A Robust 3D Mesh Segmentation Algorithm With Anisotropic Sparse Embedding
ABSTRACT 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this art...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic L1$$ {L}_1 $$‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts.
A robust algorithm is introduced to segment complex 3D meshes. A large number of experimental results demonstrate that our algorithm is capable of obtaining accurate segmentation boundaries. |
---|---|
AbstractList | 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic L1$$ {L}_1 $$‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts. ABSTRACT 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic L1$$ {L}_1 $$‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts. A robust algorithm is introduced to segment complex 3D meshes. A large number of experimental results demonstrate that our algorithm is capable of obtaining accurate segmentation boundaries. 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic ‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts. |
Author | Zhao, Yong Zhang, Mengyao Zhang, Jingliang Li, Wenting Si, Xin |
Author_xml | – sequence: 1 givenname: Mengyao surname: Zhang fullname: Zhang, Mengyao organization: Ocean University of China – sequence: 2 givenname: Wenting surname: Li fullname: Li, Wenting organization: Ocean University of China – sequence: 3 givenname: Yong orcidid: 0009-0002-0232-2284 surname: Zhao fullname: Zhao, Yong email: zhaoyong@ouc.edu.cn organization: Ocean University of China – sequence: 4 givenname: Xin surname: Si fullname: Si, Xin organization: Xiamen University of Technology – sequence: 5 givenname: Jingliang surname: Zhang fullname: Zhang, Jingliang organization: Ocean University of China |
BookMark | eNp10D1PwzAQBmALgURbGPgHlpgY0tqOnaRjVApUKkKifG2W41xaV40d7BTUf08giI3l7obn7qR3iI6ts4DQBSVjSgibaPUxTgnh7AgNqOBJxFn6dvw3J_QUDUPYdjRhlAzQIsePrtiHFsfX-B7CBq9gXYNtVWucxflu7bxpNzV-7SrOrQmu9a4xGq8a5QPgeV1AWRq7PkMnldoFOP_tI_R8M3-a3UXLh9vFLF9Gmokpi0RWFiKDWFNeMigSSqkqNSkUAGSpVkWpUiF4JVimOM10TIGWutApr6okSVg8Qpf93ca79z2EVm7d3tvupYwZm1I2FYJ06qpX2rsQPFSy8aZW_iApkd9JyS4p-ZNUZye9_TQ7OPwP5Sx_6Te-AA0Ma5M |
Cites_doi | 10.1109/TVCG.2010.264 10.1145/1531326.1531379 10.1145/1364901.1364927 10.1109/TVCG.2011.140 10.1109/ICCV.2017.294 10.1145/1778765.1778839 10.1016/j.cad.2021.103179 10.1002/cav.1658 10.1109/TVCG.2020.3014449 10.1109/CVPR.2017.702 10.1007/s10915-013-9740-x 10.3390/s23010416 10.1109/ICCV.2015.161 10.1111/j.1467-8659.2011.01967.x 10.1007/978-3-031-19818-2_31 10.1111/j.1467-8659.2012.03175.x 10.1145/383259.383282 10.1007/s11042-021-10816-0 10.1111/j.1467-8659.2009.01515.x 10.1111/j.1467-8659.2009.01622.x 10.1016/j.neucom.2018.06.051 10.1007/978-3-662-05105-4_2 10.1007/s00371-007-0197-5 10.1109/TVCG.2023.3259044 10.1109/ICCV48922.2021.01520 10.1145/3072959.3073608 10.1145/2070781.2024160 10.1111/cgf.14655 10.1109/CVPR.2017.697 10.1137/080725891 10.1126/science.1242072 10.1016/j.neunet.2018.08.003 10.1111/cgf.13323 10.1109/CVPR.2010.5540225 10.1111/j.1467-8659.2011.01895.x 10.1145/3506694 10.1145/2508363.2508393 10.1137/040605412 10.1007/s40304-021-00265-4 10.1109/TVCG.2020.3032566 10.1111/j.1467-8659.2007.01103.x 10.1109/TVCG.2021.3129156 10.1109/TNNLS.2015.2422994 10.1145/3414685.3417806 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70042 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70042 CAV70042 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62172005 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2018MF006 – fundername: Open Project of the State Key Lab of CAD&CG, Zhejiang University funderid: A2228 – fundername: Qingdao Natural Science Foundation funderid: 23‐2‐1‐158‐zyyd‐jch |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT 1OB AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2592-58db58e3c14d2eb6111adc0baeee87cabda7554f528a418c31e1dcbc74ff66623 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 13:35:27 EDT 2025 Tue Aug 05 11:57:39 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2592-58db58e3c14d2eb6111adc0baeee87cabda7554f528a418c31e1dcbc74ff66623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-0232-2284 |
PQID | 3229129550 |
PQPubID | 2034909 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3229129550 crossref_primary_10_1002_cav_70042 wiley_primary_10_1002_cav_70042_CAV70042 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 28 2010 2018; 108 2020; 39 2008 2011; 30 2024; 30 2012; 18 2022; 41 2003 2002 2011; 17 2022; 28 2012; 31 2009; 28 2022; 144 2015; 26 2023; 23 2023 2001 2015; 335 2017; 36 2013; 32 2023; 29 2022 2018; 314 2010; 29 2021 2008; 27 2005; 4 2020; 26 2014; 58 2017 2008; 24 2015 2022; 11 2009; 2 2016; 27 2021; 80 2014; 344 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 Ben‐Chen M. (e_1_2_9_42_1) 2008 e_1_2_9_12_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Guo K. (e_1_2_9_2_1) 2015; 335 e_1_2_9_30_1 Pauly M. (e_1_2_9_33_1) 2002 e_1_2_9_11_1 e_1_2_9_34_1 Wong C. C. (e_1_2_9_32_1) 2023 e_1_2_9_13_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Tong W. (e_1_2_9_16_1) 2020; 26 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 335 issue: 1 year: 2015 article-title: 3D Mesh Labeling via Deep Convolutional Neural Networks publication-title: ACM Transactions on Graphics – volume: 80 start-page: 24885 issue: 3 year: 2021 end-page: 24899 article-title: 3D Mesh Segmentation via ‐Constrained Random Walks publication-title: Multimedia Tools and Applications – volume: 26 start-page: 1807 issue: 4 year: 2020 end-page: 1820 article-title: Spectral Mesh Segmentation via Gradient Minimization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 344 start-page: 1492 issue: 6191 year: 2014 end-page: 1496 article-title: Clustering by Fast Search and Find of Density Peaks publication-title: Science – volume: 23 issue: 1 year: 2023 article-title: Robust Mesh Segmentation Using Feature‐Aware Region Fusion publication-title: Sensors – volume: 27 start-page: 1539 year: 2008 end-page: 1556 article-title: A Survey on Mesh Segmentation Techniques publication-title: Computer Graphics Forum – volume: 29 issue: 4 year: 2010 article-title: Learning 3D Mesh Segmentation and Labeling publication-title: ACM Transactions on Graphics – volume: 30 issue: 6 year: 2011 article-title: Unsupervised Co‐Segmentation of a Set of Shapes via Descriptor‐Space Spectral Clustering publication-title: ACM Transactions on Graphics – volume: 36 issue: 4 year: 2017 article-title: O‐CNN: Octree‐Based Convolutional Neural Networks for 3D Shape Analysis publication-title: ACM Transactions on Graphics – volume: 27 start-page: 723 issue: 4 year: 2016 end-page: 735 article-title: Approximate Orthogonal Sparse Embedding for Dimensionality Reduction publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 26 start-page: 301 issue: 3–4 year: 2015 end-page: 309 article-title: Effective Skeletons Extraction for Animated Surfaces Based on Geometry Propagation publication-title: Computer Animation and Virtual Worlds – start-page: 203 year: 2001 end-page: 212 – start-page: 97 year: 2010 end-page: 104 – volume: 314 start-page: 30 year: 2018 end-page: 38 article-title: Robust Jointly Sparse Embedding for Dimensionality Reduction publication-title: Neurocomputing – volume: 2 start-page: 323 issue: 2 year: 2009 end-page: 343 article-title: The Split Bregman Method for ‐Regularized Problems publication-title: SIAM Journal on Imaging Sciences – volume: 30 start-page: 603 issue: 2 year: 2011 end-page: 612 article-title: Paint Mesh Cutting publication-title: Computer Graphics Forum – start-page: 6630 year: 2017 end-page: 6639 – volume: 30 start-page: 4349 issue: 7 year: 2024 end-page: 4361 article-title: Laplacian2Mesh: Laplacian‐Based Mesh Understanding publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 4413 year: 2023 end-page: 4422 – volume: 24 start-page: 249 issue: 4 year: 2008 end-page: 259 article-title: Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function publication-title: Visual Computer – volume: 30 start-page: 2170 issue: 8 year: 2011 end-page: 2182 article-title: Learning Boundary Edges for 3D‐Mesh Segmentation publication-title: Computer Graphics Forum – volume: 29 start-page: 527 issue: 2 year: 2010 end-page: 535 article-title: Mesh Decomposition With Cross‐Boundary Brushes publication-title: Computer Graphics Forum – volume: 41 start-page: 37 issue: 7 year: 2022 end-page: 49 article-title: MeshFormer: High‐Resolution Mesh Segmentation With Graph Transformer publication-title: Computer Graphics Forum – start-page: 15468 year: 2021 end-page: 15478 – volume: 28 start-page: 1383 issue: 5 year: 2009 end-page: 1392 article-title: A Concise and Provably Informative Multi‐Scale Signature Based on Heat Diffusion publication-title: Computer Graphics Forum – start-page: 2717 year: 2017 end-page: 2726 – volume: 17 start-page: 1521 issue: 10 year: 2011 end-page: 1530 article-title: Bilateral Normal Filtering for Mesh Denoising publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 41 issue: 3 year: 2022 article-title: Subdivision‐Based Mesh Convolution Networks publication-title: ACM Transactions on Graphics – volume: 29 start-page: 1678 issue: 3 year: 2023 end-page: 1690 article-title: Mesh Convolutional Networks With Face and Vertex Feature Operators publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 4 start-page: 460 issue: 2 year: 2005 end-page: 489 article-title: An Iterative Regularization Method for Total Variation‐Based Image Restoration publication-title: Multiscale Modeling and Simulation – volume: 18 start-page: 1304 issue: 8 year: 2012 end-page: 1312 article-title: Dot Scissor: A Single‐Click Interface for Mesh Segmentation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 28 start-page: 1317 issue: 2 year: 2022 end-page: 1327 article-title: Learning on 3D Meshes With Laplacian Encoding and Pooling publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 541 year: 2022 end-page: 560 – volume: 11 start-page: 583 issue: 3 year: 2022 end-page: 607 article-title: A Spectral Segmentation Method for Large Meshes publication-title: Communications in Mathematics and Statistics – start-page: 35 year: 2003 end-page: 57 article-title: Discrete Differential‐Geometry Operators for Triangulated 2‐Manifolds publication-title: Visualization and Mathematics III – volume: 28 start-page: 1 issue: 3 year: 2009 end-page: 12 article-title: A Benchmark for 3D Mesh Segmentation publication-title: ACM Transactions on Graphics – start-page: 6584 year: 2017 end-page: 6592 – start-page: 183 year: 2008 end-page: 191 article-title: Fast Mesh Segmentation Using Random Walks publication-title: Proceedings of the ACM Symposium on Solid and Physical Modeling – volume: 58 start-page: 431 issue: 2 year: 2014 end-page: 449 article-title: A Splitting Method for Orthogonality Constrained Problems publication-title: Journal of Scientific Computing – volume: 31 start-page: 1703 issue: 5 year: 2012 end-page: 1713 article-title: Co‐Segmentation of 3D Shapes via Subspace Clustering publication-title: Computer Graphics Forum – volume: 108 start-page: 202 year: 2018 end-page: 216 article-title: Low‐Rank and Sparse Embedding for Dimensionality Reduction publication-title: Neural Networks – start-page: 1 year: 2008 end-page: 8 – start-page: 163 year: 2002 end-page: 170 – start-page: 1368 year: 2015 end-page: 1376 – volume: 28 start-page: 2430 issue: 6 year: 2022 end-page: 2444 article-title: SEG‐MAT: 3D Shape Segmentation Using Medial Axis Transform publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 144 year: 2022 article-title: A Deep Learning Driven Active Framework for Segmentation of Large 3D Shape Collections publication-title: Computer‐Aided Design – volume: 39 issue: 6 year: 2020 article-title: MeshWalker: Deep Mesh Understanding by Random Walks publication-title: ACM Transactions on Graphics – volume: 28 start-page: 235 year: 2018 end-page: 274 article-title: Part‐Based Mesh Segmentation: A Survey publication-title: Computer Graphics Forum – volume: 32 issue: 6 year: 2013 article-title: Projective Analysis for 3D Shape Segmentation publication-title: ACM Transactions on Graphics – ident: e_1_2_9_44_1 doi: 10.1109/TVCG.2010.264 – start-page: 1 volume-title: Proceedings of the Eurographics Conference on 3D Object Retrieval year: 2008 ident: e_1_2_9_42_1 – ident: e_1_2_9_10_1 doi: 10.1145/1531326.1531379 – ident: e_1_2_9_9_1 doi: 10.1145/1364901.1364927 – ident: e_1_2_9_14_1 doi: 10.1109/TVCG.2011.140 – ident: e_1_2_9_22_1 doi: 10.1109/ICCV.2017.294 – ident: e_1_2_9_8_1 doi: 10.1145/1778765.1778839 – ident: e_1_2_9_24_1 doi: 10.1016/j.cad.2021.103179 – ident: e_1_2_9_45_1 doi: 10.1002/cav.1658 – volume: 26 start-page: 1807 issue: 4 year: 2020 ident: e_1_2_9_16_1 article-title: Spectral Mesh Segmentation via Gradient Minimization publication-title: IEEE Transactions on Visualization and Computer Graphics – ident: e_1_2_9_29_1 doi: 10.1109/TVCG.2020.3014449 – ident: e_1_2_9_3_1 doi: 10.1109/CVPR.2017.702 – ident: e_1_2_9_47_1 doi: 10.1007/s10915-013-9740-x – ident: e_1_2_9_34_1 doi: 10.3390/s23010416 – ident: e_1_2_9_38_1 doi: 10.1109/ICCV.2015.161 – ident: e_1_2_9_19_1 doi: 10.1111/j.1467-8659.2011.01967.x – ident: e_1_2_9_31_1 doi: 10.1007/978-3-031-19818-2_31 – ident: e_1_2_9_20_1 doi: 10.1111/j.1467-8659.2012.03175.x – ident: e_1_2_9_41_1 doi: 10.1145/383259.383282 – ident: e_1_2_9_15_1 doi: 10.1007/s11042-021-10816-0 – ident: e_1_2_9_43_1 doi: 10.1111/j.1467-8659.2009.01515.x – ident: e_1_2_9_12_1 doi: 10.1111/j.1467-8659.2009.01622.x – start-page: 163 volume-title: Proceedings of the IEEE Visualization year: 2002 ident: e_1_2_9_33_1 – ident: e_1_2_9_37_1 doi: 10.1016/j.neucom.2018.06.051 – ident: e_1_2_9_39_1 doi: 10.1007/978-3-662-05105-4_2 – ident: e_1_2_9_40_1 doi: 10.1007/s00371-007-0197-5 – volume: 335 issue: 1 year: 2015 ident: e_1_2_9_2_1 article-title: 3D Mesh Labeling via Deep Convolutional Neural Networks publication-title: ACM Transactions on Graphics – ident: e_1_2_9_30_1 doi: 10.1109/TVCG.2023.3259044 – ident: e_1_2_9_25_1 doi: 10.1109/ICCV48922.2021.01520 – ident: e_1_2_9_4_1 doi: 10.1145/3072959.3073608 – start-page: 4413 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_9_32_1 – ident: e_1_2_9_50_1 doi: 10.1145/2070781.2024160 – ident: e_1_2_9_27_1 doi: 10.1111/cgf.14655 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR.2017.697 – ident: e_1_2_9_48_1 doi: 10.1137/080725891 – ident: e_1_2_9_49_1 doi: 10.1126/science.1242072 – ident: e_1_2_9_36_1 doi: 10.1016/j.neunet.2018.08.003 – ident: e_1_2_9_6_1 doi: 10.1111/cgf.13323 – ident: e_1_2_9_11_1 doi: 10.1109/CVPR.2010.5540225 – ident: e_1_2_9_13_1 doi: 10.1111/j.1467-8659.2011.01895.x – ident: e_1_2_9_26_1 doi: 10.1145/3506694 – ident: e_1_2_9_21_1 doi: 10.1145/2508363.2508393 – ident: e_1_2_9_46_1 doi: 10.1137/040605412 – ident: e_1_2_9_18_1 doi: 10.1007/s40304-021-00265-4 – ident: e_1_2_9_17_1 doi: 10.1109/TVCG.2020.3032566 – ident: e_1_2_9_7_1 doi: 10.1111/j.1467-8659.2007.01103.x – ident: e_1_2_9_28_1 doi: 10.1109/TVCG.2021.3129156 – ident: e_1_2_9_35_1 doi: 10.1109/TNNLS.2015.2422994 – ident: e_1_2_9_5_1 doi: 10.1145/3414685.3417806 |
SSID | ssj0026210 |
Score | 2.3713465 |
Snippet | ABSTRACT
3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent... 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms anisotropic L1$$ {L}_1 $$‐regularization Clustering Computer graphics Embedding mesh segmentation robustness Segmentation sparse embedding |
Title | A Robust 3D Mesh Segmentation Algorithm With Anisotropic Sparse Embedding |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70042 https://www.proquest.com/docview/3229129550 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FucXQTx46WzTdK14KuqYwjxsTncQSj5eZ9G1Y209-NebpOv8AEG8lFKa0L7kvff7hZdfEDpxhABhSnU86lsUYmkxl1PLV2idSdsLbCMp1Ltrd4f0duSNltBFvRem0odYLLhpzzDxWjs44_nZp2ioYG8trc2u46-u1dKAqL-QjiJtUikReLRtaZpQqwrZ5GzR8nsu-gSYX2GqyTOdNfRUf2FVXvLSKgveEu8_xBv_-QvraHWOP3FYTZgNtATpJlp5SPKyeppvoZsQ9zNe5gV2r3AP8mc8gPFkvkcpxeHrOJslxfMEP6orDtMkz4pZNk0EHkwVTQZ8PeEgdU7cRsPO9f1l15qfuGAJRYMUKw0k9wJwhUMlAd5WgZBJYXMGAIEvGJfMV_gj9kjAqBMI1wFHCi58GseKBxF3BzXSLIVdhGN67goiA89mikMqHgaqawKEAMQOi_0mOq5tH00rYY2oklAmkbJLZOzSRAf1qERz38ojFYLOFUpR1KqJTo15f-8gugwfzM3e31_dR8tEH_JrqhoPUKOYlXCokEfBj8wU-wAuitMu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT6RAEK4Y96B72PW12fGxdowHL4zQNAMmXoirGR_jwffFkH4UOtkdmAzMHvbXWzTD-EhMjBdCCHSg6Kr6vk71VwDbntaobalOIEJHYGoc6SvhhITWpXGDyLWSQr3zTvdanNwFdzOw3-yFqfUhpgtulWfYeF05eLUgvfusGqrlv3Ylzk4B-EvV0dsSqoupeBTv8FqLIBAdpyIKja6Qy3enj77ORs8Q8yVQtZnm6DvcN-9YF5j8aY9L1db_38g3fvYjFuDbBIKyuJ4zizCD2RJ8vekX4_pqsQzHMbvI1bgomf-b9bB4ZJf4MJhsU8pY_PchH_XLxwG7pSOLs36Rl6N82NfsckhMGdnhQKGp0uIKXB8dXh10nUnTBUcTEyJiGhkVROhrTxiOqkOxUBrtKomIUailMjIkCJIGPJLCi7TvoWe00qFIU6JC3P8Bs1me4U9gqdjzNTdR4EqikUTFkIbmyDli6sk0bMFWY_xkWGtrJLWKMk_ILom1SwvWm9-STNyrSCgK7RFQIXbVgh1r3_cHSA7iG3uy-vFbN2Gue9U7S86Oz0_XYJ5XPX9tkeM6zJajMW4QECnVLzvfngBuHddJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IQmkfqrUtXV11EB98yZpMJhfpU9h10VZFtFofCmEuJ7q0myybbB_663sy2axaEIovIYRkSE7O5fuGM98A7Hlao7atOoGIHIGZcaSvhBMRWpfGDWLXSgqdnYfH1-LLbXC7BJ_btTCNPsRiwq2ODJuv6wCfmOzgQTRUy9-9Wpud8u-KCN24dunB5UI7ioe8kSIIROjUPKGVFXL5weLRp8XoAWE-xqm20AxX4Uf7ik1_yc_erFI9_ecf9cYXfsMavJ0DUJY0HvMOljBfhzc3o3LWXC3fw0nCLgs1KyvmD9gZlvfsCu_G80VKOUt-3RXTUXU_Zt_pyJJ8VBbVtJiMNLuaEE9GdjRWaOqi-AGuh0ff-sfOfMsFRxMPIloaGxXE6GtPGI4qpEwojXaVRMQ40lIZGREAyQIeS-HF2vfQM1rpSGQZESHuf4TlvMjxE7BMHPqamzhwJZFIImJIQ3PkHDHzZBZ1YLe1fTpplDXSRkOZp2SX1NqlA932r6Tz4CpTykGHBFOIW3Vg35r3-QHSfnJjTzb-_9YdeHUxGKanJ-dfN-E1rzf8tR2OXViupjPcIhRSqW3rbX8BI7zWAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+3D+Mesh+Segmentation+Algorithm+With+Anisotropic+Sparse+Embedding&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Mengyao&rft.au=Li%2C+Wenting&rft.au=Zhao%2C+Yong&rft.au=Si%2C+Xin&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |