AU‐Guided Feature Aggregation for Micro‐Expression Recognition
ABSTRACT Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on t...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on the one‐sided nature of MEs, covering only representational features or low‐ranking Action Unit (AU) features. The subtle changes in MEs characterize its feature representation weak and inconspicuous, making it tough to analyze MEs only from a single piece or a small amount of information to achieve a considerable recognition effect. In addition, the lower‐order information can only distinguish MEs from a single low‐dimensional perspective and neglects the potential of corresponding MEs and AU combinations to each other. To address these issues, we first explore how the higher‐order relations of different AU combinations correspond with MEs through statistical analysis. Afterward, based on this attribute, we propose an end‐to‐end multi‐stream model that integrates global feature learning and local muscle movement representation guided by AU semantic information. The comparative experiments were performed on benchmark datasets, with better performance than the state‐of‐art methods. Also, the ablation experiments demonstrate the necessity of our model to introduce the information of AU and its relationship to MER. |
---|---|
AbstractList | ABSTRACT
Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on the one‐sided nature of MEs, covering only representational features or low‐ranking Action Unit (AU) features. The subtle changes in MEs characterize its feature representation weak and inconspicuous, making it tough to analyze MEs only from a single piece or a small amount of information to achieve a considerable recognition effect. In addition, the lower‐order information can only distinguish MEs from a single low‐dimensional perspective and neglects the potential of corresponding MEs and AU combinations to each other. To address these issues, we first explore how the higher‐order relations of different AU combinations correspond with MEs through statistical analysis. Afterward, based on this attribute, we propose an end‐to‐end multi‐stream model that integrates global feature learning and local muscle movement representation guided by AU semantic information. The comparative experiments were performed on benchmark datasets, with better performance than the state‐of‐art methods. Also, the ablation experiments demonstrate the necessity of our model to introduce the information of AU and its relationship to MER. Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on the one‐sided nature of MEs, covering only representational features or low‐ranking Action Unit (AU) features. The subtle changes in MEs characterize its feature representation weak and inconspicuous, making it tough to analyze MEs only from a single piece or a small amount of information to achieve a considerable recognition effect. In addition, the lower‐order information can only distinguish MEs from a single low‐dimensional perspective and neglects the potential of corresponding MEs and AU combinations to each other. To address these issues, we first explore how the higher‐order relations of different AU combinations correspond with MEs through statistical analysis. Afterward, based on this attribute, we propose an end‐to‐end multi‐stream model that integrates global feature learning and local muscle movement representation guided by AU semantic information. The comparative experiments were performed on benchmark datasets, with better performance than the state‐of‐art methods. Also, the ablation experiments demonstrate the necessity of our model to introduce the information of AU and its relationship to MER. |
Author | Geng, Qichuan Xu, Weiqi Wu, Jiazheng Tan, Xiaohui Geng, Hao |
Author_xml | – sequence: 1 givenname: Xiaohui orcidid: 0000-0002-9160-3813 surname: Tan fullname: Tan, Xiaohui organization: College of Information Engineering – sequence: 2 givenname: Weiqi surname: Xu fullname: Xu, Weiqi organization: College of Information Engineering – sequence: 3 givenname: Jiazheng surname: Wu fullname: Wu, Jiazheng organization: College of Information Engineering – sequence: 4 givenname: Hao surname: Geng fullname: Geng, Hao organization: College of Information Engineering – sequence: 5 givenname: Qichuan surname: Geng fullname: Geng, Qichuan email: gengqichuan1989@cnu.edu.cn organization: College of Information Engineering |
BookMark | eNp10M9KwzAcB_AgE9ymB9-g4MlDtyRN0vZYxzaFiSBOvIU0_aV0zGYmq7qbj-Az-iS2Vrx5yo_w-f3hO0KD2taA0DnBE4IxnWr1OokxZuQIDQlnImQ0fhr81YKcoJH3m5YKSvAQXWXrr4_PZVMVUAQLUPvGQZCVpYNS7StbB8a64LbSzrZs_r5z4H33fQ_alnXVkVN0bNTWw9nvO0brxfxhdh2u7pY3s2wVaspTElLDKWa51jzRPFWKxCLighlIiY7zHIhSBeQYjE55ETPKRSQwLRSLksjkikZjdNHP3Tn70oDfy41tXN2ulBGlSZrEMUlbddmr9mTvHRi5c9WzcgdJsOwikm1E8iei1k57-1Zt4fA_lLPsse_4Bg2Eaw4 |
Cites_doi | 10.1109/TIP.2019.2912358 10.1145/3394171.3414012 10.1016/j.neucom.2020.10.082 10.1016/j.neunet.2022.06.024 10.1109/TPAMI.2016.2515606 10.1109/FG.2018.00103 10.3390/s23125650 10.1109/TIP.2020.3018222 10.1007/978-3-030-01249-6_50 10.1016/j.neucom.2021.01.032 10.1109/TAFFC.2022.3213509 10.1109/CVPR52729.2023.01329 10.1109/TAFFC.2016.2573832 10.1016/j.patcog.2021.108275 10.1111/j.1467-9280.2008.02116.x 10.1109/TPAMI.2007.1110 10.3390/app12094643 10.1109/LSP.2022.3211200 10.1007/s11042-021-10836-w 10.1007/s00530-022-00949-z 10.1145/2964284.2967247 10.1016/j.image.2019.02.005 10.1016/j.neucom.2021.03.058 10.1371/journal.pone.0086041 10.1109/TAFFC.2019.2949559 10.1080/00332747.1969.11023575 10.1177/0539018405058216 10.1145/3394171.3413714 10.1109/TMM.2019.2931351 10.1109/MMUL.2022.3187695 10.1007/s10919-013-0159-8 10.1007/978-81-322-1934-7_13 10.1109/ACCESS.2023.3242871 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70041 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70041 CAV70041 |
Genre | researchArticle |
GrantInformation_xml | – fundername: open project of State Key Laboratory of CAD & CG, Zhejiang University funderid: A2209 – fundername: Municipal Natural Science Foundation of Beijing of China funderid: 4222023 – fundername: National Natural Science Foundation of China funderid: 62272324 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2591-2f5204bcc58c59aa1763564fe91c7bbe1aadeb0efc95d742563602da4383fba23 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 13:23:13 EDT 2025 Thu Jul 03 08:32:14 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2591-2f5204bcc58c59aa1763564fe91c7bbe1aadeb0efc95d742563602da4383fba23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9160-3813 |
PQID | 3228987719 |
PQPubID | 2034909 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3228987719 crossref_primary_10_1002_cav_70041 wiley_primary_10_1002_cav_70041_CAV70041 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2022; 153 2015; 6 2023; 11 2019; 74 2019; 13 2008; 19 1969; 32 2021; 427 2021; 448 2009 2016; 38 2005; 44 2022; 28 2022; 29 2022; 122 2007; 29 2013; 37 2023; 44 2009; 10 2023; 23 2023 2022 2019; 22 2021 2020 2021; 436 2022; 12 2019 2022; 13 2018 2019; 29 2017 2016 2015 2013 2014; 9 2016; 9 2021; 80 2020; 29 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 Wang Y. (e_1_2_9_28_1) 2023; 44 e_1_2_9_33_1 e_1_2_9_54_1 Yap M. H. (e_1_2_9_41_1) 2018 Zhai Z. (e_1_2_9_20_1) 2023 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 King D. E. (e_1_2_9_34_1) 2009; 10 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Freitas‐Magalhães A. (e_1_2_9_3_1) 2020 e_1_2_9_49_1 e_1_2_9_47_1 Ekman P. (e_1_2_9_8_1) 2009 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_11_1 e_1_2_9_57_1 Lo L. (e_1_2_9_19_1) 2020 e_1_2_9_13_1 e_1_2_9_32_1 Liong S.‐T. (e_1_2_9_48_1) 2019 e_1_2_9_55_1 Van Quang N. (e_1_2_9_35_1) 2019 Liong S.‐T. (e_1_2_9_44_1) 2017 Nguyen X.‐B. (e_1_2_9_15_1) 2023 e_1_2_9_38_1 e_1_2_9_17_1 See J. (e_1_2_9_42_1) 2019 Baltrušaitis T. (e_1_2_9_36_1) 2015 Bai M. (e_1_2_9_26_1) 2021 e_1_2_9_21_1 e_1_2_9_23_1 Lei L. (e_1_2_9_51_1) 2021 e_1_2_9_7_1 e_1_2_9_5_1 Su Y. (e_1_2_9_52_1) 2021 Rosenberg E. L. (e_1_2_9_16_1) 2020 Khor H.‐Q. (e_1_2_9_46_1) 2019 e_1_2_9_9_1 Kumar A. J. R. (e_1_2_9_14_1) 2022 e_1_2_9_25_1 e_1_2_9_27_1 Li X. (e_1_2_9_40_1) 2013 Li Y. (e_1_2_9_45_1) 2018 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 44 start-page: 695 issue: 4 year: 2005 end-page: 729 article-title: What Are Emotions? And How Can They Be Measured? publication-title: Social Science Information – start-page: 22086 year: 2023 end-page: 22095 – volume: 29 start-page: 48 issue: 4 year: 2022 end-page: 58 article-title: Dual Expression Fusion: A Universal Microexpression Recognition Framework publication-title: IEEE Multimedia – start-page: 549 year: 2021 end-page: 553 – start-page: 79 year: 2020 end-page: 84 – volume: 44 start-page: 1601 issue: 2 year: 2023 end-page: 1611 article-title: Lcbp‐Stgcn: A Local Cube Binary Pattern Spatial Temporal Graph Convolutional Network for Micro‐Expression Recognition publication-title: Journal of Intelligent & Fuzzy Systems – start-page: 1 year: 2013 end-page: 6 – volume: 153 start-page: 427 year: 2022 end-page: 443 article-title: Me‐Plan: A Deep Prototypical Learning With Local Attention Network for Dynamic Micro‐Expression Recognition publication-title: Neural Networks – start-page: 2871 year: 2020 end-page: 2880 – volume: 9 start-page: 116 issue: 1 year: 2016 end-page: 129 article-title: Samm: A spontaneous micro‐facial movement dataset publication-title: IEEE Transactions on Affective Computing – volume: 23 start-page: 5650 issue: 12 year: 2023 article-title: Facial Micro‐Expression Recognition Enhanced by Score Fusion and a Hybrid Model From Convolutional Lstm and Vision Transformer publication-title: Sensors – volume: 427 start-page: 13 year: 2021 end-page: 28 article-title: Geme: Dual‐Stream Multi‐Task Gender‐Based Micro‐Expression Recognition publication-title: Neurocomputing – volume: 13 start-page: 147 issue: 1 year: 2019 end-page: 158 article-title: Micro and Macro Facial Expression Recognition Using Advanced Local Motion Patterns publication-title: IEEE Transactions on Affective Computing – start-page: 675 year: 2018 end-page: 678 – volume: 6 start-page: 1 year: 2015 end-page: 6 – volume: 29 start-page: 2073 year: 2022 end-page: 2077 article-title: A Sparse‐Based Transformer Network With Associated Spatiotemporal Feature for Micro‐Expression Recognition publication-title: IEEE Signal Processing Letters – volume: 11 start-page: 13704 year: 2023 end-page: 13713 article-title: Micro‐Expression Recognition Based on Spatio–Temporal Capsule Network publication-title: IEEE Access – start-page: 1 year: 2019 end-page: 5 – year: 2022 – volume: 74 start-page: 129 year: 2019 end-page: 139 article-title: Off‐Apexnet on Micro‐Expression Recognition System publication-title: Signal Processing: Image Communication – volume: 13 start-page: 1973 issue: 4 year: 2022 end-page: 1985 article-title: Short and Long Range Relation Based Spatio‐Temporal Transformer for Micro‐Expression Recognition publication-title: IEEE Transactions on Affective Computing – start-page: 2237 year: 2020 end-page: 2245 – start-page: 534 year: 2017 end-page: 537 – start-page: 3094 year: 2018 end-page: 3098 – start-page: 2476 year: 2022 end-page: 2485 – start-page: 1571 year: 2021 end-page: 1580 – volume: 22 start-page: 626 issue: 3 year: 2019 end-page: 640 article-title: Spatiotemporal Recurrent Convolutional Networks for Recognizing Spontaneous Micro‐Expressions publication-title: IEEE Transactions on Multimedia – start-page: 36 year: 2019 end-page: 40 – volume: 38 start-page: 1548 issue: 8 year: 2016 end-page: 1568 article-title: Survey on Rgb, 3d, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect‐Related Applications publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 818 year: 2018 end-page: 833 – volume: 19 start-page: 508 issue: 5 year: 2008 end-page: 514 article-title: Reading Between the Lies: Identifying Concealed and Falsified Emotions in Universal Facial Expressions publication-title: Psychological Science – volume: 29 start-page: 1618 year: 2019 end-page: 1627 article-title: Learnet: Dynamic Imaging Network for Micro Expression Recognition publication-title: IEEE Transactions on Image Processing – start-page: 1 year: 2021 end-page: 6 – start-page: 265 year: 2015 end-page: 286 – volume: 9 issue: 1 year: 2014 article-title: Casme Ii: An Improved Spontaneous Micro‐Expression Database and the Baseline Evaluation publication-title: PLoS One – volume: 448 start-page: 276 year: 2021 end-page: 289 article-title: A Two‐Stage 3d Cnn Based Learning Method for Spontaneous Micro‐Expression Recognition publication-title: Neurocomputing – start-page: 1482 year: 2023 end-page: 1492 – volume: 12 start-page: 4643 issue: 9 year: 2022 article-title: Facial Micro‐Expression Recognition Based on Deep Local‐Holistic Network publication-title: Applied Sciences – start-page: 382 year: 2016 end-page: 386 – volume: 10 start-page: 1755 year: 2009 end-page: 1758 article-title: Dlib‐Ml: A Machine Learning Toolkit publication-title: Journal of Machine Learning Research – volume: 29 start-page: 8590 year: 2020 end-page: 8605 article-title: Revealing the Invisible With Model and Data Shrinking for Composite‐Database Micro‐Expression Recognition publication-title: IEEE Transactions on Image Processing – volume: 436 start-page: 221 year: 2021 end-page: 231 article-title: Micro‐Expression Action Unit Detection With Spatial and Channel Attention publication-title: Neurocomputing – volume: 32 start-page: 88 issue: 1 year: 1969 end-page: 106 article-title: Nonverbal Leakage and Clues to Deception publication-title: Psychiatry – volume: 28 start-page: 2227 issue: 6 year: 2022 end-page: 2236 article-title: Micro‐Expression Recognition Based on Squeezenet and c3d publication-title: Multimedia Systems – start-page: 13834 year: 2023 end-page: 13843 – volume: 80 start-page: 24287 issue: 16 year: 2021 end-page: 24301 article-title: Action Unit Classification for Facial Expression Recognition Using Active Learning and Svm publication-title: Multimedia Tools and Applications – start-page: 1 year: 2019 end-page: 7 – year: 2020 – volume: 29 start-page: 915 issue: 6 year: 2007 end-page: 928 article-title: Dynamic Texture Recognition Using Local Binary Patterns With an Application to Facial Expressions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 122 year: 2022 article-title: Feature Refinement: An Expression‐Specific Feature Learning and Fusion Method for Micro‐Expression Recognition publication-title: Pattern Recognition – start-page: 657 year: 2018 end-page: 661 – volume: 37 start-page: 217 year: 2013 end-page: 230 article-title: How Fast Are the Leaked Facial Expressions: The Duration of Micro‐Expressions publication-title: Journal of Nonverbal Behavior – ident: e_1_2_9_10_1 doi: 10.1109/TIP.2019.2912358 – start-page: 1571 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2021 ident: e_1_2_9_51_1 – ident: e_1_2_9_18_1 doi: 10.1145/3394171.3414012 – ident: e_1_2_9_11_1 doi: 10.1016/j.neucom.2020.10.082 – ident: e_1_2_9_29_1 doi: 10.1016/j.neunet.2022.06.024 – ident: e_1_2_9_4_1 doi: 10.1109/TPAMI.2016.2515606 – start-page: 1 volume-title: Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) year: 2019 ident: e_1_2_9_48_1 – volume: 44 start-page: 1601 issue: 2 year: 2023 ident: e_1_2_9_28_1 article-title: Lcbp‐Stgcn: A Local Cube Binary Pattern Spatial Temporal Graph Convolutional Network for Micro‐Expression Recognition publication-title: Journal of Intelligent & Fuzzy Systems – ident: e_1_2_9_17_1 doi: 10.1109/FG.2018.00103 – ident: e_1_2_9_23_1 doi: 10.3390/s23125650 – ident: e_1_2_9_57_1 doi: 10.1109/TIP.2020.3018222 – ident: e_1_2_9_37_1 doi: 10.1007/978-3-030-01249-6_50 – ident: e_1_2_9_33_1 doi: 10.1016/j.neucom.2021.01.032 – start-page: 534 volume-title: Proceedings of the 2017 Asia‐Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) year: 2017 ident: e_1_2_9_44_1 – ident: e_1_2_9_54_1 doi: 10.1109/TAFFC.2022.3213509 – ident: e_1_2_9_21_1 doi: 10.1109/CVPR52729.2023.01329 – ident: e_1_2_9_39_1 doi: 10.1109/TAFFC.2016.2573832 – ident: e_1_2_9_49_1 doi: 10.1016/j.patcog.2021.108275 – volume: 10 start-page: 1755 year: 2009 ident: e_1_2_9_34_1 article-title: Dlib‐Ml: A Machine Learning Toolkit publication-title: Journal of Machine Learning Research – start-page: 1 volume-title: Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (Fg) year: 2013 ident: e_1_2_9_40_1 – ident: e_1_2_9_9_1 doi: 10.1111/j.1467-9280.2008.02116.x – volume-title: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS) year: 2020 ident: e_1_2_9_16_1 – start-page: 36 volume-title: Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP) year: 2019 ident: e_1_2_9_46_1 – ident: e_1_2_9_56_1 doi: 10.1109/TPAMI.2007.1110 – ident: e_1_2_9_24_1 doi: 10.3390/app12094643 – start-page: 675 volume-title: Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018) year: 2018 ident: e_1_2_9_41_1 – start-page: 1 volume-title: Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME) year: 2021 ident: e_1_2_9_52_1 – ident: e_1_2_9_55_1 doi: 10.1109/LSP.2022.3211200 – ident: e_1_2_9_32_1 doi: 10.1007/s11042-021-10836-w – ident: e_1_2_9_13_1 doi: 10.1007/s00530-022-00949-z – ident: e_1_2_9_43_1 doi: 10.1145/2964284.2967247 – ident: e_1_2_9_53_1 doi: 10.1016/j.image.2019.02.005 – ident: e_1_2_9_25_1 doi: 10.1016/j.neucom.2021.03.058 – ident: e_1_2_9_38_1 doi: 10.1371/journal.pone.0086041 – ident: e_1_2_9_27_1 doi: 10.1109/TAFFC.2019.2949559 – ident: e_1_2_9_31_1 – volume-title: The Psychology of Emotions‐The Allure of Human Face year: 2020 ident: e_1_2_9_3_1 – ident: e_1_2_9_5_1 doi: 10.1080/00332747.1969.11023575 – start-page: 1 volume-title: Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) year: 2015 ident: e_1_2_9_36_1 – ident: e_1_2_9_2_1 doi: 10.1177/0539018405058216 – start-page: 3094 volume-title: Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP) year: 2018 ident: e_1_2_9_45_1 – ident: e_1_2_9_47_1 doi: 10.1145/3394171.3413714 – ident: e_1_2_9_22_1 doi: 10.1109/TMM.2019.2931351 – start-page: 549 volume-title: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP) year: 2021 ident: e_1_2_9_26_1 – ident: e_1_2_9_30_1 doi: 10.1109/MMUL.2022.3187695 – ident: e_1_2_9_7_1 doi: 10.1007/s10919-013-0159-8 – volume-title: Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage year: 2009 ident: e_1_2_9_8_1 – ident: e_1_2_9_12_1 – start-page: 2476 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2022 ident: e_1_2_9_14_1 – ident: e_1_2_9_6_1 doi: 10.1007/978-81-322-1934-7_13 – start-page: 1482 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_9_15_1 – start-page: 22086 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_9_20_1 – start-page: 1 volume-title: Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) year: 2019 ident: e_1_2_9_35_1 – start-page: 1 volume-title: Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) year: 2019 ident: e_1_2_9_42_1 – start-page: 79 volume-title: Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) year: 2020 ident: e_1_2_9_19_1 – ident: e_1_2_9_50_1 doi: 10.1109/ACCESS.2023.3242871 |
SSID | ssj0026210 |
Score | 2.3714256 |
Snippet | ABSTRACT
Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various... Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Ablation action unit Deep learning high‐level relation micro expression recognition Representations spatial‐temporal Statistical analysis |
Title | AU‐Guided Feature Aggregation for Micro‐Expression Recognition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70041 https://www.proquest.com/docview/3228987719 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfYyc9-FucTiniwUu2NUu6Bk91bA5hHoYbOwglSbMxhE7WVcSTf4J_o3-JSdpuKgjipZQ2LelLXvJ95eUTgAvsSiH0AXGtHRBh3ENM8iZSTUKUosxjkVk73L_zekNyO6bjElwVa2EyPsTqh5vxDDteGwfnIqmvoaGSP9cMm92EPiZXywiiwQodhT2ckQgo8ZAJEwqqUAPXV09-n4vWAvOrTLXzTHcbHooaZuklj7V0KWry9Qe88Z-fsANbuf50gqzD7EJJxXuwOZolaXY12YfrYPjx9n6TziIVOUYipgvlBFMdmE9tMzpa5zp9k8ini3Ve8kza2BkUuUjz-ACG3c59u4fyrRaQ1PGPi_CE4gYRUlJfUsa5a7l1ZKKYK1tCKJfzSImGmkhGIx1NU4MZwxE3oNOJ4Lh5COV4HqsjcBSJdClGdKzpE31LKwJFPMkxN-h-4VfgvDB6-JQRNcKMnYxDbZDQGqQC1aI5wtypklCPPT7zWy2XVeDS2vX3F4TtYGRPjv9e9AQ2sNnd16YzVqG8XKTqVEuOpTizfesThA3Ssw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4helAP_jaiqIvx4GXASjfWxMskICpwIEC4mKXtOkJMhgFmjCf_BP9G_xLbbgM1MTFelmV7W7bXvvb7mtfvAVwgizMmDyaV2MHEhDom4bRiigrGQtjEIYHaO9zuOM0-vhvawxxcZXthEn2IxYKbigw9XqsAVwvSpaVqKKfPRSXOLrnPqqrorQlVdyEehRyUaBHY2DEVUch0hcqotHj0-2y0hJhfgaqeaRpb8JB9Y5Jg8liM56zIX3_IN_73J7ZhM4Wghpf0mR3IiWgXNgbjWZxcne3Btdf_eHu_iceBCAyFEuOpMLyR5OYj3ZKGhLpGW-XySbP6S5pMGxndLB1pEu1Dv1Hv1ZpmWm3B5JICWSYKbVTGjHPb5Tah1NLSdTgUxOJVxoRFaSBYWYSc2IEk1LZSGkMBVVqnIaOocgAr0SQSh2AIHEgrgiXddLG8JUGBwA6niCr1fubm4Tzzuv-UiGr4iXwy8qVDfO2QPBSy9vDTuJr5cvhxiVutWiQPl9qxv7_Ar3kDfXL0d9MzWGv22i2_ddu5P4Z1pIr96uzGAqzMp7E4kQhkzk51R_sEtrTWzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPQ0H0wbs4nVrEB1-6rVnaNfg0d3FeNmS4sQehJGk6htCNbRXxyY_gZ_STmKTtpoIgvpTSpiU9OUn-p5z8AnCGLM6YPJhUagcTE-qYhNOSKUoYC2ETh_hq7XCr7TS7-KZv9zNwka6FifkQ8x9uqmfo8Vp18LEfFBbQUE6f84rNLkOfZewUXeXStc6cHYUcFKMIbOyYKk5IsUJFVJg_-n0yWijMrzpVTzSNDXhMqxjnlzzloxnL89cf9MZ_fsMmrCcC1KjEHrMFGRFuw1pvOI3iq9MduKx0P97er6KhL3xDacRoIozKQEbmA92OhhS6Rktl8sli9ZcklTY0Omky0ijchW6j_lBtmsleCyaXAZBlosBGRcw4t11uE0otDa7DgSAWLzMmLEp9wYoi4MT2ZThtK84Y8qkinQaMotIeLIWjUOyDIbAvSxEsg00Xy1tSEgjscIqoYvczNwunqdG9cYzU8GJ4MvKkQTxtkCzk0ubwkl419eTg4xK3XLZIFs61XX9_gVet9PTJwd-LnsDKfa3h3V23bw9hFamdfnVqYw6WZpNIHEn5MWPH2s0-AXJ41YY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AU%E2%80%90Guided+Feature+Aggregation+for+Micro%E2%80%90Expression+Recognition&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Tan%2C+Xiaohui&rft.au=Xu%2C+Weiqi&rft.au=Wu%2C+Jiazheng&rft.au=Geng%2C+Hao&rft.date=2025-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |