Yolov8‐HAC: Safety Helmet Detection Model for Complex Underground Coal Mine Scene

ABSTRACT The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and lo...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 4
Main Authors Liu, Rui, Lu, Fangbo, Luo, Wanchuang, Cao, Tianjian, Xue, Hailian, Wang, Meili
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. The model substitutes the suggested HAC‐Net for the C2f module in YOLOv8n's backbone network to improve feature extraction and detection performance for targets with motion blur and low‐resolution images. To improve detection stability in complicated situations and lessen background interference, the AGC‐Block module is also included for dynamic feature selection. Additionally, a tiny target detection layer is included to increase the long‐range identification rate of tiny safety helmets. According to experimental data, the enhanced model outperforms existing popular object detection algorithms, with a mAP of 94.8% and a recall rate of 90.4%. This demonstrates how well the suggested approach works to identify safety helmets in situations with complicated lighting and low‐resolution photos. We propose an improved YOLOv8 safety helmet detection model, YOLOv8‐HAC to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines.
AbstractList The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. The model substitutes the suggested HAC‐Net for the C2f module in YOLOv8n's backbone network to improve feature extraction and detection performance for targets with motion blur and low‐resolution images. To improve detection stability in complicated situations and lessen background interference, the AGC‐Block module is also included for dynamic feature selection. Additionally, a tiny target detection layer is included to increase the long‐range identification rate of tiny safety helmets. According to experimental data, the enhanced model outperforms existing popular object detection algorithms, with a mAP of 94.8% and a recall rate of 90.4%. This demonstrates how well the suggested approach works to identify safety helmets in situations with complicated lighting and low‐resolution photos.
ABSTRACT The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article proposes an improved YOLOv8n safety helmet detection model, YOLOv8‐HAC, to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines. The model substitutes the suggested HAC‐Net for the C2f module in YOLOv8n's backbone network to improve feature extraction and detection performance for targets with motion blur and low‐resolution images. To improve detection stability in complicated situations and lessen background interference, the AGC‐Block module is also included for dynamic feature selection. Additionally, a tiny target detection layer is included to increase the long‐range identification rate of tiny safety helmets. According to experimental data, the enhanced model outperforms existing popular object detection algorithms, with a mAP of 94.8% and a recall rate of 90.4%. This demonstrates how well the suggested approach works to identify safety helmets in situations with complicated lighting and low‐resolution photos. We propose an improved YOLOv8 safety helmet detection model, YOLOv8‐HAC to address the issues of coexisting strong light exposure and low illumination, equipment occlusions that result in partial target loss, and the missed detection of small targets due to limited surveillance perspectives in underground coal mines.
Author Liu, Rui
Wang, Meili
Luo, Wanchuang
Lu, Fangbo
Cao, Tianjian
Xue, Hailian
Author_xml – sequence: 1
  givenname: Rui
  surname: Liu
  fullname: Liu, Rui
  organization: Northwest A&F University
– sequence: 2
  givenname: Fangbo
  surname: Lu
  fullname: Lu, Fangbo
  organization: Northwest A&F University
– sequence: 3
  givenname: Wanchuang
  surname: Luo
  fullname: Luo, Wanchuang
  organization: Northwest A&F University
– sequence: 4
  givenname: Tianjian
  surname: Cao
  fullname: Cao, Tianjian
  organization: Northwest A&F University
– sequence: 5
  givenname: Hailian
  surname: Xue
  fullname: Xue, Hailian
  organization: Northwest A&F University
– sequence: 6
  givenname: Meili
  orcidid: 0000-0001-7901-1789
  surname: Wang
  fullname: Wang, Meili
  email: wml@nwsuaf.edu.cn
  organization: Northwest A&F University
BookMark eNp1kL9OwzAQhy1UJNrCwBtYYmJIazt2nLBV4U-RWjGUIpgsx7mgVKldnLTQjUfgGXkSAkFsTHc6fXen3zdAPessIHRKyYgSwsZG70aSEEEPUJ8KHgWcycfeXx_RIzSo61WLRoySPlo8ucrt4s_3j-kkvcALXUCzx1Oo1tDgS2jANKWzeO5yqHDhPE7delPBG17aHPyzd1ubtzNd4XlpAS8MWDhGh4Wuajj5rUO0vL66T6fB7O7mNp3MAsNEQoMQRJyBZjEBIY1gUR4ayI3QCeciN7EoEhllnJJEmDCPqACtGSd5JmXGJYFwiM66uxvvXrZQN2rltt62L1XIeCgla1O21HlHGe_q2kOhNr5ca79XlKhvZ6p1pn6ctey4Y1_LCvb_gyqdPHQbXwzGbrU
Cites_doi 10.1016/j.comcom.2022.06.032
10.1109/access.2024.3368161
10.1016/j.autcon.2017.02.006
10.1061/9780784479377.024
10.1038/s41598-022-15272-w
10.1109/TPAMI.2024.3524377
10.3389/fonc.2022.815951
10.1007/s00607-020-00869-8
10.1007/978-3-319-46448-0_2
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70051
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70051
CAV70051
Genre researchArticle
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2591-3e58bea280e57c526d3cedc5a9445dc85f976b41095c3d615eaa240db77b470e3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Aug 29 01:47:30 EDT 2025
Thu Aug 07 07:20:49 EDT 2025
Wed Aug 27 10:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2591-3e58bea280e57c526d3cedc5a9445dc85f976b41095c3d615eaa240db77b470e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7901-1789
PQID 3243772026
PQPubID 2034909
PageCount 9
ParticipantIDs proquest_journals_3243772026
crossref_primary_10_1002_cav_70051
wiley_primary_10_1002_cav_70051_CAV70051
PublicationCentury 2000
PublicationDate July/August 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July/August 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 53
2021; 46
2017; 80
2023; 46
2022; 193
2023
2021; 103
2020
2015; 2015
2020; 28
2022; 12
2019
2018
2022; 58
2016
2015
2014
2024; 12
2024; 47
Girshick R. (e_1_2_10_8_1) 2014
e_1_2_10_12_1
Feng Y. (e_1_2_10_20_1) 2024; 47
Deng L. (e_1_2_10_16_1) 2022; 12
Zhong K. (e_1_2_10_13_1) 2019
Shrestha K. (e_1_2_10_4_1) 2015; 2015
Jin M. (e_1_2_10_14_1) 2020
Yao Z. (e_1_2_10_10_1) 2022; 12
LI X. (e_1_2_10_15_1) 2021; 46
Zhang Y. (e_1_2_10_18_1) 2023; 46
Redmon J. (e_1_2_10_7_1) 2016
Dong S. (e_1_2_10_3_1) 2015
Wang C.‐Y. (e_1_2_10_22_1) 2023
Liu W. (e_1_2_10_6_1) 2016
Li H. (e_1_2_10_2_1) 2017; 80
Singh N. (e_1_2_10_11_1) 2022; 193
Al‐qaness M. A. A. (e_1_2_10_9_1) 2021; 103
e_1_2_10_19_1
Song R. (e_1_2_10_21_1) 2023; 53
Fan L. L. (e_1_2_10_5_1) 2020; 28
Wang L. M. (e_1_2_10_17_1) 2022; 58
References_xml – volume: 103
  start-page: 211
  issue: 2
  year: 2021
  end-page: 230
  article-title: An Improved Yolo‐Based Road Traffic Monitoring System
  publication-title: Computing
– start-page: 779
  year: 2016
  end-page: 788
– volume: 28
  start-page: 1152
  issue: 5
  year: 2020
  end-page: 1164
  article-title: Survey of Target Detection Based on Deep Convolutional Neural Networks
  publication-title: Optics and Precision Engineering
– volume: 12
  issue: 1
  year: 2022
  article-title: A Lightweight yolov3 Algorithm Used for Safety Helmet Detection
  publication-title: Scientific Reports
– start-page: 21
  year: 2016
  end-page: 37
– volume: 12
  year: 2022
  article-title: Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on Yolo‐v3 Algorithm
  publication-title: Frontiers in Oncology
– volume: 193
  start-page: 1
  year: 2022
  end-page: 9
  article-title: Iot Enabled Helmet to Safeguard the Health of Mine Workers
  publication-title: Computer Communications
– volume: 53
  start-page: 5013
  issue: 5
  year: 2023
  end-page: 5028
  article-title: Rbfpdet: An Anchor‐Free Helmet Wearing Detection Method
  publication-title: Applied Intelligence
– volume: 58
  start-page: 303
  issue: 9
  year: 2022
  end-page: 312
  article-title: Yolov5 Helmet Wear Detection Method With Introduction of Attention Mechanism
  publication-title: Computer Engineering and Applications
– volume: 12
  start-page: 28260
  year: 2024
  end-page: 28272
  article-title: Safety Helmet Detection Based on Improved yolov8
  publication-title: IEEE Access
– volume: 80
  start-page: 95
  year: 2017
  end-page: 103
  article-title: Investigation of the Causality Patterns of Non‐Helmet Use Behavior of Construction Workers
  publication-title: Automation in Construction
– volume: 2015
  issue: 1
  year: 2015
  article-title: Hard‐Hat Detection for Construction Safety Visualization
  publication-title: Journal of Construction Engineering
– start-page: 206
  year: 2019
  end-page: 210
– volume: 46
  start-page: 2009
  issue: 6
  year: 2021
  end-page: 2022
  article-title: Segmentation Method for Personnel Safety Helmet Based on Super Pixel Features and Svm Classification
  publication-title: Journal of China Coal Society
– start-page: 580
  year: 2014
  end-page: 587
– start-page: 215
  year: 2020
  end-page: 219
– volume: 46
  start-page: 62
  issue: 1
  year: 2023
  end-page: 68
  article-title: A Detection Method for Safety Helmet in Substation Based on Improved High‐Precision Faster‐RCNN
  publication-title: Sichuan Electric Power Technology
– start-page: 7464
  year: 2023
  end-page: 7475
– volume: 47
  start-page: 2388
  issue: 4
  year: 2024
  end-page: 2401
  article-title: Hyper‐Yolo: When Visual Object Detection Meets Hypergraph Computation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2018
– start-page: 204
  year: 2015
  end-page: 214
– start-page: 779
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: e_1_2_10_7_1
– volume: 193
  start-page: 1
  year: 2022
  ident: e_1_2_10_11_1
  article-title: Iot Enabled Helmet to Safeguard the Health of Mine Workers
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2022.06.032
– volume: 46
  start-page: 2009
  issue: 6
  year: 2021
  ident: e_1_2_10_15_1
  article-title: Segmentation Method for Personnel Safety Helmet Based on Super Pixel Features and Svm Classification
  publication-title: Journal of China Coal Society
– volume: 46
  start-page: 62
  issue: 1
  year: 2023
  ident: e_1_2_10_18_1
  article-title: A Detection Method for Safety Helmet in Substation Based on Improved High‐Precision Faster‐RCNN
  publication-title: Sichuan Electric Power Technology
– ident: e_1_2_10_19_1
  doi: 10.1109/access.2024.3368161
– volume: 2015
  issue: 1
  year: 2015
  ident: e_1_2_10_4_1
  article-title: Hard‐Hat Detection for Construction Safety Visualization
  publication-title: Journal of Construction Engineering
– ident: e_1_2_10_12_1
– volume: 80
  start-page: 95
  year: 2017
  ident: e_1_2_10_2_1
  article-title: Investigation of the Causality Patterns of Non‐Helmet Use Behavior of Construction Workers
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2017.02.006
– start-page: 206
  volume-title: 2019 IEEE 2nd International Conference on Electronics and Communication Engineering (ICECE)
  year: 2019
  ident: e_1_2_10_13_1
– volume: 58
  start-page: 303
  issue: 9
  year: 2022
  ident: e_1_2_10_17_1
  article-title: Yolov5 Helmet Wear Detection Method With Introduction of Attention Mechanism
  publication-title: Computer Engineering and Applications
– volume: 53
  start-page: 5013
  issue: 5
  year: 2023
  ident: e_1_2_10_21_1
  article-title: Rbfpdet: An Anchor‐Free Helmet Wearing Detection Method
  publication-title: Applied Intelligence
– start-page: 7464
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_22_1
– volume: 28
  start-page: 1152
  issue: 5
  year: 2020
  ident: e_1_2_10_5_1
  article-title: Survey of Target Detection Based on Deep Convolutional Neural Networks
  publication-title: Optics and Precision Engineering
– start-page: 215
  volume-title: 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC)
  year: 2020
  ident: e_1_2_10_14_1
– start-page: 204
  volume-title: ICCREM 2015
  year: 2015
  ident: e_1_2_10_3_1
  doi: 10.1061/9780784479377.024
– volume: 12
  issue: 1
  year: 2022
  ident: e_1_2_10_16_1
  article-title: A Lightweight yolov3 Algorithm Used for Safety Helmet Detection
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-15272-w
– volume: 47
  start-page: 2388
  issue: 4
  year: 2024
  ident: e_1_2_10_20_1
  article-title: Hyper‐Yolo: When Visual Object Detection Meets Hypergraph Computation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2024.3524377
– volume: 12
  year: 2022
  ident: e_1_2_10_10_1
  article-title: Construction and Multicenter Diagnostic Verification of Intelligent Recognition System for Endoscopic Images From Early Gastric Cancer Based on Yolo‐v3 Algorithm
  publication-title: Frontiers in Oncology
  doi: 10.3389/fonc.2022.815951
– start-page: 580
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2014
  ident: e_1_2_10_8_1
– volume: 103
  start-page: 211
  issue: 2
  year: 2021
  ident: e_1_2_10_9_1
  article-title: An Improved Yolo‐Based Road Traffic Monitoring System
  publication-title: Computing
  doi: 10.1007/s00607-020-00869-8
– start-page: 21
  volume-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11–14, 2016, Proceedings, Part I 14
  year: 2016
  ident: e_1_2_10_6_1
  doi: 10.1007/978-3-319-46448-0_2
SSID ssj0026210
Score 2.3764362
Snippet ABSTRACT The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This...
The underground coal mine working environment is complicated, and the detection of safety helmet wearing is vital for assuring worker safety. This article...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms coal mine safety
Coal mines
Coal mining
dynamic selection
Feature extraction
Helmets
Illumination
local feature enhancement
Modules
Object recognition
Occupational safety
Safety helmets
small object detection
Target detection
Underground mines
Working conditions
YOLOv8n
Title Yolov8‐HAC: Safety Helmet Detection Model for Complex Underground Coal Mine Scene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70051
https://www.proquest.com/docview/3243772026
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA7iSQ_-i6urBPHgpWu2SdqunpZVWQQ9uCoKQkkmKYhaxe2KevIRfEafxEm6XX9AEG8ltCGdmcx8SSbfELIRN4WRPIJAYHQMhHYbTQJUYBhTmWwZyfyJ7uFR1D0VB-fyfIzsVHdhSn6I0YabmxneX7sJrnR_65M0FNRjI3Y2hf7X5Wo5QHQ8oo4Ko7BkIpAiCtwyoWIVYuHW6MvvsegTYH6FqT7O7E-Ty2qEZXrJdWNQ6Aa8_CBv_OcvzJCpIf6k7dJgZsmYzefI5NlVf1C29udJ7wId4mPy_vrWbXe2aU9ltnimGJ9ubUF3beGTt3LqqqjdUMS81PmUG_tEfQ0ld00kN9iG_R3iCGkP0J0ukNP9vZNONxjWXggAF0TNgFuZaKvChFkZgwwjw8EakKolhDSQyAxxjBZNRGjADcIiqxSCA6PjWIuYWb5IxvO73C4RygwDniUqUhkTinNtE4gScN4iiwCgRtYrLaT3JcVGWpIphylKKPUSqpF6pZ90OMv6KXdsinGIyq6RTS_o3ztIO-0z_7D891dXyEToyv367Nw6GS8eBnYVMUih17yxfQCs09ZT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH8q3WFwgDE2rawMC3Hgks6N7SSbuFSFqkDbA_2j7jBFzrMjTXTZtKbT4LSPwGfkk2A7TcsmTZq4RVZiOfb783v28-8BvA-bXAkWoMeNd_R4YjeaOEpPUSpTcaQEdSe6_UHQHfOvUzGtwMfyLkzBD7HacLOa4ey1VXC7IX24Zg1Fed0IrVA9gQ1b0dsFVN9X5FF-4BdcBIIHng0USl4h6h-uPr3rjdYQ81-g6jxN5wWclmMsEkx-NBZ50sBf9-gb__cntuD5EoKSViEzL6Gis214NjmbL4rW-SsYnhibeB39uf3dbbWPyVCmOv9JjIs61zn5pHOXv5URW0htRgzsJdaszPQNcWWU7E2RTJk201_fDJEM0VjUHRh3Po_aXW9ZfsFDExM1PaZFlGjpR1SLEIUfKIZaoZBHnAuFkUgNlEl404A0ZMogIy2lwQcqCcOEh1SzXahmF5neA0IVRZZGMpAp5ZKxREcYRGgNRhogYg3elcsQXxYsG3HBp-zHZoZiN0M1qJcLFC8VbR4zS6gY-ma1a_DBzfTDHcTt1sQ9vH78q29hszvq9-Lel8G3fXjq2-q_Llm3DtX8aqHfGEiSJwdO8v4CHQ3abg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YBakP3trieusgPviSdTZzSdSnZddl6w1xqygUwuTMBEptKm5W1Cd_gr_RX-LMZLPagiB9C0MyTM71m9t3ANajBteCSQy4zY4BT91CE0cVaEpVJra0oH5H9_BIdk_53rk4H4Od6i5MyQ8xWnBznuHjtXPwK51tvpCGorqpR86mPsAElzR2Jt0-GXFHhTIsqQgEl4GbJ1S0QjTcHH36dzJ6QZivcapPNJ0Z-FENsTxf8qs-KNI63v_D3vif_zAL00MASpqlxczBmMnnYersZ39QtvY_Qe_CRsSb-OnhsdtsbZOeykxxR2yC-m0K0jaFP72VE1dG7ZJY0EtcULk0t8QXUXL3RHJt22x_h3aEpIc2nn6G087u91Y3GBZfCNDOiBoBMyJOjQpjakSEIpSaodEo1BbnQmMsMgtkUt6wEA2ZtrjIKGXRgU6jKOURNewLjOd_crMAhGqKLIuVVBnlirHUxChjdOEik4hYg7VKC8lVybGRlGzKYWIllHgJ1WC50k8ydLN-whydYhRaZddgwwv67Q6SVvPMPyy-_9WvMHnc7iQH3472l-Bj6Er_-pO6yzBeXA_MisUjRbrq7e4ZxubZJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Yolov8%E2%80%90HAC%3A+Safety+Helmet+Detection+Model+for+Complex+Underground+Coal+Mine+Scene&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Liu%2C+Rui&rft.au=Lu%2C+Fangbo&rft.au=Luo%2C+Wanchuang&rft.au=Cao%2C+Tianjian&rft.date=2025-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.70051&rft.externalDBID=10.1002%252Fcav.70051&rft.externalDocID=CAV70051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon