AU‐Guided Feature Aggregation for Micro‐Expression Recognition

ABSTRACT Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on t...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Tan, Xiaohui, Xu, Weiqi, Wu, Jiazheng, Geng, Hao, Geng, Qichuan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on the one‐sided nature of MEs, covering only representational features or low‐ranking Action Unit (AU) features. The subtle changes in MEs characterize its feature representation weak and inconspicuous, making it tough to analyze MEs only from a single piece or a small amount of information to achieve a considerable recognition effect. In addition, the lower‐order information can only distinguish MEs from a single low‐dimensional perspective and neglects the potential of corresponding MEs and AU combinations to each other. To address these issues, we first explore how the higher‐order relations of different AU combinations correspond with MEs through statistical analysis. Afterward, based on this attribute, we propose an end‐to‐end multi‐stream model that integrates global feature learning and local muscle movement representation guided by AU semantic information. The comparative experiments were performed on benchmark datasets, with better performance than the state‐of‐art methods. Also, the ablation experiments demonstrate the necessity of our model to introduce the information of AU and its relationship to MER.
AbstractList ABSTRACT Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on the one‐sided nature of MEs, covering only representational features or low‐ranking Action Unit (AU) features. The subtle changes in MEs characterize its feature representation weak and inconspicuous, making it tough to analyze MEs only from a single piece or a small amount of information to achieve a considerable recognition effect. In addition, the lower‐order information can only distinguish MEs from a single low‐dimensional perspective and neglects the potential of corresponding MEs and AU combinations to each other. To address these issues, we first explore how the higher‐order relations of different AU combinations correspond with MEs through statistical analysis. Afterward, based on this attribute, we propose an end‐to‐end multi‐stream model that integrates global feature learning and local muscle movement representation guided by AU semantic information. The comparative experiments were performed on benchmark datasets, with better performance than the state‐of‐art methods. Also, the ablation experiments demonstrate the necessity of our model to introduce the information of AU and its relationship to MER.
Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields. Recent deep learning‐based methods have been rapidly developing in micro‐expression recognition (MER).Still, it is typical to focus on the one‐sided nature of MEs, covering only representational features or low‐ranking Action Unit (AU) features. The subtle changes in MEs characterize its feature representation weak and inconspicuous, making it tough to analyze MEs only from a single piece or a small amount of information to achieve a considerable recognition effect. In addition, the lower‐order information can only distinguish MEs from a single low‐dimensional perspective and neglects the potential of corresponding MEs and AU combinations to each other. To address these issues, we first explore how the higher‐order relations of different AU combinations correspond with MEs through statistical analysis. Afterward, based on this attribute, we propose an end‐to‐end multi‐stream model that integrates global feature learning and local muscle movement representation guided by AU semantic information. The comparative experiments were performed on benchmark datasets, with better performance than the state‐of‐art methods. Also, the ablation experiments demonstrate the necessity of our model to introduce the information of AU and its relationship to MER.
Author Geng, Qichuan
Xu, Weiqi
Wu, Jiazheng
Tan, Xiaohui
Geng, Hao
Author_xml – sequence: 1
  givenname: Xiaohui
  orcidid: 0000-0002-9160-3813
  surname: Tan
  fullname: Tan, Xiaohui
  organization: College of Information Engineering
– sequence: 2
  givenname: Weiqi
  surname: Xu
  fullname: Xu, Weiqi
  organization: College of Information Engineering
– sequence: 3
  givenname: Jiazheng
  surname: Wu
  fullname: Wu, Jiazheng
  organization: College of Information Engineering
– sequence: 4
  givenname: Hao
  surname: Geng
  fullname: Geng, Hao
  organization: College of Information Engineering
– sequence: 5
  givenname: Qichuan
  surname: Geng
  fullname: Geng, Qichuan
  email: gengqichuan1989@cnu.edu.cn
  organization: College of Information Engineering
BookMark eNp10M9KwzAcB_AgE9ymB9-g4MlDtyRN0vZYxzaFiSBOvIU0_aV0zGYmq7qbj-Az-iS2Vrx5yo_w-f3hO0KD2taA0DnBE4IxnWr1OokxZuQIDQlnImQ0fhr81YKcoJH3m5YKSvAQXWXrr4_PZVMVUAQLUPvGQZCVpYNS7StbB8a64LbSzrZs_r5z4H33fQ_alnXVkVN0bNTWw9nvO0brxfxhdh2u7pY3s2wVaspTElLDKWa51jzRPFWKxCLighlIiY7zHIhSBeQYjE55ETPKRSQwLRSLksjkikZjdNHP3Tn70oDfy41tXN2ulBGlSZrEMUlbddmr9mTvHRi5c9WzcgdJsOwikm1E8iei1k57-1Zt4fA_lLPsse_4Bg2Eaw4
Cites_doi 10.1109/TIP.2019.2912358
10.1145/3394171.3414012
10.1016/j.neucom.2020.10.082
10.1016/j.neunet.2022.06.024
10.1109/TPAMI.2016.2515606
10.1109/FG.2018.00103
10.3390/s23125650
10.1109/TIP.2020.3018222
10.1007/978-3-030-01249-6_50
10.1016/j.neucom.2021.01.032
10.1109/TAFFC.2022.3213509
10.1109/CVPR52729.2023.01329
10.1109/TAFFC.2016.2573832
10.1016/j.patcog.2021.108275
10.1111/j.1467-9280.2008.02116.x
10.1109/TPAMI.2007.1110
10.3390/app12094643
10.1109/LSP.2022.3211200
10.1007/s11042-021-10836-w
10.1007/s00530-022-00949-z
10.1145/2964284.2967247
10.1016/j.image.2019.02.005
10.1016/j.neucom.2021.03.058
10.1371/journal.pone.0086041
10.1109/TAFFC.2019.2949559
10.1080/00332747.1969.11023575
10.1177/0539018405058216
10.1145/3394171.3413714
10.1109/TMM.2019.2931351
10.1109/MMUL.2022.3187695
10.1007/s10919-013-0159-8
10.1007/978-81-322-1934-7_13
10.1109/ACCESS.2023.3242871
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70041
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70041
CAV70041
Genre researchArticle
GrantInformation_xml – fundername: open project of State Key Laboratory of CAD & CG, Zhejiang University
  funderid: A2209
– fundername: Municipal Natural Science Foundation of Beijing of China
  funderid: 4222023
– fundername: National Natural Science Foundation of China
  funderid: 62272324
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2591-2f5204bcc58c59aa1763564fe91c7bbe1aadeb0efc95d742563602da4383fba23
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 13:23:13 EDT 2025
Thu Jul 03 08:32:14 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2591-2f5204bcc58c59aa1763564fe91c7bbe1aadeb0efc95d742563602da4383fba23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9160-3813
PQID 3228987719
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_3228987719
crossref_primary_10_1002_cav_70041
wiley_primary_10_1002_cav_70041_CAV70041
PublicationCentury 2000
PublicationDate May/June 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2022; 153
2015; 6
2023; 11
2019; 74
2019; 13
2008; 19
1969; 32
2021; 427
2021; 448
2009
2016; 38
2005; 44
2022; 28
2022; 29
2022; 122
2007; 29
2013; 37
2023; 44
2009; 10
2023; 23
2023
2022
2019; 22
2021
2020
2021; 436
2022; 12
2019
2022; 13
2018
2019; 29
2017
2016
2015
2013
2014; 9
2016; 9
2021; 80
2020; 29
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
Wang Y. (e_1_2_9_28_1) 2023; 44
e_1_2_9_33_1
e_1_2_9_54_1
Yap M. H. (e_1_2_9_41_1) 2018
Zhai Z. (e_1_2_9_20_1) 2023
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
King D. E. (e_1_2_9_34_1) 2009; 10
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Freitas‐Magalhães A. (e_1_2_9_3_1) 2020
e_1_2_9_49_1
e_1_2_9_47_1
Ekman P. (e_1_2_9_8_1) 2009
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_57_1
Lo L. (e_1_2_9_19_1) 2020
e_1_2_9_13_1
e_1_2_9_32_1
Liong S.‐T. (e_1_2_9_48_1) 2019
e_1_2_9_55_1
Van Quang N. (e_1_2_9_35_1) 2019
Liong S.‐T. (e_1_2_9_44_1) 2017
Nguyen X.‐B. (e_1_2_9_15_1) 2023
e_1_2_9_38_1
e_1_2_9_17_1
See J. (e_1_2_9_42_1) 2019
Baltrušaitis T. (e_1_2_9_36_1) 2015
Bai M. (e_1_2_9_26_1) 2021
e_1_2_9_21_1
e_1_2_9_23_1
Lei L. (e_1_2_9_51_1) 2021
e_1_2_9_7_1
e_1_2_9_5_1
Su Y. (e_1_2_9_52_1) 2021
Rosenberg E. L. (e_1_2_9_16_1) 2020
Khor H.‐Q. (e_1_2_9_46_1) 2019
e_1_2_9_9_1
Kumar A. J. R. (e_1_2_9_14_1) 2022
e_1_2_9_25_1
e_1_2_9_27_1
Li X. (e_1_2_9_40_1) 2013
Li Y. (e_1_2_9_45_1) 2018
e_1_2_9_29_1
References_xml – year: 2009
– volume: 44
  start-page: 695
  issue: 4
  year: 2005
  end-page: 729
  article-title: What Are Emotions? And How Can They Be Measured?
  publication-title: Social Science Information
– start-page: 22086
  year: 2023
  end-page: 22095
– volume: 29
  start-page: 48
  issue: 4
  year: 2022
  end-page: 58
  article-title: Dual Expression Fusion: A Universal Microexpression Recognition Framework
  publication-title: IEEE Multimedia
– start-page: 549
  year: 2021
  end-page: 553
– start-page: 79
  year: 2020
  end-page: 84
– volume: 44
  start-page: 1601
  issue: 2
  year: 2023
  end-page: 1611
  article-title: Lcbp‐Stgcn: A Local Cube Binary Pattern Spatial Temporal Graph Convolutional Network for Micro‐Expression Recognition
  publication-title: Journal of Intelligent & Fuzzy Systems
– start-page: 1
  year: 2013
  end-page: 6
– volume: 153
  start-page: 427
  year: 2022
  end-page: 443
  article-title: Me‐Plan: A Deep Prototypical Learning With Local Attention Network for Dynamic Micro‐Expression Recognition
  publication-title: Neural Networks
– start-page: 2871
  year: 2020
  end-page: 2880
– volume: 9
  start-page: 116
  issue: 1
  year: 2016
  end-page: 129
  article-title: Samm: A spontaneous micro‐facial movement dataset
  publication-title: IEEE Transactions on Affective Computing
– volume: 23
  start-page: 5650
  issue: 12
  year: 2023
  article-title: Facial Micro‐Expression Recognition Enhanced by Score Fusion and a Hybrid Model From Convolutional Lstm and Vision Transformer
  publication-title: Sensors
– volume: 427
  start-page: 13
  year: 2021
  end-page: 28
  article-title: Geme: Dual‐Stream Multi‐Task Gender‐Based Micro‐Expression Recognition
  publication-title: Neurocomputing
– volume: 13
  start-page: 147
  issue: 1
  year: 2019
  end-page: 158
  article-title: Micro and Macro Facial Expression Recognition Using Advanced Local Motion Patterns
  publication-title: IEEE Transactions on Affective Computing
– start-page: 675
  year: 2018
  end-page: 678
– volume: 6
  start-page: 1
  year: 2015
  end-page: 6
– volume: 29
  start-page: 2073
  year: 2022
  end-page: 2077
  article-title: A Sparse‐Based Transformer Network With Associated Spatiotemporal Feature for Micro‐Expression Recognition
  publication-title: IEEE Signal Processing Letters
– volume: 11
  start-page: 13704
  year: 2023
  end-page: 13713
  article-title: Micro‐Expression Recognition Based on Spatio–Temporal Capsule Network
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 5
– year: 2022
– volume: 74
  start-page: 129
  year: 2019
  end-page: 139
  article-title: Off‐Apexnet on Micro‐Expression Recognition System
  publication-title: Signal Processing: Image Communication
– volume: 13
  start-page: 1973
  issue: 4
  year: 2022
  end-page: 1985
  article-title: Short and Long Range Relation Based Spatio‐Temporal Transformer for Micro‐Expression Recognition
  publication-title: IEEE Transactions on Affective Computing
– start-page: 2237
  year: 2020
  end-page: 2245
– start-page: 534
  year: 2017
  end-page: 537
– start-page: 3094
  year: 2018
  end-page: 3098
– start-page: 2476
  year: 2022
  end-page: 2485
– start-page: 1571
  year: 2021
  end-page: 1580
– volume: 22
  start-page: 626
  issue: 3
  year: 2019
  end-page: 640
  article-title: Spatiotemporal Recurrent Convolutional Networks for Recognizing Spontaneous Micro‐Expressions
  publication-title: IEEE Transactions on Multimedia
– start-page: 36
  year: 2019
  end-page: 40
– volume: 38
  start-page: 1548
  issue: 8
  year: 2016
  end-page: 1568
  article-title: Survey on Rgb, 3d, Thermal, and Multimodal Approaches for Facial Expression Recognition: History, Trends, and Affect‐Related Applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 818
  year: 2018
  end-page: 833
– volume: 19
  start-page: 508
  issue: 5
  year: 2008
  end-page: 514
  article-title: Reading Between the Lies: Identifying Concealed and Falsified Emotions in Universal Facial Expressions
  publication-title: Psychological Science
– volume: 29
  start-page: 1618
  year: 2019
  end-page: 1627
  article-title: Learnet: Dynamic Imaging Network for Micro Expression Recognition
  publication-title: IEEE Transactions on Image Processing
– start-page: 1
  year: 2021
  end-page: 6
– start-page: 265
  year: 2015
  end-page: 286
– volume: 9
  issue: 1
  year: 2014
  article-title: Casme Ii: An Improved Spontaneous Micro‐Expression Database and the Baseline Evaluation
  publication-title: PLoS One
– volume: 448
  start-page: 276
  year: 2021
  end-page: 289
  article-title: A Two‐Stage 3d Cnn Based Learning Method for Spontaneous Micro‐Expression Recognition
  publication-title: Neurocomputing
– start-page: 1482
  year: 2023
  end-page: 1492
– volume: 12
  start-page: 4643
  issue: 9
  year: 2022
  article-title: Facial Micro‐Expression Recognition Based on Deep Local‐Holistic Network
  publication-title: Applied Sciences
– start-page: 382
  year: 2016
  end-page: 386
– volume: 10
  start-page: 1755
  year: 2009
  end-page: 1758
  article-title: Dlib‐Ml: A Machine Learning Toolkit
  publication-title: Journal of Machine Learning Research
– volume: 29
  start-page: 8590
  year: 2020
  end-page: 8605
  article-title: Revealing the Invisible With Model and Data Shrinking for Composite‐Database Micro‐Expression Recognition
  publication-title: IEEE Transactions on Image Processing
– volume: 436
  start-page: 221
  year: 2021
  end-page: 231
  article-title: Micro‐Expression Action Unit Detection With Spatial and Channel Attention
  publication-title: Neurocomputing
– volume: 32
  start-page: 88
  issue: 1
  year: 1969
  end-page: 106
  article-title: Nonverbal Leakage and Clues to Deception
  publication-title: Psychiatry
– volume: 28
  start-page: 2227
  issue: 6
  year: 2022
  end-page: 2236
  article-title: Micro‐Expression Recognition Based on Squeezenet and c3d
  publication-title: Multimedia Systems
– start-page: 13834
  year: 2023
  end-page: 13843
– volume: 80
  start-page: 24287
  issue: 16
  year: 2021
  end-page: 24301
  article-title: Action Unit Classification for Facial Expression Recognition Using Active Learning and Svm
  publication-title: Multimedia Tools and Applications
– start-page: 1
  year: 2019
  end-page: 7
– year: 2020
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  end-page: 928
  article-title: Dynamic Texture Recognition Using Local Binary Patterns With an Application to Facial Expressions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 122
  year: 2022
  article-title: Feature Refinement: An Expression‐Specific Feature Learning and Fusion Method for Micro‐Expression Recognition
  publication-title: Pattern Recognition
– start-page: 657
  year: 2018
  end-page: 661
– volume: 37
  start-page: 217
  year: 2013
  end-page: 230
  article-title: How Fast Are the Leaked Facial Expressions: The Duration of Micro‐Expressions
  publication-title: Journal of Nonverbal Behavior
– ident: e_1_2_9_10_1
  doi: 10.1109/TIP.2019.2912358
– start-page: 1571
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2021
  ident: e_1_2_9_51_1
– ident: e_1_2_9_18_1
  doi: 10.1145/3394171.3414012
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neucom.2020.10.082
– ident: e_1_2_9_29_1
  doi: 10.1016/j.neunet.2022.06.024
– ident: e_1_2_9_4_1
  doi: 10.1109/TPAMI.2016.2515606
– start-page: 1
  volume-title: Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019)
  year: 2019
  ident: e_1_2_9_48_1
– volume: 44
  start-page: 1601
  issue: 2
  year: 2023
  ident: e_1_2_9_28_1
  article-title: Lcbp‐Stgcn: A Local Cube Binary Pattern Spatial Temporal Graph Convolutional Network for Micro‐Expression Recognition
  publication-title: Journal of Intelligent & Fuzzy Systems
– ident: e_1_2_9_17_1
  doi: 10.1109/FG.2018.00103
– ident: e_1_2_9_23_1
  doi: 10.3390/s23125650
– ident: e_1_2_9_57_1
  doi: 10.1109/TIP.2020.3018222
– ident: e_1_2_9_37_1
  doi: 10.1007/978-3-030-01249-6_50
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neucom.2021.01.032
– start-page: 534
  volume-title: Proceedings of the 2017 Asia‐Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
  year: 2017
  ident: e_1_2_9_44_1
– ident: e_1_2_9_54_1
  doi: 10.1109/TAFFC.2022.3213509
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPR52729.2023.01329
– ident: e_1_2_9_39_1
  doi: 10.1109/TAFFC.2016.2573832
– ident: e_1_2_9_49_1
  doi: 10.1016/j.patcog.2021.108275
– volume: 10
  start-page: 1755
  year: 2009
  ident: e_1_2_9_34_1
  article-title: Dlib‐Ml: A Machine Learning Toolkit
  publication-title: Journal of Machine Learning Research
– start-page: 1
  volume-title: Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (Fg)
  year: 2013
  ident: e_1_2_9_40_1
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1467-9280.2008.02116.x
– volume-title: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS)
  year: 2020
  ident: e_1_2_9_16_1
– start-page: 36
  volume-title: Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP)
  year: 2019
  ident: e_1_2_9_46_1
– ident: e_1_2_9_56_1
  doi: 10.1109/TPAMI.2007.1110
– ident: e_1_2_9_24_1
  doi: 10.3390/app12094643
– start-page: 675
  volume-title: Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)
  year: 2018
  ident: e_1_2_9_41_1
– start-page: 1
  volume-title: Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME)
  year: 2021
  ident: e_1_2_9_52_1
– ident: e_1_2_9_55_1
  doi: 10.1109/LSP.2022.3211200
– ident: e_1_2_9_32_1
  doi: 10.1007/s11042-021-10836-w
– ident: e_1_2_9_13_1
  doi: 10.1007/s00530-022-00949-z
– ident: e_1_2_9_43_1
  doi: 10.1145/2964284.2967247
– ident: e_1_2_9_53_1
  doi: 10.1016/j.image.2019.02.005
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neucom.2021.03.058
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0086041
– ident: e_1_2_9_27_1
  doi: 10.1109/TAFFC.2019.2949559
– ident: e_1_2_9_31_1
– volume-title: The Psychology of Emotions‐The Allure of Human Face
  year: 2020
  ident: e_1_2_9_3_1
– ident: e_1_2_9_5_1
  doi: 10.1080/00332747.1969.11023575
– start-page: 1
  volume-title: Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG)
  year: 2015
  ident: e_1_2_9_36_1
– ident: e_1_2_9_2_1
  doi: 10.1177/0539018405058216
– start-page: 3094
  volume-title: Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP)
  year: 2018
  ident: e_1_2_9_45_1
– ident: e_1_2_9_47_1
  doi: 10.1145/3394171.3413714
– ident: e_1_2_9_22_1
  doi: 10.1109/TMM.2019.2931351
– start-page: 549
  volume-title: Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP)
  year: 2021
  ident: e_1_2_9_26_1
– ident: e_1_2_9_30_1
  doi: 10.1109/MMUL.2022.3187695
– ident: e_1_2_9_7_1
  doi: 10.1007/s10919-013-0159-8
– volume-title: Telling Lies: Clues to Deceit in the Marketplace, Politics, and Marriage
  year: 2009
  ident: e_1_2_9_8_1
– ident: e_1_2_9_12_1
– start-page: 2476
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_9_14_1
– ident: e_1_2_9_6_1
  doi: 10.1007/978-81-322-1934-7_13
– start-page: 1482
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_9_15_1
– start-page: 22086
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_9_20_1
– start-page: 1
  volume-title: Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019)
  year: 2019
  ident: e_1_2_9_35_1
– start-page: 1
  volume-title: Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019)
  year: 2019
  ident: e_1_2_9_42_1
– start-page: 79
  volume-title: Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)
  year: 2020
  ident: e_1_2_9_19_1
– ident: e_1_2_9_50_1
  doi: 10.1109/ACCESS.2023.3242871
SSID ssj0026210
Score 2.3714256
Snippet ABSTRACT Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various...
Micro‐expressions (MEs) are spontaneous and transient facial movements that reflect real internal emotions and have been widely applied in various fields....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
action unit
Deep learning
high‐level relation
micro expression recognition
Representations
spatial‐temporal
Statistical analysis
Title AU‐Guided Feature Aggregation for Micro‐Expression Recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70041
https://www.proquest.com/docview/3228987719
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfYyc9-FucTiniwUu2NUu6Bk91bA5hHoYbOwglSbMxhE7WVcSTf4J_o3-JSdpuKgjipZQ2LelLXvJ95eUTgAvsSiH0AXGtHRBh3ENM8iZSTUKUosxjkVk73L_zekNyO6bjElwVa2EyPsTqh5vxDDteGwfnIqmvoaGSP9cMm92EPiZXywiiwQodhT2ckQgo8ZAJEwqqUAPXV09-n4vWAvOrTLXzTHcbHooaZuklj7V0KWry9Qe88Z-fsANbuf50gqzD7EJJxXuwOZolaXY12YfrYPjx9n6TziIVOUYipgvlBFMdmE9tMzpa5zp9k8ini3Ve8kza2BkUuUjz-ACG3c59u4fyrRaQ1PGPi_CE4gYRUlJfUsa5a7l1ZKKYK1tCKJfzSImGmkhGIx1NU4MZwxE3oNOJ4Lh5COV4HqsjcBSJdClGdKzpE31LKwJFPMkxN-h-4VfgvDB6-JQRNcKMnYxDbZDQGqQC1aI5wtypklCPPT7zWy2XVeDS2vX3F4TtYGRPjv9e9AQ2sNnd16YzVqG8XKTqVEuOpTizfesThA3Ssw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4helAP_jaiqIvx4GXASjfWxMskICpwIEC4mKXtOkJMhgFmjCf_BP9G_xLbbgM1MTFelmV7W7bXvvb7mtfvAVwgizMmDyaV2MHEhDom4bRiigrGQtjEIYHaO9zuOM0-vhvawxxcZXthEn2IxYKbigw9XqsAVwvSpaVqKKfPRSXOLrnPqqrorQlVdyEehRyUaBHY2DEVUch0hcqotHj0-2y0hJhfgaqeaRpb8JB9Y5Jg8liM56zIX3_IN_73J7ZhM4Wghpf0mR3IiWgXNgbjWZxcne3Btdf_eHu_iceBCAyFEuOpMLyR5OYj3ZKGhLpGW-XySbP6S5pMGxndLB1pEu1Dv1Hv1ZpmWm3B5JICWSYKbVTGjHPb5Tah1NLSdTgUxOJVxoRFaSBYWYSc2IEk1LZSGkMBVVqnIaOocgAr0SQSh2AIHEgrgiXddLG8JUGBwA6niCr1fubm4Tzzuv-UiGr4iXwy8qVDfO2QPBSy9vDTuJr5cvhxiVutWiQPl9qxv7_Ar3kDfXL0d9MzWGv22i2_ddu5P4Z1pIr96uzGAqzMp7E4kQhkzk51R_sEtrTWzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPQ0H0wbs4nVrEB1-6rVnaNfg0d3FeNmS4sQehJGk6htCNbRXxyY_gZ_STmKTtpoIgvpTSpiU9OUn-p5z8AnCGLM6YPJhUagcTE-qYhNOSKUoYC2ETh_hq7XCr7TS7-KZv9zNwka6FifkQ8x9uqmfo8Vp18LEfFBbQUE6f84rNLkOfZewUXeXStc6cHYUcFKMIbOyYKk5IsUJFVJg_-n0yWijMrzpVTzSNDXhMqxjnlzzloxnL89cf9MZ_fsMmrCcC1KjEHrMFGRFuw1pvOI3iq9MduKx0P97er6KhL3xDacRoIozKQEbmA92OhhS6Rktl8sli9ZcklTY0Omky0ijchW6j_lBtmsleCyaXAZBlosBGRcw4t11uE0otDa7DgSAWLzMmLEp9wYoi4MT2ZThtK84Y8qkinQaMotIeLIWjUOyDIbAvSxEsg00Xy1tSEgjscIqoYvczNwunqdG9cYzU8GJ4MvKkQTxtkCzk0ubwkl419eTg4xK3XLZIFs61XX9_gVet9PTJwd-LnsDKfa3h3V23bw9hFamdfnVqYw6WZpNIHEn5MWPH2s0-AXJ41YY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AU%E2%80%90Guided+Feature+Aggregation+for+Micro%E2%80%90Expression+Recognition&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Tan%2C+Xiaohui&rft.au=Xu%2C+Weiqi&rft.au=Wu%2C+Jiazheng&rft.au=Geng%2C+Hao&rft.date=2025-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon