pH‐Sensitive Polymer Gels for EOR in Fractured Tight Reservoirs: Mechanistic and Performance Analysis
ABSTRACT Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer...
Saved in:
Published in | Journal of applied polymer science Vol. 142; no. 38 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
10.10.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8995 1097-4628 |
DOI | 10.1002/app.57470 |
Cover
Abstract | ABSTRACT
Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m−1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m−1, confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs.
This study introduces a pH‐sensitive polymer gel for enhanced oil recovery in fractured tight reservoirs. Composed of citric acid, nano‐silica, HPAM, and phenol‐formaldehyde, the gel exhibits ultra‐low initial viscosity (≤ 100 mPa·s), tunable gelation (20–40 h), and robust stability (storage modulus > 15 Pa after 180 days). Its high breakthrough pressure gradient (0.84–2.45 MPa·m−1) ensures effective fracture plugging, improving sweep efficiency. |
---|---|
AbstractList | ABSTRACT
Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m−1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m−1, confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs.
This study introduces a pH‐sensitive polymer gel for enhanced oil recovery in fractured tight reservoirs. Composed of citric acid, nano‐silica, HPAM, and phenol‐formaldehyde, the gel exhibits ultra‐low initial viscosity (≤ 100 mPa·s), tunable gelation (20–40 h), and robust stability (storage modulus > 15 Pa after 180 days). Its high breakthrough pressure gradient (0.84–2.45 MPa·m−1) ensures effective fracture plugging, improving sweep efficiency. Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m−1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m−1, confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs. Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m −1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m −1 , confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs. |
Author | Liu, Chao Yu, Zhigang Cao, Zuowei Jia, Hu Fu, Gaoqiang Liu, Siqi He, Dongxu Deng, Xuan |
Author_xml | – sequence: 1 givenname: Siqi orcidid: 0009-0002-0765-582X surname: Liu fullname: Liu, Siqi organization: Southwest Petroleum University – sequence: 2 givenname: Hu orcidid: 0000-0001-9671-7791 surname: Jia fullname: Jia, Hu email: jiahuswpu@swpu.edu.cn, 165597687@qq.com organization: Southwest Petroleum University – sequence: 3 givenname: Zuowei surname: Cao fullname: Cao, Zuowei organization: CNPC Dagang Oilfield – sequence: 4 givenname: Gaoqiang surname: Fu fullname: Fu, Gaoqiang organization: CNPC Dagang Oilfield – sequence: 5 givenname: Chao surname: Liu fullname: Liu, Chao organization: Southwest Petroleum University – sequence: 6 givenname: Dongxu surname: He fullname: He, Dongxu organization: SINOPEC Shengli Oilfield – sequence: 7 givenname: Xuan surname: Deng fullname: Deng, Xuan organization: CNOOC Zhanjiang – sequence: 8 givenname: Zhigang surname: Yu fullname: Yu, Zhigang organization: CNOOC Zhanjiang |
BookMark | eNp1kE1OwzAQRi1UJNrCghtYYsUirWPHccKuqvqDVERUyjpynEnrKnWCnRZlxxE4IychULas5pPmfaPRG6CeqQwgdOuTkU8IHcu6HnERCHKB-j6JhReENOqhfrfzvSiO-RUaOLcnxPc5CftoWy-_Pj5fwDjd6BPgpCrbA1i8gNLhorJ49rzG2uC5lao5WsjxRm93DV6DA3uqtHUP-AnUThrtGq2wNDlOwHbNgzQK8MTIsnXaXaPLQpYObv7mEL3OZ5vp0ls9Lx6nk5WnKI-JF4qQZRHjQQFC8CLKqYJcRiKUKiaCZ4JIylXWJUUzFsmiyGWsgFLKopxnjA3R3flubau3I7gm3VdH2z3hUkYDHhDCgrCj7s-UspVzFoq0tvogbZv6JP3xmHYe01-PHTs-s--6hPZ_MJ0kybnxDb0Md4s |
Cites_doi | 10.1002/app.56235 10.1007/s10553‐020‐01183‐x 10.1088/2053‐1591/aaf36c 10.1002/adfm.202007664 10.1002/adma.202102479 10.1021/acs.energyfuels.4c01825 10.1021/acsomega.4c02410 10.3390/gels10090599 10.3390/polym16111585 10.1016/j.cej.2023.144625 10.1016/j.fuel.2017.08.095 10.1016/j.petrol.2022.110256 10.1016/j.petsci.2022.07.006 10.1002/adma.202007829 10.1002/app.53873 10.1016/j.geoen.2024.213371 10.3390/en16134907 10.1007/s12182‐021‐00546‐1 10.1016/j.jngse.2022.104658 10.1016/j.colsurfa.2023.132669 10.1002/adfm.202009334 10.1016/j.petrol.2022.111185 10.3390/gels10050325 10.1016/j.cej.2021.132252 10.1021/acsomega.3c10034 10.1016/j.molliq.2024.124318 10.1021/acs.macromol.0c01242 10.2118/219736‐PA 10.1515/epoly‐2020‐0045 10.1039/D1MH01324F 10.1038/s41467‐023‐39235‐5 10.1016/j.petrol.2017.11.030 10.1016/j.petrol.2015.11.039 10.3390/ma11050856 10.1016/j.colsurfa.2018.04.067 10.3390/gels10080511 10.1126/sciadv.abl5066 10.1016/j.carbpol.2024.122320 10.1080/10916466.2022.2108839 10.1016/j.molliq.2024.125046 10.1039/D2TA01960D 10.1002/adfm.202307402 |
ContentType | Journal Article |
Copyright | 2025 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2025 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.57470 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_57470 APP57470 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52250001 – fundername: Key Project of the Natural Science Foundation of Sichuan funderid: 2025ZNSFSC0029 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c2590-6763b8354fe775f8d2ceda876ac9075b70a25cb75bc2b38affda9ce22238d5b33 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Wed Sep 17 00:33:04 EDT 2025 Wed Sep 03 16:36:00 EDT 2025 Mon Sep 01 09:23:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2590-6763b8354fe775f8d2ceda876ac9075b70a25cb75bc2b38affda9ce22238d5b33 |
Notes | Funding This work was supported by the Key Project of the Natural Science Foundation of Sichuan (2025ZNSFSC0029) and the National Natural Science Foundation of China (52250001). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-0765-582X 0000-0001-9671-7791 |
PQID | 3245400346 |
PQPubID | 1006379 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3245400346 crossref_primary_10_1002_app_57470 wiley_primary_10_1002_app_57470_APP57470 |
PublicationCentury | 2000 |
PublicationDate | October 10 2025 |
PublicationDateYYYYMMDD | 2025-10-10 |
PublicationDate_xml | – month: 10 year: 2025 text: October 10 2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 8 2018; 165 2023; 14 2023; 33 2020; 20 2023; 140 2023; 16 2024; 405 2023; 221 2024; 680 2024; 141 2024; 341 2024; 10 2024; 243 2020; 56 2017; 210 2024; 38 2024; 16 2018; 6 2018; 551 2023; 41 2021; 31 2021; 33 2020; 53 2023; 471 2023; 212 2021; 18 2024; 9 2022; 8 2016; 138 2024; 399 2022; 429 2022; 10 2018; 11 2022; 104 2024; 29 2022; 19 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 18 start-page: 450 year: 2021 end-page: 478 article-title: Water Shutoff and Conformance Improvement: An Introduction publication-title: Petroleum Science – volume: 31 year: 2021 article-title: Euryhaline Hydrogel With Constant Swelling and Salinity‐Enhanced Mechanical Strength in a Wide Salinity Range publication-title: Advanced Functional Materials – volume: 341 year: 2024 article-title: Nanocellulose/Scleroglucan‐Enhanced Robust, Heat‐Resistant Composite Hydrogels for Oilfield Water Plugging publication-title: Carbohydrate Polymers – volume: 104 year: 2022 article-title: Chemical Water Shutoff Agents and Their Plugging Mechanism for Gas Reservoirs: A Review and Prospects publication-title: Journal of Natural Gas Science and Engineering – volume: 221 year: 2023 article-title: A Technical Review of CO for Enhanced Oil Recovery in Unconventional Oil Reservoirs publication-title: Geoenergy Science and Engineering – volume: 165 start-page: 28 year: 2018 end-page: 41 article-title: Structural Regeneration of Fracture‐Vug Network in Naturally Fractured Vuggy Reservoirs publication-title: Journal of Petroleum Science and Engineering – volume: 8 year: 2022 article-title: A Versatile Hydrogel Network–Repairing Strategy Achieved by the Covalent‐Like Hydrogen Bond Interaction publication-title: Science Advances – volume: 405 year: 2024 article-title: Magnetic Smart Polymer Gel With Directional Plugging for Conformance Control in Oil Reservoirs publication-title: Journal of Molecular Liquids – volume: 41 start-page: 2204 year: 2023 end-page: 2239 article-title: Nanocomposite Gels for Water Shut‐Off and Temporary Plugging in the Petroleum Industry: A Review publication-title: Petroleum Science and Technology – volume: 10 year: 2024 article-title: High‐Strength Controllable Resin Plugging Agent and Its Performance Evaluation for Fractured Formation publication-title: Gels – volume: 680 year: 2024 article-title: Design of Low‐Consumption Epoxy Resin Porous Plugging Material via Emulsification‐Curing Method publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 11 year: 2018 article-title: A Polymer Plugging Gel for the Fractured Strata and Its Application publication-title: Materials – volume: 29 year: 2024 article-title: Study on the Dispersion Stability and Sealing Performance of Nanoscale Plugging Materials for Shale Formations publication-title: SPE Journal – volume: 33 year: 2023 article-title: A Facile Strategy to Fabricate Tough and Adhesive Elastomers by In Situ Formation of Coordination Complexes as Physical Crosslinks publication-title: Advanced Functional Materials – volume: 471 year: 2023 article-title: Robust and Smart Underwater Adhesion of Hydrophobic Hydrogel by Phase Change publication-title: Chemical Engineering Journal – volume: 33 year: 2021 article-title: Poly (Vinyl Alcohol) Hydrogels With Broad‐Range Tunable Mechanical Properties via the Hofmeister Effect publication-title: Advanced Materials – volume: 138 start-page: 218 year: 2016 end-page: 233 article-title: Rheological Evaluation of a Sodium Silicate Gel System for Water Management in Mature, Naturally‐Fractured Oilfields publication-title: Journal of Petroleum Science and Engineering – volume: 429 year: 2022 article-title: Flexible Lignin‐Based Hydrogels With Self‐Healing and Adhesive Ability Driven by Noncovalent Interactions publication-title: Chemical Engineering Journal – volume: 16 year: 2024 article-title: Gelation and Plugging Performance of Low‐Concentration Partially Hydrolyzed Polyacrylamide/Polyethyleneimine System at Moderate Temperature and in Fractured Low‐Permeability Reservoir publication-title: Polymers – volume: 141 year: 2024 article-title: Experimental Investigation on Plugging and Transport Characteristics of Low‐Density Preformed Particle Gels in Fractured Tight Reservoirs for Enhanced Oil Recovery publication-title: Journal of Applied Polymer Science – volume: 551 start-page: 95 year: 2018 end-page: 107 article-title: Experimental Study of Low Molecular Weight Polymer/Nanoparticle Dispersed Gel for Water Plugging in Fractures publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 9 start-page: 33702 year: 2024 end-page: 33709 article-title: Synthesis and Performance Study of Self‐Degradable Gel Plugging Agents Suitable for Medium‐and Low‐Temperature Reservoirs publication-title: ACS Omega – volume: 10 year: 2024 article-title: A Solidified Controllable Resin System Suitable for Fracture Cavity Formation Plugging and Its Performance Characterization publication-title: Gels – volume: 399 year: 2024 article-title: Review of the Micro and Macro Mechanisms of Gel‐Based Plugging Agents for Enhancing Oil Recovery of Unconventional Water Flooding Oil Reservoirs publication-title: Journal of Molecular Liquids – volume: 19 start-page: 2150 year: 2022 end-page: 2164 article-title: Double Network Self‐Healing Hydrogel Based on Hydrophobic Association and Ionic Bond for Formation Plugging publication-title: Petroleum Science – volume: 33 year: 2021 article-title: High‐Strength and Nonfouling Zwitterionic Triple‐Network Hydrogel in Saline Environments publication-title: Advanced Materials – volume: 210 start-page: 425 year: 2017 end-page: 445 article-title: Advances in Improved/Enhanced Oil Recovery Technologies for Tight and Shale Reservoirs publication-title: Fuel – volume: 38 start-page: 15887 year: 2024 end-page: 15912 article-title: Review on Foam‐Assisted Gas Injection in Fractured Carbonates for Enhanced Oil Recovery publication-title: Energy & Fuels – volume: 8 start-page: 3409 year: 2021 end-page: 3416 article-title: Design of Ultra‐Stretchable, Highly Adhesive and Self‐Healable Hydrogels via Tannic Acid‐Enabled Dynamic Interactions publication-title: Materials Horizons – volume: 243 year: 2024 article-title: Evaluation of Inorganic and Organic Composite Plugging Materials With High Performance and Adaptive Fracture Scale publication-title: Geoenergy Science and Engineering – volume: 20 start-page: 411 year: 2020 end-page: 422 article-title: Plugging Mechanisms of Polymer Gel Used for Hydraulic Fracture Water Shutoff publication-title: E‐Polymers – volume: 9 start-page: 19992 year: 2024 end-page: 20002 article-title: Preparation of Low‐Viscosity Epoxy Resin Sealing Agent and Evaluation of Injection, Plugging, and Degradation Properties publication-title: ACS Omega – volume: 140 year: 2023 article-title: Research and Performance Evaluation of Modified Nano‐Silica Gel Plugging Agent publication-title: Journal of Applied Polymer Science – volume: 10 start-page: 11823 year: 2022 end-page: 11853 article-title: Hydrogels for Underwater Adhesion: Adhesion Mechanism, Design Strategies and Applications publication-title: Journal of Materials Chemistry A – volume: 14 year: 2023 article-title: Multi‐Layered Cement‐Hydrogel Composite With High Toughness, Low Thermal Conductivity, and Self‐Healing Capability publication-title: Nature Communications – volume: 31 year: 2021 article-title: Barnacle Cement Proteins‐Inspired Tough Hydrogels With Robust, Long‐Lasting, and Repeatable Underwater Adhesion publication-title: Advanced Functional Materials – volume: 53 start-page: 6566 year: 2020 end-page: 6575 article-title: Self‐Healing and Moldable Poly (2‐Isopropenyl‐2‐Oxazoline) Supramolecular Hydrogels Based on a Transient Metal Coordination Network publication-title: Macromolecules – volume: 16 year: 2023 article-title: Overview of Methods for Enhanced Oil Recovery From Conventional and Unconventional Reservoirs publication-title: Energies – volume: 212 year: 2023 article-title: A Review on Mechanism and Adaptive Materials of Temporary Plugging Agent for Chemical Diverting Fracturing publication-title: Journal of Petroleum Science and Engineering – volume: 6 year: 2018 article-title: Polymer Nanocomposites for Water Shutoff Application—A Review publication-title: Materials Research Express – volume: 10 year: 2024 article-title: Effect of Polymer and Crosslinker Concentration on Static and Dynamic Gelation Behavior of Phenolic Resin Hydrogel publication-title: Gels – volume: 56 start-page: 707 year: 2020 end-page: 717 article-title: Preparation and Performance Evaluation of a Hydrophobically Associating Polymer as a High‐Strength Water‐Swelling Temporary Plugging Material publication-title: Chemistry and Technology of Fuels and Oils – ident: e_1_2_9_19_1 doi: 10.1002/app.56235 – ident: e_1_2_9_34_1 doi: 10.1007/s10553‐020‐01183‐x – ident: e_1_2_9_13_1 doi: 10.1088/2053‐1591/aaf36c – ident: e_1_2_9_43_1 doi: 10.1002/adfm.202007664 – ident: e_1_2_9_42_1 doi: 10.1002/adma.202102479 – ident: e_1_2_9_4_1 doi: 10.1021/acs.energyfuels.4c01825 – ident: e_1_2_9_37_1 doi: 10.1021/acsomega.4c02410 – ident: e_1_2_9_16_1 doi: 10.3390/gels10090599 – ident: e_1_2_9_39_1 doi: 10.3390/polym16111585 – ident: e_1_2_9_38_1 doi: 10.1016/j.cej.2023.144625 – ident: e_1_2_9_6_1 doi: 10.1016/j.fuel.2017.08.095 – ident: e_1_2_9_10_1 doi: 10.1016/j.petrol.2022.110256 – ident: e_1_2_9_22_1 doi: 10.1016/j.petsci.2022.07.006 – ident: e_1_2_9_32_1 doi: 10.1002/adma.202007829 – ident: e_1_2_9_20_1 doi: 10.1002/app.53873 – ident: e_1_2_9_44_1 doi: 10.1016/j.geoen.2024.213371 – ident: e_1_2_9_5_1 doi: 10.3390/en16134907 – ident: e_1_2_9_11_1 doi: 10.1007/s12182‐021‐00546‐1 – ident: e_1_2_9_12_1 doi: 10.1016/j.jngse.2022.104658 – ident: e_1_2_9_17_1 doi: 10.1016/j.colsurfa.2023.132669 – ident: e_1_2_9_30_1 doi: 10.1002/adfm.202009334 – ident: e_1_2_9_3_1 doi: 10.1016/j.petrol.2022.111185 – ident: e_1_2_9_24_1 – ident: e_1_2_9_23_1 doi: 10.3390/gels10050325 – ident: e_1_2_9_27_1 doi: 10.1016/j.cej.2021.132252 – ident: e_1_2_9_18_1 doi: 10.1021/acsomega.3c10034 – ident: e_1_2_9_7_1 doi: 10.1016/j.molliq.2024.124318 – ident: e_1_2_9_29_1 doi: 10.1021/acs.macromol.0c01242 – ident: e_1_2_9_40_1 doi: 10.2118/219736‐PA – ident: e_1_2_9_8_1 doi: 10.1515/epoly‐2020‐0045 – ident: e_1_2_9_36_1 doi: 10.1039/D1MH01324F – ident: e_1_2_9_33_1 doi: 10.1038/s41467‐023‐39235‐5 – ident: e_1_2_9_2_1 doi: 10.1016/j.petrol.2017.11.030 – ident: e_1_2_9_14_1 doi: 10.1016/j.petrol.2015.11.039 – ident: e_1_2_9_21_1 doi: 10.3390/ma11050856 – ident: e_1_2_9_25_1 doi: 10.1016/j.colsurfa.2018.04.067 – ident: e_1_2_9_15_1 doi: 10.3390/gels10080511 – ident: e_1_2_9_28_1 doi: 10.1126/sciadv.abl5066 – ident: e_1_2_9_41_1 doi: 10.1016/j.carbpol.2024.122320 – ident: e_1_2_9_9_1 doi: 10.1080/10916466.2022.2108839 – ident: e_1_2_9_31_1 doi: 10.1016/j.molliq.2024.125046 – ident: e_1_2_9_35_1 doi: 10.1039/D2TA01960D – ident: e_1_2_9_26_1 doi: 10.1002/adfm.202307402 |
SSID | ssj0011506 |
Score | 2.4738054 |
Snippet | ABSTRACT
Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through... Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | applications Citric acid colloids Dehydration Fractures gels Loss modulus oil and gas Oil recovery Performance evaluation Plugging Polyacrylamide Polymer gels Polymers Pressure gradients Reservoirs Stability tests Storage modulus Viscosity |
Title | pH‐Sensitive Polymer Gels for EOR in Fractured Tight Reservoirs: Mechanistic and Performance Analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.57470 https://www.proquest.com/docview/3245400346 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KJz34FqtVFvHgJZpk89jqqWhrEdRQFXoQwr4ioqaStoKe_An-Rn-JM0nTVkEQL2EPuyGZ3Zn5Zpj5lpBdO_HsRHmg34Yzy-N1bUnF4OFIITwlONOYGji_CNo33lnX71bIUdkLU_BDjBNuqBm5vUYFF7J_MCENxWuwfADDGK87LEDe_JPOmDoKgU5QlHc4FsQUfskqZLsH45XffdEEYE7D1NzPtBbIbfmFRXnJw_5wIPfV2w_yxn_-wiKZH-FP2igOzBKpmHSZzE2xEq6Qu-f25_vHFVa2oy2kUe_x9clk9BTcKAWMS5uXHXqf0hY2WA0zo-k1RvgUi_iyl9591j-k5wY7inMSaCpSTaNJfwIteVBWyU2reX3ctkb3MVgKgiTsEgiYxERRYsLQT7h2ldECzKlQEGL7MrSF6ysJI-VKxkWSaFFXBhEI175kbI3MpL3UrBOqYQpAB2EAgXqcce6EjusIaThaCVdVyU65M_FzQbsRFwTLbgxSi3OpVUmt3LN4pHn9GAAigFCbeUGV7OXC__0FcSOK8sHG36duklkXrwDGoha7RmYG2dBsAS4ZyO38AH4BzZXfpw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_NAEB5ED-rBz1esn4t48BJNskm7ihdRa_2oFq3gRcJ-RURNJbaCnvwJ_kZ_iTNJ0-oLgngJe9gNyezOzDPDzLMAq24cuLEOUL-t4E4gNo2jNMeHp6QMtBTcUGqgflquXQZHV-HVAGwXvTA5P0Qv4UaakdlrUnBKSG_0WUPpHqwQ0TAG7EMBAg0KvfbOe-RRBHXKeYGH52BUERa8Qq6_0Vv63Rv1IeZXoJp5muo4XBffmBeY3K132mpdv_5H3_jXn5iAsS4EZTv5mZmEAZtMwegXYsJpuHmsfby9X1BxO5lD1mjdvzzYlB2gJ2UIc9n-2Tm7TViVeqw6qTWsSUE-ozq-9Ll1mz5tsbqlpuKMB5rJxLBGv0WBFVQo_-Cyut_crTndKxkcjXESNQqUuaJcUWwrlTAWxtfWSLSoUmOUHaqKK_1QKxxpX3Eh49jITW0JhAgTKs5nYDBpJXYWmMEpiB6kRRAaCC6EV_F8TyoryFD4ugQrxdZEjznzRpRzLPsRSi3KpFaChWLToq7yPUWIERGHujwol2Atk_7PL4h2Go1sMPf7qcswXGvWT6KTw9PjeRjx6UZgqnFxF2CwnXbsIsKUtlrKTuMn06Djxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9tAEMdHCCQEBx6FihRoV1UPvTjYXttZ4BRB0vC2AkgcKln7MkJtncgkSHDiI_AZ-STM2HFCkSpVXKw92Ja9uzP7m9XMfwG-uWngpjpA-7aCO4HYNo7SHC-ekjLQUnBDWwMnp1HnMji8Cq-mYLeqhSn1IcYbbmQZhb8mA--bdGsiGkrHYIUIwxivzwQRkgQRUXesHUWkE5X5HZ6DQUVYyQq5_tb40b8XowlhvubUYqFpL8LP6hPL_JJf9eFA1fXDG_XGd_7DEiyMAJQ1yxmzDFM2-wDzr2QJV-C633l-fDqn1HZyhizu_b7_Y3P2A9dRhpDLWmdddpOxNlVYDXNr2AWF-Iyy-PK73k1-u8NOLJUUFyrQTGaGxZMCBVYJoazCZbt1sddxRgcyOBqjJCoTiLiinaLUNhphKoyvrZHoT6XGGDtUDVf6oVbY0r7iQqapkdvaEoIIEyrOP8J01svsGjCDtyA7SIsIGgguhNfwfE8qK8hN-LoGX6uRSfql7kZSKiz7CfZaUvRaDTaqMUtGpnebICEihbo8iGrwvej8f78gacZx0fj0_7d-gdl4v50cH5wercOcT8cBU4KLuwHTg3xoN5FRBupzMRdfAEg-4nU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH+%E2%80%90Sensitive+Polymer+Gels+for+EOR+in+Fractured+Tight+Reservoirs%3A+Mechanistic+and+Performance+Analysis&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Liu%2C+Siqi&rft.au=Jia%2C+Hu&rft.au=Cao%2C+Zuowei&rft.au=Fu%2C+Gaoqiang&rft.date=2025-10-10&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=142&rft.issue=38&rft_id=info:doi/10.1002%2Fapp.57470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_57470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |