LGNet: Local‐And‐Global Feature Adaptive Network for Single Image Two‐Hand Reconstruction

ABSTRACT Accurate 3D interacting hand mesh reconstruction from RGB images is crucial for applications such as robotics, augmented reality (AR), and virtual reality (VR). Especially in the field of robotics, accurate interacting hand mesh reconstruction can significantly improve the accuracy and natu...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 4
Main Authors Xue, Haowei, Wang, Meili
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Accurate 3D interacting hand mesh reconstruction from RGB images is crucial for applications such as robotics, augmented reality (AR), and virtual reality (VR). Especially in the field of robotics, accurate interacting hand mesh reconstruction can significantly improve the accuracy and naturalness of human‐robot interaction. This task requires an accurate understanding of complex interactions between two hands and ensuring reasonable alignment of the hand mesh with the image. Recent Transformer‐based methods directly utilize the features of the two hands as input tokens, ignoring the correlation between local and global features of the interacting hands, leading to hand ambiguity, self‐occlusion, and self‐similarity problems. We propose LGNet, Local and Global Feature Adaptive Network, through separating the hand mesh reconstruction process into three stages: A joint stage for predicting hand joints; a mesh stage for predicting a rough hand mesh; and a refine stage for fine‐tuning the mesh‐image alignment using an offset mesh. LGNet enables high‐quality fingertip‐level mesh‐image alignment, effectively models the spatial relationship between two hands, and supports real‐time prediction. Comprehensive quantitative and qualitative evaluations on benchmark datasets reveal that LGNet surpasses existing methods in mesh accuracy and alignment accuracy, while also showcasing robust generalization performance in tests on in‐the‐wild images. We propose LGNet, Local and Global Feature Adaptive Network, through separating the hand mesh reconstruction process into three stages: a joint stage for predicting hand joints; a mesh stage for predicting a rough hand mesh; and a refine stage for fine‐tuning the mesh image alignment using an offset mesh. LGNet enables high‐quality fingertip‐level mesh image alignment, effectively models the spatial relationship between two hands, and supports real‐time prediction. Comprehensive quantitative and qualitative evaluations on benchmark datasets reveal that LGNet surpasses existing methods in mesh accuracy and alignment accuracy, while also showcasing robust generalization performance in tests on in‐the‐wild images. Our source code will be made available to the community.
AbstractList Accurate 3D interacting hand mesh reconstruction from RGB images is crucial for applications such as robotics, augmented reality (AR), and virtual reality (VR). Especially in the field of robotics, accurate interacting hand mesh reconstruction can significantly improve the accuracy and naturalness of human‐robot interaction. This task requires an accurate understanding of complex interactions between two hands and ensuring reasonable alignment of the hand mesh with the image. Recent Transformer‐based methods directly utilize the features of the two hands as input tokens, ignoring the correlation between local and global features of the interacting hands, leading to hand ambiguity, self‐occlusion, and self‐similarity problems. We propose LGNet, Local and Global Feature Adaptive Network, through separating the hand mesh reconstruction process into three stages: A joint stage for predicting hand joints; a mesh stage for predicting a rough hand mesh; and a refine stage for fine‐tuning the mesh‐image alignment using an offset mesh. LGNet enables high‐quality fingertip‐level mesh‐image alignment, effectively models the spatial relationship between two hands, and supports real‐time prediction. Comprehensive quantitative and qualitative evaluations on benchmark datasets reveal that LGNet surpasses existing methods in mesh accuracy and alignment accuracy, while also showcasing robust generalization performance in tests on in‐the‐wild images.
ABSTRACT Accurate 3D interacting hand mesh reconstruction from RGB images is crucial for applications such as robotics, augmented reality (AR), and virtual reality (VR). Especially in the field of robotics, accurate interacting hand mesh reconstruction can significantly improve the accuracy and naturalness of human‐robot interaction. This task requires an accurate understanding of complex interactions between two hands and ensuring reasonable alignment of the hand mesh with the image. Recent Transformer‐based methods directly utilize the features of the two hands as input tokens, ignoring the correlation between local and global features of the interacting hands, leading to hand ambiguity, self‐occlusion, and self‐similarity problems. We propose LGNet, Local and Global Feature Adaptive Network, through separating the hand mesh reconstruction process into three stages: A joint stage for predicting hand joints; a mesh stage for predicting a rough hand mesh; and a refine stage for fine‐tuning the mesh‐image alignment using an offset mesh. LGNet enables high‐quality fingertip‐level mesh‐image alignment, effectively models the spatial relationship between two hands, and supports real‐time prediction. Comprehensive quantitative and qualitative evaluations on benchmark datasets reveal that LGNet surpasses existing methods in mesh accuracy and alignment accuracy, while also showcasing robust generalization performance in tests on in‐the‐wild images. We propose LGNet, Local and Global Feature Adaptive Network, through separating the hand mesh reconstruction process into three stages: a joint stage for predicting hand joints; a mesh stage for predicting a rough hand mesh; and a refine stage for fine‐tuning the mesh image alignment using an offset mesh. LGNet enables high‐quality fingertip‐level mesh image alignment, effectively models the spatial relationship between two hands, and supports real‐time prediction. Comprehensive quantitative and qualitative evaluations on benchmark datasets reveal that LGNet surpasses existing methods in mesh accuracy and alignment accuracy, while also showcasing robust generalization performance in tests on in‐the‐wild images. Our source code will be made available to the community.
Author Xue, Haowei
Wang, Meili
Author_xml – sequence: 1
  givenname: Haowei
  orcidid: 0009-0006-0377-8143
  surname: Xue
  fullname: Xue, Haowei
  organization: Northwest A&F University
– sequence: 2
  givenname: Meili
  orcidid: 0000-0001-7901-1789
  surname: Wang
  fullname: Wang, Meili
  email: wml@nwsuaf.edu.cn
  organization: Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service
BookMark eNp1kL9OwzAYxC0EEm1h4A0sMTG0tZ3YTtiiiv6RIpCgIDbLTpwqJbWLk7TqxiPwjDwJLkFsLN_d8Lv7pOuDU2ONBuAKoxFGiIwzuRtxb_AJ6GEasmFI-Ovpn2f4HPTreu0JRjDqAZHO7nVzC1Obyerr4zMxub-zyipZwamWTes0THK5bcqdhh7dW_cGC-vgU2lWlYaLjVxpuNxbH5tLk8NHnVlTN67NmtKaC3BWyKrWl786AM_Tu-VkPkwfZotJkg4zQmM8jAul8oBTxEgYEapCzQnlEcvzKNJKKiW5lyimGDGuco0lYyQISIQxxTqmwQBcd71bZ99bXTdibVtn_EsRkDDgHBN0pG46KnO2rp0uxNaVG-kOAiNx3E_4_cTPfp4dd-y-rPThf1BMkpcu8Q1rx3Ti
Cites_doi 10.1109/ICCVW54120.2021.00201
10.1007/978-3-642-33783-3_46
10.1109/CVPR.2009.5206848
10.1007/978-3-030-58565-5_33
10.1109/CVPR.2012.6247885
10.1145/3306346.3322958
10.1145/3414685.3417852
10.1145/3130800.3130853
10.1109/3DV53792.2021.00053
10.1007/978-3-030-58607-2_2
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70021
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70021
CAV70021
Genre researchArticle
GrantInformation_xml – fundername: Museum Cultural Relics Visualization System Fund
  funderid: K4050722011
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2591-9fbbd3750624825b4e725786dd88ebabba7eba8951067bde1a66233281151e953
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Aug 29 01:47:14 EDT 2025
Wed Jul 16 16:36:18 EDT 2025
Wed Aug 27 10:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2591-9fbbd3750624825b4e725786dd88ebabba7eba8951067bde1a66233281151e953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7901-1789
0009-0006-0377-8143
PQID 3243771205
PQPubID 2034909
PageCount 11
ParticipantIDs proquest_journals_3243771205
crossref_primary_10_1002_cav_70021
wiley_primary_10_1002_cav_70021_CAV70021
PublicationCentury 2000
PublicationDate July/August 2025
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July/August 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 30
2012
2023
2022
2017; 36
2021
2020
2020; 39
2009
2019
2019; 38
2018
2017
2016
2015
2014
Moon G. (e_1_2_9_2_1) 2020
Meng H. (e_1_2_9_24_1) 2022
Wang J. (e_1_2_9_21_1) 2020; 39
e_1_2_9_33_1
Ren P. (e_1_2_9_36_1) 2023
Boukhayma A. (e_1_2_9_35_1) 2019
Oikonomidis I. (e_1_2_9_11_1) 2012
Zhou Y. (e_1_2_9_18_1) 2021
He K. (e_1_2_9_25_1) 2016
Kyriazis N. (e_1_2_9_12_1) 2014
e_1_2_9_15_1
Joo H. (e_1_2_9_14_1) 2018
Zimmermann C. (e_1_2_9_34_1) 2017
Moon G. (e_1_2_9_22_1) 2022
Ballan L. (e_1_2_9_10_1) 2012
Yu Z. (e_1_2_9_37_1) 2023
Xiang D. (e_1_2_9_16_1) 2019
Vaswani A. (e_1_2_9_9_1) 2017; 30
Li M. (e_1_2_9_7_1) 2022
Di X. (e_1_2_9_8_1) 2022
Bambach S. (e_1_2_9_31_1) 2015
Taylor J. (e_1_2_9_19_1) 2017; 36
Mueller F. (e_1_2_9_20_1) 2019; 38
Hampali S. (e_1_2_9_6_1) 2022
Fan Z. (e_1_2_9_5_1) 2021
Kim D. U. (e_1_2_9_4_1) 2021
Choutas V. (e_1_2_9_13_1) 2020
Zhang Y. (e_1_2_9_17_1) 2021
Spurr A. (e_1_2_9_30_1) 2018
Zhang B. (e_1_2_9_3_1) 2021
Rong Y. (e_1_2_9_23_1) 2021
Paszke A. (e_1_2_9_32_1) 2017
e_1_2_9_27_1
Park J. (e_1_2_9_28_1) 2023
e_1_2_9_29_1
Deng J. (e_1_2_9_26_1) 2009
References_xml – start-page: 11189
  year: 2021
  end-page: 11198
– start-page: 640
  year: 2012
  end-page: 653
– start-page: 20
  year: 2020
  end-page: 40
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  end-page: 16
  article-title: Rgb2hands: Real‐Time Tracking of 3d Hand Interactions From Monocular Rgb Video
  publication-title: ACM Transactions on Graphics (ToG)
– volume: 36
  start-page: 1
  issue: 6
  year: 2017
  end-page: 12
  article-title: Articulated Distance Fields for Ultra‐Fast Tracking of Hands Interacting
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 12955
  year: 2023
  end-page: 12964
– start-page: 89
  year: 2018
  end-page: 98
– start-page: 548
  year: 2020
  end-page: 564
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 2299
  year: 2022
  end-page: 2307
– start-page: 1949
  year: 2015
  end-page: 1957
– start-page: 5560
  year: 2021
  end-page: 5569
– start-page: 11354
  year: 2021
  end-page: 11363
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  article-title: Attention Is All You Need
  publication-title: Advances in Neural Information Processing Systems
– start-page: 8320
  year: 2018
  end-page: 8329
– start-page: 4903
  year: 2017
  end-page: 4911
– start-page: 248
  year: 2009
  end-page: 255
– start-page: 10843
  year: 2019
  end-page: 10852
– start-page: 2761
  year: 2022
  end-page: 2770
– year: 2014
– start-page: 8014
  year: 2023
  end-page: 8025
– start-page: 1862
  year: 2012
  end-page: 1869
– start-page: 380
  year: 2022
  end-page: 397
– start-page: 1
  year: 2021
  end-page: 10
– start-page: 11090
  year: 2022
  end-page: 11100
– start-page: 4811
  year: 2021
  end-page: 4822
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  end-page: 13
  article-title: Real‐Time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera
  publication-title: ACM Transactions on Graphics (ToG)
– year: 2022
– year: 2020
– start-page: 3430
  year: 2014
  end-page: 3437
– start-page: 432
  year: 2021
  end-page: 441
– start-page: 722
  year: 2022
  end-page: 738
– start-page: 10965
  year: 2019
  end-page: 10974
– year: 2017
– start-page: 4200
  year: 2023
  end-page: 4209
– start-page: 2299
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_9_22_1
– volume-title: Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS) Workshops
  year: 2017
  ident: e_1_2_9_32_1
– ident: e_1_2_9_15_1
  doi: 10.1109/ICCVW54120.2021.00201
– start-page: 11354
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2021
  ident: e_1_2_9_3_1
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: e_1_2_9_25_1
– start-page: 640
  volume-title: Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7‐13, 2012, Proceedings
  year: 2012
  ident: e_1_2_9_10_1
  doi: 10.1007/978-3-642-33783-3_46
– start-page: 248
  volume-title: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2009
  ident: e_1_2_9_26_1
  doi: 10.1109/CVPR.2009.5206848
– start-page: 4903
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: e_1_2_9_34_1
– start-page: 4200
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_9_28_1
– volume: 30
  start-page: 5998
  year: 2017
  ident: e_1_2_9_9_1
  article-title: Attention Is All You Need
  publication-title: Advances in Neural Information Processing Systems
– start-page: 548
  volume-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16
  year: 2020
  ident: e_1_2_9_2_1
  doi: 10.1007/978-3-030-58565-5_33
– start-page: 1862
  volume-title: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2012
  ident: e_1_2_9_11_1
  doi: 10.1109/CVPR.2012.6247885
– start-page: 5560
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2021
  ident: e_1_2_9_17_1
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  ident: e_1_2_9_20_1
  article-title: Real‐Time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera
  publication-title: ACM Transactions on Graphics (ToG)
  doi: 10.1145/3306346.3322958
– start-page: 8014
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_9_36_1
– start-page: 1
  volume-title: Proceedings of the 2021 International Conference on 3D Vision (3DV)
  year: 2021
  ident: e_1_2_9_5_1
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  ident: e_1_2_9_21_1
  article-title: Rgb2hands: Real‐Time Tracking of 3d Hand Interactions From Monocular Rgb Video
  publication-title: ACM Transactions on Graphics (ToG)
  doi: 10.1145/3414685.3417852
– start-page: 1949
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2015
  ident: e_1_2_9_31_1
– start-page: 10965
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: e_1_2_9_16_1
– start-page: 4811
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2021
  ident: e_1_2_9_18_1
– start-page: 11090
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_9_6_1
– ident: e_1_2_9_27_1
– start-page: 12955
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_9_37_1
– start-page: 3430
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2014
  ident: e_1_2_9_12_1
– ident: e_1_2_9_33_1
– start-page: 11189
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2021
  ident: e_1_2_9_4_1
– volume: 36
  start-page: 1
  issue: 6
  year: 2017
  ident: e_1_2_9_19_1
  article-title: Articulated Distance Fields for Ultra‐Fast Tracking of Hands Interacting
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/3130800.3130853
– start-page: 2761
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_9_7_1
– start-page: 89
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: e_1_2_9_30_1
– start-page: 432
  volume-title: Proceedings of the 2021 International Conference on 3D Vision (3DV)
  year: 2021
  ident: e_1_2_9_23_1
  doi: 10.1109/3DV53792.2021.00053
– start-page: 10843
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: e_1_2_9_35_1
– start-page: 722
  volume-title: European Conference on Computer Vision
  year: 2022
  ident: e_1_2_9_8_1
– start-page: 8320
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: e_1_2_9_14_1
– start-page: 20
  volume-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16
  year: 2020
  ident: e_1_2_9_13_1
  doi: 10.1007/978-3-030-58607-2_2
– ident: e_1_2_9_29_1
– start-page: 380
  volume-title: European Conference on Computer Vision
  year: 2022
  ident: e_1_2_9_24_1
SSID ssj0026210
Score 2.3768084
Snippet ABSTRACT Accurate 3D interacting hand mesh reconstruction from RGB images is crucial for applications such as robotics, augmented reality (AR), and virtual...
Accurate 3D interacting hand mesh reconstruction from RGB images is crucial for applications such as robotics, augmented reality (AR), and virtual reality...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms 3D mesh reconstruction
Accuracy
Alignment
Augmented reality
Color imagery
Hands
human computer interaction
Image quality
Image reconstruction
Occlusion
Robotics
transformer‐based
Virtual reality
Title LGNet: Local‐And‐Global Feature Adaptive Network for Single Image Two‐Hand Reconstruction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70021
https://www.proquest.com/docview/3243771205
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA9jJz34X5xOCeLBS7c2bdNOT2U4p-gOuo0dhJI0EUTtht0UPPkR_Ix-Et9r1k0FQYTSltKE9uX9-b325RdCDrTjeknohRbk08rydODh_10FumxDA1tDRMHJyZcd3u555wN_UCLHxVwYww8x--CGlpH7azRwIbP6nDQ0Ec-1AEMU-F-s1UJAdDWjjmKcGSYC3-MWpgkFq5DN6rOW32PRHGB-hal5nGktk5viCU15yX1tMpa15PUHeeM_X2GFLE3xJ42MwqySkk7XyGL_LpuYq9k6iS9OO3p8RC8wzH28vUepgr1ZHIAiZJw8aRopMUJPSTumjpwC-KXXEAcfND17BCdFuy9DaNYWqaKY486ZajdIr3XSbbat6ToMVgLJkWM1bqVULkALzjxIKCWMKBo6VyoMtRRSigAOIWI1HkilHcEBVLksBLTp6IbvbpJyOkz1FqHSQQQpVEO7ypOJChkoii0c2BQXjFXIfjEi8cjQbcSGWJnFIK04l1aFVIuxiqcWl8UuMisGDrP9CjnMhf57B3Ez6ucn23-_dYcsMFz6N6_UrZIyyEzvAh4Zy71c8T4BBNHcPQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTuMwEB4hOAAH_hZE-bUQSHtJSZw0SVfiUPGzLZQeoCBuxo6NhIAU0RbEnngEHoRX4SV4EmbipmVXQtoLB6QoiaIkcjwznm-c8TcA68bzgyQOYgfjae0EJgro_65GXXbxAdegR6HFyYeNsHoS7J-VzobgJV8LY_kh-hNuZBnZeE0GThPSmwPW0ETeFyPyUb2UygPz-IABW3urtoPS3eB8b7e5XXV6NQWcBIG-55QvlNI-usmQBxgcKWwdKW2odRwbJZWSER5iwh1hpLTxZIgAwecxIifPlKlGBA74I1RBnJj6d476ZFU85Jb7oBSEDgUmOY-Ryzf7Tf3b-w0g7UdgnHm2vUl4zfvEJrRcFbsdVUz-_EMX-V06bQomehCbVaxNTMOQSWdg_PSy3bVX2z9A1H83TOcXq5Mnf3t6rqQa97b-ASNU3L0zrKLlLTkD1rCp8gzxPTtGV39tWO0Gx2HWfGjhY1WZakZh_ICMdxZOvuQL52A4baVmHpjyCCRLXTa-DlSiY4624EoPNx1KzguwlquAuLWMIsJyR3OB0hGZdAqwlCuH6A0qbeETeWTkcbdUgJ-ZlD9_gdiunGYnC_9_6yqMVpuHdVGvNQ4WYYxTpeMsMXkJhrH_zDLCr45aybSewflXa8w7E3M4hA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1RT9swED4hJiH2sA3YtDI2rIlJvKQkjuukk_ZQUUoLXYU2QLx5dmykaSNUawtiT_sJ_A_-Cr-CX7K7uGlhEtJeeECKkiiKI8d35_suOX8HsOaiWGSpSAOMp20gXCLo_65FXQ6xQejQo9Di5M892T4QO0e1oxm4KtfCeH6IyQc3soxiviYD79vjjSlpaKbPqgm5qHFG5a67OMd4bfCp00ThfuC8tbW_2Q7GJQWCDHF-FNSPjbExeknJBcZGBjtHOiutTVNntDE6wUNKsEMmxrpIS8QHMU8ROEWuTiUicL5_ImRYpzoRzS8Triouuac-qAkZUFxS0hiFfGPS1bvOb4pob-PiwrG1nsN1OSQ-n-VHdTQ01ez3P2yRj2TMXsCzMcBmDW8RCzDj8kV4evh9MPJXB0uguts9N_zIuuTHb_5cNnKLe1_9gBEmHv1yrGF1n1wB6_lEeYbonn1FR__Tsc4JzsJs__wUm7V1bhkF8VMq3pdw8CBv-Apm89PcvQZmIoLI2tZdbIXJbMrREkId4Wal5rwC70sNUH3PJ6I8czRXKB1VSKcCK6VuqPGUMlAxUUcmEQ9rFVgvhHz_A9Rm47A4Wf7_W1dhbq_ZUt1Ob_cNzHMqc1xkJa_ALA6fe4vYa2jeFTrP4NtDK8xfEuY3Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LGNet%3A+Local%E2%80%90And%E2%80%90Global+Feature+Adaptive+Network+for+Single+Image+Two%E2%80%90Hand+Reconstruction&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Xue%2C+Haowei&rft.au=Wang%2C+Meili&rft.date=2025-07-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=4&rft_id=info:doi/10.1002%2Fcav.70021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon