A Robust 3D Mesh Segmentation Algorithm With Anisotropic Sparse Embedding

ABSTRACT 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this art...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Zhang, Mengyao, Li, Wenting, Zhao, Yong, Si, Xin, Zhang, Jingliang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic L1$$ {L}_1 $$‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts. A robust algorithm is introduced to segment complex 3D meshes. A large number of experimental results demonstrate that our algorithm is capable of obtaining accurate segmentation boundaries.
AbstractList 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic L1$$ {L}_1 $$‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts.
ABSTRACT 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic L1$$ {L}_1 $$‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts. A robust algorithm is introduced to segment complex 3D meshes. A large number of experimental results demonstrate that our algorithm is capable of obtaining accurate segmentation boundaries.
3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are data‐driven methods. However, such methods require a large amount of accurately labeled data, which is difficult to obtain. In this article, we propose a novel mesh segmentation algorithm based on anisotropic sparse embedding. We first over‐segment the input mesh and get a collection of patches. Then these patches are embedded into a latent space via an anisotropic ‐regularized optimization problem. In the new space, the patches that belong to the same part of the mesh will be closer, while those belonging to different parts will be farther. Finally, we can easily generate the segmentation result by clustering. Various experimental results on the PSB and COSEG datasets show that our algorithm is able to get perception‐aware results and is superior to the state‐of‐the‐art algorithms. In addition, the proposed algorithm can robustly deal with meshes with different poses, different triangulations, noises, missing regions, or missing parts.
Author Zhao, Yong
Zhang, Mengyao
Zhang, Jingliang
Li, Wenting
Si, Xin
Author_xml – sequence: 1
  givenname: Mengyao
  surname: Zhang
  fullname: Zhang, Mengyao
  organization: Ocean University of China
– sequence: 2
  givenname: Wenting
  surname: Li
  fullname: Li, Wenting
  organization: Ocean University of China
– sequence: 3
  givenname: Yong
  orcidid: 0009-0002-0232-2284
  surname: Zhao
  fullname: Zhao, Yong
  email: zhaoyong@ouc.edu.cn
  organization: Ocean University of China
– sequence: 4
  givenname: Xin
  surname: Si
  fullname: Si, Xin
  organization: Xiamen University of Technology
– sequence: 5
  givenname: Jingliang
  surname: Zhang
  fullname: Zhang, Jingliang
  organization: Ocean University of China
BookMark eNp10D1PwzAQBmALgURbGPgHlpgY0tqOnaRjVApUKkKifG2W41xaV40d7BTUf08giI3l7obn7qR3iI6ts4DQBSVjSgibaPUxTgnh7AgNqOBJxFn6dvw3J_QUDUPYdjRhlAzQIsePrtiHFsfX-B7CBq9gXYNtVWucxflu7bxpNzV-7SrOrQmu9a4xGq8a5QPgeV1AWRq7PkMnldoFOP_tI_R8M3-a3UXLh9vFLF9Gmokpi0RWFiKDWFNeMigSSqkqNSkUAGSpVkWpUiF4JVimOM10TIGWutApr6okSVg8Qpf93ca79z2EVm7d3tvupYwZm1I2FYJ06qpX2rsQPFSy8aZW_iApkd9JyS4p-ZNUZye9_TQ7OPwP5Sx_6Te-AA0Ma5M
Cites_doi 10.1109/TVCG.2010.264
10.1145/1531326.1531379
10.1145/1364901.1364927
10.1109/TVCG.2011.140
10.1109/ICCV.2017.294
10.1145/1778765.1778839
10.1016/j.cad.2021.103179
10.1002/cav.1658
10.1109/TVCG.2020.3014449
10.1109/CVPR.2017.702
10.1007/s10915-013-9740-x
10.3390/s23010416
10.1109/ICCV.2015.161
10.1111/j.1467-8659.2011.01967.x
10.1007/978-3-031-19818-2_31
10.1111/j.1467-8659.2012.03175.x
10.1145/383259.383282
10.1007/s11042-021-10816-0
10.1111/j.1467-8659.2009.01515.x
10.1111/j.1467-8659.2009.01622.x
10.1016/j.neucom.2018.06.051
10.1007/978-3-662-05105-4_2
10.1007/s00371-007-0197-5
10.1109/TVCG.2023.3259044
10.1109/ICCV48922.2021.01520
10.1145/3072959.3073608
10.1145/2070781.2024160
10.1111/cgf.14655
10.1109/CVPR.2017.697
10.1137/080725891
10.1126/science.1242072
10.1016/j.neunet.2018.08.003
10.1111/cgf.13323
10.1109/CVPR.2010.5540225
10.1111/j.1467-8659.2011.01895.x
10.1145/3506694
10.1145/2508363.2508393
10.1137/040605412
10.1007/s40304-021-00265-4
10.1109/TVCG.2020.3032566
10.1111/j.1467-8659.2007.01103.x
10.1109/TVCG.2021.3129156
10.1109/TNNLS.2015.2422994
10.1145/3414685.3417806
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70042
CAV70042
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62172005
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2018MF006
– fundername: Open Project of the State Key Lab of CAD&CG, Zhejiang University
  funderid: A2228
– fundername: Qingdao Natural Science Foundation
  funderid: 23‐2‐1‐158‐zyyd‐jch
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
1OB
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2592-58db58e3c14d2eb6111adc0baeee87cabda7554f528a418c31e1dcbc74ff66623
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 13:35:27 EDT 2025
Tue Aug 05 11:57:39 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2592-58db58e3c14d2eb6111adc0baeee87cabda7554f528a418c31e1dcbc74ff66623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-0232-2284
PQID 3229129550
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_3229129550
crossref_primary_10_1002_cav_70042
wiley_primary_10_1002_cav_70042_CAV70042
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 28
2010
2018; 108
2020; 39
2008
2011; 30
2024; 30
2012; 18
2022; 41
2003
2002
2011; 17
2022; 28
2012; 31
2009; 28
2022; 144
2015; 26
2023; 23
2023
2001
2015; 335
2017; 36
2013; 32
2023; 29
2022
2018; 314
2010; 29
2021
2008; 27
2005; 4
2020; 26
2014; 58
2017
2008; 24
2015
2022; 11
2009; 2
2016; 27
2021; 80
2014; 344
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
Ben‐Chen M. (e_1_2_9_42_1) 2008
e_1_2_9_12_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Guo K. (e_1_2_9_2_1) 2015; 335
e_1_2_9_30_1
Pauly M. (e_1_2_9_33_1) 2002
e_1_2_9_11_1
e_1_2_9_34_1
Wong C. C. (e_1_2_9_32_1) 2023
e_1_2_9_13_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Tong W. (e_1_2_9_16_1) 2020; 26
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 335
  issue: 1
  year: 2015
  article-title: 3D Mesh Labeling via Deep Convolutional Neural Networks
  publication-title: ACM Transactions on Graphics
– volume: 80
  start-page: 24885
  issue: 3
  year: 2021
  end-page: 24899
  article-title: 3D Mesh Segmentation via ‐Constrained Random Walks
  publication-title: Multimedia Tools and Applications
– volume: 26
  start-page: 1807
  issue: 4
  year: 2020
  end-page: 1820
  article-title: Spectral Mesh Segmentation via Gradient Minimization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  end-page: 1496
  article-title: Clustering by Fast Search and Find of Density Peaks
  publication-title: Science
– volume: 23
  issue: 1
  year: 2023
  article-title: Robust Mesh Segmentation Using Feature‐Aware Region Fusion
  publication-title: Sensors
– volume: 27
  start-page: 1539
  year: 2008
  end-page: 1556
  article-title: A Survey on Mesh Segmentation Techniques
  publication-title: Computer Graphics Forum
– volume: 29
  issue: 4
  year: 2010
  article-title: Learning 3D Mesh Segmentation and Labeling
  publication-title: ACM Transactions on Graphics
– volume: 30
  issue: 6
  year: 2011
  article-title: Unsupervised Co‐Segmentation of a Set of Shapes via Descriptor‐Space Spectral Clustering
  publication-title: ACM Transactions on Graphics
– volume: 36
  issue: 4
  year: 2017
  article-title: O‐CNN: Octree‐Based Convolutional Neural Networks for 3D Shape Analysis
  publication-title: ACM Transactions on Graphics
– volume: 27
  start-page: 723
  issue: 4
  year: 2016
  end-page: 735
  article-title: Approximate Orthogonal Sparse Embedding for Dimensionality Reduction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 26
  start-page: 301
  issue: 3–4
  year: 2015
  end-page: 309
  article-title: Effective Skeletons Extraction for Animated Surfaces Based on Geometry Propagation
  publication-title: Computer Animation and Virtual Worlds
– start-page: 203
  year: 2001
  end-page: 212
– start-page: 97
  year: 2010
  end-page: 104
– volume: 314
  start-page: 30
  year: 2018
  end-page: 38
  article-title: Robust Jointly Sparse Embedding for Dimensionality Reduction
  publication-title: Neurocomputing
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  end-page: 343
  article-title: The Split Bregman Method for ‐Regularized Problems
  publication-title: SIAM Journal on Imaging Sciences
– volume: 30
  start-page: 603
  issue: 2
  year: 2011
  end-page: 612
  article-title: Paint Mesh Cutting
  publication-title: Computer Graphics Forum
– start-page: 6630
  year: 2017
  end-page: 6639
– volume: 30
  start-page: 4349
  issue: 7
  year: 2024
  end-page: 4361
  article-title: Laplacian2Mesh: Laplacian‐Based Mesh Understanding
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 4413
  year: 2023
  end-page: 4422
– volume: 24
  start-page: 249
  issue: 4
  year: 2008
  end-page: 259
  article-title: Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function
  publication-title: Visual Computer
– volume: 30
  start-page: 2170
  issue: 8
  year: 2011
  end-page: 2182
  article-title: Learning Boundary Edges for 3D‐Mesh Segmentation
  publication-title: Computer Graphics Forum
– volume: 29
  start-page: 527
  issue: 2
  year: 2010
  end-page: 535
  article-title: Mesh Decomposition With Cross‐Boundary Brushes
  publication-title: Computer Graphics Forum
– volume: 41
  start-page: 37
  issue: 7
  year: 2022
  end-page: 49
  article-title: MeshFormer: High‐Resolution Mesh Segmentation With Graph Transformer
  publication-title: Computer Graphics Forum
– start-page: 15468
  year: 2021
  end-page: 15478
– volume: 28
  start-page: 1383
  issue: 5
  year: 2009
  end-page: 1392
  article-title: A Concise and Provably Informative Multi‐Scale Signature Based on Heat Diffusion
  publication-title: Computer Graphics Forum
– start-page: 2717
  year: 2017
  end-page: 2726
– volume: 17
  start-page: 1521
  issue: 10
  year: 2011
  end-page: 1530
  article-title: Bilateral Normal Filtering for Mesh Denoising
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 41
  issue: 3
  year: 2022
  article-title: Subdivision‐Based Mesh Convolution Networks
  publication-title: ACM Transactions on Graphics
– volume: 29
  start-page: 1678
  issue: 3
  year: 2023
  end-page: 1690
  article-title: Mesh Convolutional Networks With Face and Vertex Feature Operators
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  end-page: 489
  article-title: An Iterative Regularization Method for Total Variation‐Based Image Restoration
  publication-title: Multiscale Modeling and Simulation
– volume: 18
  start-page: 1304
  issue: 8
  year: 2012
  end-page: 1312
  article-title: Dot Scissor: A Single‐Click Interface for Mesh Segmentation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 28
  start-page: 1317
  issue: 2
  year: 2022
  end-page: 1327
  article-title: Learning on 3D Meshes With Laplacian Encoding and Pooling
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 541
  year: 2022
  end-page: 560
– volume: 11
  start-page: 583
  issue: 3
  year: 2022
  end-page: 607
  article-title: A Spectral Segmentation Method for Large Meshes
  publication-title: Communications in Mathematics and Statistics
– start-page: 35
  year: 2003
  end-page: 57
  article-title: Discrete Differential‐Geometry Operators for Triangulated 2‐Manifolds
  publication-title: Visualization and Mathematics III
– volume: 28
  start-page: 1
  issue: 3
  year: 2009
  end-page: 12
  article-title: A Benchmark for 3D Mesh Segmentation
  publication-title: ACM Transactions on Graphics
– start-page: 6584
  year: 2017
  end-page: 6592
– start-page: 183
  year: 2008
  end-page: 191
  article-title: Fast Mesh Segmentation Using Random Walks
  publication-title: Proceedings of the ACM Symposium on Solid and Physical Modeling
– volume: 58
  start-page: 431
  issue: 2
  year: 2014
  end-page: 449
  article-title: A Splitting Method for Orthogonality Constrained Problems
  publication-title: Journal of Scientific Computing
– volume: 31
  start-page: 1703
  issue: 5
  year: 2012
  end-page: 1713
  article-title: Co‐Segmentation of 3D Shapes via Subspace Clustering
  publication-title: Computer Graphics Forum
– volume: 108
  start-page: 202
  year: 2018
  end-page: 216
  article-title: Low‐Rank and Sparse Embedding for Dimensionality Reduction
  publication-title: Neural Networks
– start-page: 1
  year: 2008
  end-page: 8
– start-page: 163
  year: 2002
  end-page: 170
– start-page: 1368
  year: 2015
  end-page: 1376
– volume: 28
  start-page: 2430
  issue: 6
  year: 2022
  end-page: 2444
  article-title: SEG‐MAT: 3D Shape Segmentation Using Medial Axis Transform
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 144
  year: 2022
  article-title: A Deep Learning Driven Active Framework for Segmentation of Large 3D Shape Collections
  publication-title: Computer‐Aided Design
– volume: 39
  issue: 6
  year: 2020
  article-title: MeshWalker: Deep Mesh Understanding by Random Walks
  publication-title: ACM Transactions on Graphics
– volume: 28
  start-page: 235
  year: 2018
  end-page: 274
  article-title: Part‐Based Mesh Segmentation: A Survey
  publication-title: Computer Graphics Forum
– volume: 32
  issue: 6
  year: 2013
  article-title: Projective Analysis for 3D Shape Segmentation
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_9_44_1
  doi: 10.1109/TVCG.2010.264
– start-page: 1
  volume-title: Proceedings of the Eurographics Conference on 3D Object Retrieval
  year: 2008
  ident: e_1_2_9_42_1
– ident: e_1_2_9_10_1
  doi: 10.1145/1531326.1531379
– ident: e_1_2_9_9_1
  doi: 10.1145/1364901.1364927
– ident: e_1_2_9_14_1
  doi: 10.1109/TVCG.2011.140
– ident: e_1_2_9_22_1
  doi: 10.1109/ICCV.2017.294
– ident: e_1_2_9_8_1
  doi: 10.1145/1778765.1778839
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cad.2021.103179
– ident: e_1_2_9_45_1
  doi: 10.1002/cav.1658
– volume: 26
  start-page: 1807
  issue: 4
  year: 2020
  ident: e_1_2_9_16_1
  article-title: Spectral Mesh Segmentation via Gradient Minimization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: e_1_2_9_29_1
  doi: 10.1109/TVCG.2020.3014449
– ident: e_1_2_9_3_1
  doi: 10.1109/CVPR.2017.702
– ident: e_1_2_9_47_1
  doi: 10.1007/s10915-013-9740-x
– ident: e_1_2_9_34_1
  doi: 10.3390/s23010416
– ident: e_1_2_9_38_1
  doi: 10.1109/ICCV.2015.161
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1467-8659.2011.01967.x
– ident: e_1_2_9_31_1
  doi: 10.1007/978-3-031-19818-2_31
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1467-8659.2012.03175.x
– ident: e_1_2_9_41_1
  doi: 10.1145/383259.383282
– ident: e_1_2_9_15_1
  doi: 10.1007/s11042-021-10816-0
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1467-8659.2009.01515.x
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1467-8659.2009.01622.x
– start-page: 163
  volume-title: Proceedings of the IEEE Visualization
  year: 2002
  ident: e_1_2_9_33_1
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neucom.2018.06.051
– ident: e_1_2_9_39_1
  doi: 10.1007/978-3-662-05105-4_2
– ident: e_1_2_9_40_1
  doi: 10.1007/s00371-007-0197-5
– volume: 335
  issue: 1
  year: 2015
  ident: e_1_2_9_2_1
  article-title: 3D Mesh Labeling via Deep Convolutional Neural Networks
  publication-title: ACM Transactions on Graphics
– ident: e_1_2_9_30_1
  doi: 10.1109/TVCG.2023.3259044
– ident: e_1_2_9_25_1
  doi: 10.1109/ICCV48922.2021.01520
– ident: e_1_2_9_4_1
  doi: 10.1145/3072959.3073608
– start-page: 4413
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_9_32_1
– ident: e_1_2_9_50_1
  doi: 10.1145/2070781.2024160
– ident: e_1_2_9_27_1
  doi: 10.1111/cgf.14655
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2017.697
– ident: e_1_2_9_48_1
  doi: 10.1137/080725891
– ident: e_1_2_9_49_1
  doi: 10.1126/science.1242072
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neunet.2018.08.003
– ident: e_1_2_9_6_1
  doi: 10.1111/cgf.13323
– ident: e_1_2_9_11_1
  doi: 10.1109/CVPR.2010.5540225
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1467-8659.2011.01895.x
– ident: e_1_2_9_26_1
  doi: 10.1145/3506694
– ident: e_1_2_9_21_1
  doi: 10.1145/2508363.2508393
– ident: e_1_2_9_46_1
  doi: 10.1137/040605412
– ident: e_1_2_9_18_1
  doi: 10.1007/s40304-021-00265-4
– ident: e_1_2_9_17_1
  doi: 10.1109/TVCG.2020.3032566
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1467-8659.2007.01103.x
– ident: e_1_2_9_28_1
  doi: 10.1109/TVCG.2021.3129156
– ident: e_1_2_9_35_1
  doi: 10.1109/TNNLS.2015.2422994
– ident: e_1_2_9_5_1
  doi: 10.1145/3414685.3417806
SSID ssj0026210
Score 2.3713465
Snippet ABSTRACT 3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent...
3D mesh segmentation, as a very challenging problem in computer graphics, has attracted considerable interest. The most popular methods in recent years are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
anisotropic L1$$ {L}_1 $$‐regularization
Clustering
Computer graphics
Embedding
mesh segmentation
robustness
Segmentation
sparse embedding
Title A Robust 3D Mesh Segmentation Algorithm With Anisotropic Sparse Embedding
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70042
https://www.proquest.com/docview/3229129550
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FucXQTx46WzTdK14KuqYwjxsTncQSj5eZ9G1Y209-NebpOv8AEG8lFKa0L7kvff7hZdfEDpxhABhSnU86lsUYmkxl1PLV2idSdsLbCMp1Ltrd4f0duSNltBFvRem0odYLLhpzzDxWjs44_nZp2ioYG8trc2u46-u1dKAqL-QjiJtUikReLRtaZpQqwrZ5GzR8nsu-gSYX2GqyTOdNfRUf2FVXvLSKgveEu8_xBv_-QvraHWOP3FYTZgNtATpJlp5SPKyeppvoZsQ9zNe5gV2r3AP8mc8gPFkvkcpxeHrOJslxfMEP6orDtMkz4pZNk0EHkwVTQZ8PeEgdU7cRsPO9f1l15qfuGAJRYMUKw0k9wJwhUMlAd5WgZBJYXMGAIEvGJfMV_gj9kjAqBMI1wFHCi58GseKBxF3BzXSLIVdhGN67goiA89mikMqHgaqawKEAMQOi_0mOq5tH00rYY2oklAmkbJLZOzSRAf1qERz38ojFYLOFUpR1KqJTo15f-8gugwfzM3e31_dR8tEH_JrqhoPUKOYlXCokEfBj8wU-wAuitMu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT6RAEK4Y96B72PW12fGxdowHL4zQNAMmXoirGR_jwffFkH4UOtkdmAzMHvbXWzTD-EhMjBdCCHSg6Kr6vk71VwDbntaobalOIEJHYGoc6SvhhITWpXGDyLWSQr3zTvdanNwFdzOw3-yFqfUhpgtulWfYeF05eLUgvfusGqrlv3Ylzk4B-EvV0dsSqoupeBTv8FqLIBAdpyIKja6Qy3enj77ORs8Q8yVQtZnm6DvcN-9YF5j8aY9L1db_38g3fvYjFuDbBIKyuJ4zizCD2RJ8vekX4_pqsQzHMbvI1bgomf-b9bB4ZJf4MJhsU8pY_PchH_XLxwG7pSOLs36Rl6N82NfsckhMGdnhQKGp0uIKXB8dXh10nUnTBUcTEyJiGhkVROhrTxiOqkOxUBrtKomIUailMjIkCJIGPJLCi7TvoWe00qFIU6JC3P8Bs1me4U9gqdjzNTdR4EqikUTFkIbmyDli6sk0bMFWY_xkWGtrJLWKMk_ILom1SwvWm9-STNyrSCgK7RFQIXbVgh1r3_cHSA7iG3uy-vFbN2Gue9U7S86Oz0_XYJ5XPX9tkeM6zJajMW4QECnVLzvfngBuHddJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IQmkfqrUtXV11EB98yZpMJhfpU9h10VZFtFofCmEuJ7q0myybbB_663sy2axaEIovIYRkSE7O5fuGM98A7Hlao7atOoGIHIGZcaSvhBMRWpfGDWLXSgqdnYfH1-LLbXC7BJ_btTCNPsRiwq2ODJuv6wCfmOzgQTRUy9-9Wpud8u-KCN24dunB5UI7ioe8kSIIROjUPKGVFXL5weLRp8XoAWE-xqm20AxX4Uf7ik1_yc_erFI9_ecf9cYXfsMavJ0DUJY0HvMOljBfhzc3o3LWXC3fw0nCLgs1KyvmD9gZlvfsCu_G80VKOUt-3RXTUXU_Zt_pyJJ8VBbVtJiMNLuaEE9GdjRWaOqi-AGuh0ff-sfOfMsFRxMPIloaGxXE6GtPGI4qpEwojXaVRMQ40lIZGREAyQIeS-HF2vfQM1rpSGQZESHuf4TlvMjxE7BMHPqamzhwJZFIImJIQ3PkHDHzZBZ1YLe1fTpplDXSRkOZp2SX1NqlA932r6Tz4CpTykGHBFOIW3Vg35r3-QHSfnJjTzb-_9YdeHUxGKanJ-dfN-E1rzf8tR2OXViupjPcIhRSqW3rbX8BI7zWAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+3D+Mesh+Segmentation+Algorithm+With+Anisotropic+Sparse+Embedding&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhang%2C+Mengyao&rft.au=Li%2C+Wenting&rft.au=Zhao%2C+Yong&rft.au=Si%2C+Xin&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon