.003_br0250
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 58
  issue: 3
  year: 2021
  ident: 10.1016/j.jpdc.2022.03.003_br0240
  article-title: On the design and implementation of a secure blockchain-based hybrid framework for industrial Internet-of-things
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102526
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.jpdc.2022.03.003_br0070
  article-title: Federated machine learning: concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3298981
– start-page: 3
  year: 2017
  ident: 10.1016/j.jpdc.2022.03.003_br0270
  article-title: An introduction to neural networks and deep learning
– volume: 12
  start-page: 44
  issue: 3
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0120
  article-title: Rdtids: rules and decision tree-based intrusion detection system for Internet-of-things networks
  publication-title: Future Internet
  doi: 10.3390/fi12030044
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jpdc.2022.03.003_br0290
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0140
  article-title: A robust security framework based on blockchain and sdn for fog computing enabled agricultural Internet of things
– volume: 8
  start-page: 2663
  issue: 12
  year: 2018
  ident: 10.1016/j.jpdc.2022.03.003_br0040
  article-title: Chained anomaly detection models for federated learning: an intrusion detection case study
  publication-title: Appl. Sci.
  doi: 10.3390/app8122663
– volume: 10
  start-page: 1787
  issue: 15
  year: 2021
  ident: 10.1016/j.jpdc.2022.03.003_br0230
  article-title: Sthm: a secured and trusted healthcare monitoring architecture using sdn and blockchain
  publication-title: Electronics
  doi: 10.3390/electronics10151787
– year: 2021
  ident: 10.1016/j.jpdc.2022.03.003_br0310
– volume: 42
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0220
  article-title: Intelligent intrusion detection based on federated learning aided long short-term memory
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2020.101157
– volume: 9
  start-page: 29696
  year: 2021
  ident: 10.1016/j.jpdc.2022.03.003_br0210
  article-title: Lockedge: low-complexity cyberattack detection in iot edge computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3058528
– ident: 10.1016/j.jpdc.2022.03.003_br0280
– year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0190
  article-title: Deepfed: federated deep learning for intrusion detection in industrial cyber-physical systems
  publication-title: IEEE Trans. Ind. Inform.
– volume: 7
  start-page: 5986
  issue: 7
  year: 2019
  ident: 10.1016/j.jpdc.2022.03.003_br0100
  article-title: Communication-efficient federated learning for wireless edge intelligence in iot
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2019.2956615
– volume: 8
  start-page: 718
  issue: 4
  year: 2021
  ident: 10.1016/j.jpdc.2022.03.003_br0020
  article-title: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1003925
– volume: 10
  start-page: 1257
  issue: 11
  year: 2021
  ident: 10.1016/j.jpdc.2022.03.003_br0110
  article-title: Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0
  publication-title: Electronics
  doi: 10.3390/electronics10111257
– start-page: 108
  year: 2018
  ident: 10.1016/j.jpdc.2022.03.003_br0330
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
– volume: 513
  start-page: 386
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0060
  article-title: A hybrid deep learning model for efficient intrusion detection in big data environment
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.069
– ident: 10.1016/j.jpdc.2022.03.003_br0260
– start-page: 167
  year: 2016
  ident: 10.1016/j.jpdc.2022.03.003_br0150
  article-title: Predicting network attack patterns in sdn using machine learning approach
– volume: 8
  start-page: 263
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0350
  article-title: Insdn: a novel sdn intrusion dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022633
– volume: 20
  start-page: 6578
  issue: 22
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0340
  article-title: Mqttset, a new dataset for machine learning techniques on mqtt
  publication-title: Sensors
  doi: 10.3390/s20226578
– volume: 103
  start-page: 14
  issue: 1
  year: 2014
  ident: 10.1016/j.jpdc.2022.03.003_br0130
  article-title: Software-defined networking: a comprehensive survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2371999
– volume: 64
  start-page: 270
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0370
  article-title: Federated learning and differential privacy: software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.07.009
– start-page: 756
  year: 2019
  ident: 10.1016/j.jpdc.2022.03.003_br0180
  article-title: Dïot: a federated self-learning anomaly detection system for iot
– volume: 34
  start-page: 310
  issue: 6
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0170
  article-title: Internet of things intrusion detection: centralized, on-device, or federated learning?
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000286
– start-page: 1
  year: 2018
  ident: 10.1016/j.jpdc.2022.03.003_br0160
  article-title: Machine learning-based detection of ransomware using sdn
– volume: 51
  start-page: 223
  issue: 1
  year: 2020
  ident: 10.1016/j.jpdc.2022.03.003_br0030
  article-title: Internet of things as system of systems: a review of methodologies, frameworks, platforms, and tools
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2020.3042898
– year: 2022
  ident: 10.1016/j.jpdc.2022.03.003_br0390
– start-page: 1
  year: 2019
  ident: 10.1016/j.jpdc.2022.03.003_br0200
  article-title: Attack detection using federated learning in medical cyber-physical systems
– ident: 10.1016/j.jpdc.2022.03.003_br0380
– start-page: 1273
  year: 2017
  ident: 10.1016/j.jpdc.2022.03.003_br0080
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: 10.1016/j.jpdc.2022.03.003_br0320
SSID ssj0011578
Score 2.665541
Snippet •We propose a federated deep learning-based IDS for mitigating cyberattacks.•We investigate the use of three deep learning classifiers, DNN, CNN, and RNN.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Deep learning
Federated learning
Internet of Things
Privacy
Security
Title FELIDS: Federated learning-based intrusion detection system for agricultural Internet of Things
URI https://dx.doi.org/10.1016/j.jpdc.2022.03.003
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LawIxEA5iL730XWofkkNvJXXXJPvoTVoX7cOLFryFvBSlrFI897c3s8lKC8VDj7tkYJmZzDezzHyD0C3l1FKaMqLzmSYu-uUkm2WaOKRSrp6gcVLtIngbJYN39jzl0wZ6rGdhoK0yxH4f06toHd50gjY768WiMwbwS6nDH5g24SnU7Yyl4OX3X9s2D-CSyWoqTjgdBmd8j9dybYDGsNv1RKf0b3D6ATjFEToImSLu-Y85Rg1bnqDDegsDDpfyFImi_zp8Gj_gAnghXOpocFgFMSeAUQYvSpiscAbAxm6q1qsSewZn7FJWLOefWwIO7P8Q2g1ezbDf6XmGJkV_8jggYW0C0a6WoUQn1lIunUZSZjh3EG0iFas41QySOZ4YGcfa5kzlJtNdq6nTtUxSB5dMGUnPUbNclfYCYa5mUaIllcxVaTqyKlPU6jznWjKjVNJCca0uoQOlOGy2-BB179hSgIoFqFhEFIhIW-huK7P2hBo7T_PaCuKXWwgX8XfIXf5T7grtw5Pvx71GTWcee-Oyjo1qV27VRnu94ctg9A1nyNcj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPTiW6zPPehJYpPsbh6CB7GWVqsXK3hbso9KRdKiBfHij_IXOtvdFAXpQfCaZMJmZplvNnzzDcAh5dRQmrJA5T0VYPbLg6yXqQCRSuJ5gkbJeBbBzW3SumdXD_xhBj6rXhhLq_S53-X0cbb2V-rem_Vhv1-_s-CXUsQf223C09AzK6_N-xue217P2g0M8lEcNy-7F63AjxYIFNb7NFCJMZQXaJUyzTnCmA5lJKNUMVvw8EQXUaRMzmSuMxUbRXE9RZIipDCpC4qvnYV5htnCTk04-ZjQSqx2TVZJf9rV-UYdxyl7GmormxjHTliV_g6G3wCuuQJLvjIl5-7jV2HGlGuwXE19ID4JrINoXnbajbtT0rQ6FFiqauJHTzwGFhM16Ze2kwMDTrQZjaleJXGK0QRLZFI8vkwEP4j7I2lGZNAjboboBnT_w5ebMFcOSrMFhMtemKiCFgxPhSo0MpPUqDznqmBayqQGUeUuobyEuZ2k8SwqrtqTsC4W1sUipFb4tAbHE5uhE_CY-jSvoiB-bEOBCDPFbvuPdgew0OredESnfXu9A4v2juMC78IchsrsYcUzkvvjLUZA_POW_gKCVxL-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FELIDS%3A+Federated+learning-based+intrusion+detection+system+for+agricultural+Internet+of+Things&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Friha%2C+Othmane&rft.au=Ferrag%2C+Mohamed+Amine&rft.au=Shu%2C+Lei&rft.au=Maglaras%2C+Leandros&rft.date=2022-07-01&rft.issn=0743-7315&rft.volume=165&rft.spage=17&rft.epage=31&rft_id=info:doi/10.1016%2Fj.jpdc.2022.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2022_03_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon