Yolov8‐HAC: Safety Helmet Detection Model for Complex Underground Coal Mine Scene
ABSTRACT The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and lo...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. The model substitutes the suggested HAC‐Net for the C2f module in YOLOv8n's backbone network to improve feature extraction and detection performance for targets with motion blur and low‐resolution images. To improve detection stability in complicated situations and lessen background interference, the AGC‐Block module is also included for dynamic feature selection. Additionally, a tiny target detection layer is included to increase the long‐range identification rate of tiny safety helmets. According to experimental data, the enhanced model outperforms existing popular object detection algorithms, with a mAP of 94.8% and a recall rate of 90.4%. This demonstrates how well the suggested approach works to identify safety helmets in situations with complicated lighting and low‐resolution photos.
We propose an improved YOLOv8 safety helmet detection model, YOLOv8‐HAC to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. |
---|---|
AbstractList | The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. The model substitutes the suggested HAC‐Net for the C2f module in YOLOv8n's backbone network to improve feature extraction and detection performance for targets with motion blur and low‐resolution images. To improve detection stability in complicated situations and lessen background interference, the AGC‐Block module is also included for dynamic feature selection. Additionally, a tiny target detection layer is included to increase the long‐range identification rate of tiny safety helmets. According to experimental data, the enhanced model outperforms existing popular object detection algorithms, with a mAP of 94.8% and a recall rate of 90.4%. This demonstrates how well the suggested approach works to identify safety helmets in situations with complicated lighting and low‐resolution photos. ABSTRACT The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. The model substitutes the suggested HAC‐Net for the C2f module in YOLOv8n's backbone network to improve feature extraction and detection performance for targets with motion blur and low‐resolution images. To improve detection stability in complicated situations and lessen background interference, the AGC‐Block module is also included for dynamic feature selection. Additionally, a tiny target detection layer is included to increase the long‐range identification rate of tiny safety helmets. According to experimental data, the enhanced model outperforms existing popular object detection algorithms, with a mAP of 94.8% and a recall rate of 90.4%. This demonstrates how well the suggested approach works to identify safety helmets in situations with complicated lighting and low‐resolution photos. We propose an improved YOLOv8 safety helmet detection model, YOLOv8‐HAC to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. |
Author | Liu, Rui Wang, Meili Luo, Wanchuang Lu, Fangbo Cao, Tianjian Xue, Hailian |
Author_xml | – sequence: 1 givenname: Rui surname: Liu fullname: Liu, Rui organization: Northwest A&F University – sequence: 2 givenname: Fangbo surname: Lu fullname: Lu, Fangbo organization: Northwest A&F University – sequence: 3 givenname: Wanchuang surname: Luo fullname: Luo, Wanchuang organization: Northwest A&F University – sequence: 4 givenname: Tianjian surname: Cao fullname: Cao, Tianjian organization: Northwest A&F University – sequence: 5 givenname: Hailian surname: Xue fullname: Xue, Hailian organization: Northwest A&F University – sequence: 6 givenname: Meili orcidid: 0000-0001-7901-1789 surname: Wang fullname: Wang, Meili email: wml@nwsuaf.edu.cn organization: Northwest A&F University |
BookMark | eNp1kL9OwzAQhy1UJNrCwBtYYmJIazt2nLBV4U-RWjGUIpgsx7mgVKldnLTQjUfgGXkSAkFsTHc6fXen3zdAPessIHRKyYgSwsZG70aSEEEPUJ8KHgWcycfeXx_RIzSo61WLRoySPlo8ucrt4s_3j-kkvcALXUCzx1Oo1tDgS2jANKWzeO5yqHDhPE7delPBG17aHPyzd1ubtzNd4XlpAS8MWDhGh4Wuajj5rUO0vL66T6fB7O7mNp3MAsNEQoMQRJyBZjEBIY1gUR4ayI3QCeciN7EoEhllnJJEmDCPqACtGSd5JmXGJYFwiM66uxvvXrZQN2rltt62L1XIeCgla1O21HlHGe_q2kOhNr5ca79XlKhvZ6p1pn6ctey4Y1_LCvb_gyqdPHQbXwzGbrU |
Cites_doi | 10.1016/j.comcom.2022.06.032 10.1109/access.2024.3368161 10.1016/j.autcon.2017.02.006 10.1061/9780784479377.024 10.1038/s41598-022-15272-w 10.1109/TPAMI.2024.3524377 10.3389/fonc.2022.815951 10.1007/s00607-020-00869-8 10.1007/978-3-319-46448-0_2 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70051 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70051 CAV70051 |
Genre | researchArticle |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2591-3e58bea280e57c526d3cedc5a9445dc85f976b41095c3d615eaa240db77b470e3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Fri Aug 29 01:47:30 EDT 2025 Thu Aug 07 07:20:49 EDT 2025 Wed Aug 27 10:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2591-3e58bea280e57c526d3cedc5a9445dc85f976b41095c3d615eaa240db77b470e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7901-1789 |
PQID | 3243772026 |
PQPubID | 2034909 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3243772026 crossref_primary_10_1002_cav_70051 wiley_primary_10_1002_cav_70051_CAV70051 |
PublicationCentury | 2000 |
PublicationDate | July/August 2025 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July/August 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2023; 53 2021; 46 2017; 80 2023; 46 2022; 193 2023 2021; 103 2020 2015; 2015 2020; 28 2022; 12 2019 2018 2022; 58 2016 2015 2014 2024; 12 2024; 47 Girshick R. (e_1_2_10_8_1) 2014 e_1_2_10_12_1 Feng Y. (e_1_2_10_20_1) 2024; 47 Deng L. (e_1_2_10_16_1) 2022; 12 Zhong K. (e_1_2_10_13_1) 2019 Shrestha K. (e_1_2_10_4_1) 2015; 2015 Jin M. (e_1_2_10_14_1) 2020 Yao Z. (e_1_2_10_10_1) 2022; 12 LI X. (e_1_2_10_15_1) 2021; 46 Zhang Y. (e_1_2_10_18_1) 2023; 46 Redmon J. (e_1_2_10_7_1) 2016 Dong S. (e_1_2_10_3_1) 2015 Wang C.‐Y. (e_1_2_10_22_1) 2023 Liu W. (e_1_2_10_6_1) 2016 Li H. (e_1_2_10_2_1) 2017; 80 Singh N. (e_1_2_10_11_1) 2022; 193 Al‐qaness M. A. A. (e_1_2_10_9_1) 2021; 103 e_1_2_10_19_1 Song R. (e_1_2_10_21_1) 2023; 53 Fan L. L. (e_1_2_10_5_1) 2020; 28 Wang L. M. (e_1_2_10_17_1) 2022; 58 |
References_xml | – volume: 103 start-page: 211 issue: 2 year: 2021 end-page: 230 article-title: An Improved Yolo‐Based Road Traffic Monitoring System publication-title: Computing – start-page: 779 year: 2016 end-page: 788 – volume: 28 start-page: 1152 issue: 5 year: 2020 end-page: 1164 article-title: Survey of Target Detection Based on Deep Convolutional Neural Networks publication-title: Optics and Precision Engineering – volume: 12 issue: 1 year: 2022 article-title: A Lightweight yolov3 Algorithm Used for Safety Helmet Detection publication-title: Scientific Reports – start-page: 21 year: 2016 end-page: 37 – volume: 12 year: 2022 article-title: Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on Yolo‐v3 Algorithm publication-title: Frontiers in Oncology – volume: 193 start-page: 1 year: 2022 end-page: 9 article-title: Iot Enabled Helmet to Safeguard the Health of Mine Workers publication-title: Computer Communications – volume: 53 start-page: 5013 issue: 5 year: 2023 end-page: 5028 article-title: Rbfpdet: An Anchor‐Free Helmet Wearing Detection Method publication-title: Applied Intelligence – volume: 58 start-page: 303 issue: 9 year: 2022 end-page: 312 article-title: Yolov5 Helmet Wear Detection Method With Introduction of Attention Mechanism publication-title: Computer Engineering and Applications – volume: 12 start-page: 28260 year: 2024 end-page: 28272 article-title: Safety Helmet Detection Based on Improved yolov8 publication-title: IEEE Access – volume: 80 start-page: 95 year: 2017 end-page: 103 article-title: Investigation of the Causality Patterns of Non‐Helmet Use Behavior of Construction Workers publication-title: Automation in Construction – volume: 2015 issue: 1 year: 2015 article-title: Hard‐Hat Detection for Construction Safety Visualization publication-title: Journal of Construction Engineering – start-page: 206 year: 2019 end-page: 210 – volume: 46 start-page: 2009 issue: 6 year: 2021 end-page: 2022 article-title: Segmentation Method for Personnel Safety Helmet Based on Super Pixel Features and Svm Classification publication-title: Journal of China Coal Society – start-page: 580 year: 2014 end-page: 587 – start-page: 215 year: 2020 end-page: 219 – volume: 46 start-page: 62 issue: 1 year: 2023 end-page: 68 article-title: A Detection Method for Safety Helmet in Substation Based on Improved High‐Precision Faster‐RCNN publication-title: Sichuan Electric Power Technology – start-page: 7464 year: 2023 end-page: 7475 – volume: 47 start-page: 2388 issue: 4 year: 2024 end-page: 2401 article-title: Hyper‐Yolo: When Visual Object Detection Meets Hypergraph Computation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2018 – start-page: 204 year: 2015 end-page: 214 – start-page: 779 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2016 ident: e_1_2_10_7_1 – volume: 193 start-page: 1 year: 2022 ident: e_1_2_10_11_1 article-title: Iot Enabled Helmet to Safeguard the Health of Mine Workers publication-title: Computer Communications doi: 10.1016/j.comcom.2022.06.032 – volume: 46 start-page: 2009 issue: 6 year: 2021 ident: e_1_2_10_15_1 article-title: Segmentation Method for Personnel Safety Helmet Based on Super Pixel Features and Svm Classification publication-title: Journal of China Coal Society – volume: 46 start-page: 62 issue: 1 year: 2023 ident: e_1_2_10_18_1 article-title: A Detection Method for Safety Helmet in Substation Based on Improved High‐Precision Faster‐RCNN publication-title: Sichuan Electric Power Technology – ident: e_1_2_10_19_1 doi: 10.1109/access.2024.3368161 – volume: 2015 issue: 1 year: 2015 ident: e_1_2_10_4_1 article-title: Hard‐Hat Detection for Construction Safety Visualization publication-title: Journal of Construction Engineering – ident: e_1_2_10_12_1 – volume: 80 start-page: 95 year: 2017 ident: e_1_2_10_2_1 article-title: Investigation of the Causality Patterns of Non‐Helmet Use Behavior of Construction Workers publication-title: Automation in Construction doi: 10.1016/j.autcon.2017.02.006 – start-page: 206 volume-title: 2019 IEEE 2nd International Conference on Electronics and Communication Engineering (ICECE) year: 2019 ident: e_1_2_10_13_1 – volume: 58 start-page: 303 issue: 9 year: 2022 ident: e_1_2_10_17_1 article-title: Yolov5 Helmet Wear Detection Method With Introduction of Attention Mechanism publication-title: Computer Engineering and Applications – volume: 53 start-page: 5013 issue: 5 year: 2023 ident: e_1_2_10_21_1 article-title: Rbfpdet: An Anchor‐Free Helmet Wearing Detection Method publication-title: Applied Intelligence – start-page: 7464 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_10_22_1 – volume: 28 start-page: 1152 issue: 5 year: 2020 ident: e_1_2_10_5_1 article-title: Survey of Target Detection Based on Deep Convolutional Neural Networks publication-title: Optics and Precision Engineering – start-page: 215 volume-title: 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) year: 2020 ident: e_1_2_10_14_1 – start-page: 204 volume-title: ICCREM 2015 year: 2015 ident: e_1_2_10_3_1 doi: 10.1061/9780784479377.024 – volume: 12 issue: 1 year: 2022 ident: e_1_2_10_16_1 article-title: A Lightweight yolov3 Algorithm Used for Safety Helmet Detection publication-title: Scientific Reports doi: 10.1038/s41598-022-15272-w – volume: 47 start-page: 2388 issue: 4 year: 2024 ident: e_1_2_10_20_1 article-title: Hyper‐Yolo: When Visual Object Detection Meets Hypergraph Computation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2024.3524377 – volume: 12 year: 2022 ident: e_1_2_10_10_1 article-title: Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on Yolo‐v3 Algorithm publication-title: Frontiers in Oncology doi: 10.3389/fonc.2022.815951 – start-page: 580 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2014 ident: e_1_2_10_8_1 – volume: 103 start-page: 211 issue: 2 year: 2021 ident: e_1_2_10_9_1 article-title: An Improved Yolo‐Based Road Traffic Monitoring System publication-title: Computing doi: 10.1007/s00607-020-00869-8 – start-page: 21 volume-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part I 14 year: 2016 ident: e_1_2_10_6_1 doi: 10.1007/978-3-319-46448-0_2 |
SSID | ssj0026210 |
Score | 2.3764362 |
Snippet | ABSTRACT
The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This... The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | coal mine safety Coal mines Coal mining dynamic selection Feature extraction Helmets Illumination local feature enhancement Modules Object recognition Occupational safety Safety helmets small object detection Target detection Underground mines Working conditions YOLOv8n |
Title | Yolov8‐HAC: Safety Helmet Detection Model for Complex Underground Coal Mine Scene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70051 https://www.proquest.com/docview/3243772026 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA7iSQ_-i6urBPHgpWu2SdqunpZVWQQ9uCoKQkkmKYhaxe2KevIRfEafxEm6XX9AEG8ltCGdmcx8SSbfELIRN4WRPIJAYHQMhHYbTQJUYBhTmWwZyfyJ7uFR1D0VB-fyfIzsVHdhSn6I0YabmxneX7sJrnR_65M0FNRjI3Y2hf7X5Wo5QHQ8oo4Ko7BkIpAiCtwyoWIVYuHW6MvvsegTYH6FqT7O7E-Ty2qEZXrJdWNQ6Aa8_CBv_OcvzJCpIf6k7dJgZsmYzefI5NlVf1C29udJ7wId4mPy_vrWbXe2aU9ltnimGJ9ubUF3beGTt3LqqqjdUMS81PmUG_tEfQ0ld00kN9iG_R3iCGkP0J0ukNP9vZNONxjWXggAF0TNgFuZaKvChFkZgwwjw8EakKolhDSQyAxxjBZNRGjADcIiqxSCA6PjWIuYWb5IxvO73C4RygwDniUqUhkTinNtE4gScN4iiwCgRtYrLaT3JcVGWpIphylKKPUSqpF6pZ90OMv6KXdsinGIyq6RTS_o3ztIO-0z_7D891dXyEToyv367Nw6GS8eBnYVMUih17yxfQCs09ZT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH8q3WFwgDE2rawMC3Hgks6N7SSbuFSFqkDbA_2j7jBFzrMjTXTZtKbT4LSPwGfkk2A7TcsmTZq4RVZiOfb783v28-8BvA-bXAkWoMeNd_R4YjeaOEpPUSpTcaQEdSe6_UHQHfOvUzGtwMfyLkzBD7HacLOa4ey1VXC7IX24Zg1Fed0IrVA9gQ1b0dsFVN9X5FF-4BdcBIIHng0USl4h6h-uPr3rjdYQ81-g6jxN5wWclmMsEkx-NBZ50sBf9-gb__cntuD5EoKSViEzL6Gis214NjmbL4rW-SsYnhibeB39uf3dbbWPyVCmOv9JjIs61zn5pHOXv5URW0htRgzsJdaszPQNcWWU7E2RTJk201_fDJEM0VjUHRh3Po_aXW9ZfsFDExM1PaZFlGjpR1SLEIUfKIZaoZBHnAuFkUgNlEl404A0ZMogIy2lwQcqCcOEh1SzXahmF5neA0IVRZZGMpAp5ZKxREcYRGgNRhogYg3elcsQXxYsG3HBp-zHZoZiN0M1qJcLFC8VbR4zS6gY-ma1a_DBzfTDHcTt1sQ9vH78q29hszvq9-Lel8G3fXjq2-q_Llm3DtX8aqHfGEiSJwdO8v4CHQ3abg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YBakP3trieusgPviSdTZzSdSnZddl6w1xqygUwuTMBEptKm5W1Cd_gr_RX-LMZLPagiB9C0MyTM71m9t3ANajBteCSQy4zY4BT91CE0cVaEpVJra0oH5H9_BIdk_53rk4H4Od6i5MyQ8xWnBznuHjtXPwK51tvpCGorqpR86mPsAElzR2Jt0-GXFHhTIsqQgEl4GbJ1S0QjTcHH36dzJ6QZivcapPNJ0Z-FENsTxf8qs-KNI63v_D3vif_zAL00MASpqlxczBmMnnYersZ39QtvY_Qe_CRsSb-OnhsdtsbZOeykxxR2yC-m0K0jaFP72VE1dG7ZJY0EtcULk0t8QXUXL3RHJt22x_h3aEpIc2nn6G087u91Y3GBZfCNDOiBoBMyJOjQpjakSEIpSaodEo1BbnQmMsMgtkUt6wEA2ZtrjIKGXRgU6jKOURNewLjOd_crMAhGqKLIuVVBnlirHUxChjdOEik4hYg7VKC8lVybGRlGzKYWIllHgJ1WC50k8ydLN-whydYhRaZddgwwv67Q6SVvPMPyy-_9WvMHnc7iQH3472l-Bj6Er_-pO6yzBeXA_MisUjRbrq7e4ZxubZJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Yolov8%E2%80%90HAC%3A+Safety+Helmet+Detection+Model+for+Complex+Underground+Coal+Mine+Scene&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Liu%2C+Rui&rft.au=Lu%2C+Fangbo&rft.au=Luo%2C+Wanchuang&rft.au=Cao%2C+Tianjian&rft.date=2025-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70051&rft.externalDBID=10.1002%252Fcav.70051&rft.externalDocID=CAV70051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |