pH‐Sensitive Polymer Gels for EOR in Fractured Tight Reservoirs: Mechanistic and Performance Analysis

ABSTRACT Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 142; no. 38
Main Authors Liu, Siqi, Jia, Hu, Cao, Zuowei, Fu, Gaoqiang, Liu, Chao, He, Dongxu, Deng, Xuan, Yu, Zhigang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.10.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0021-8995
1097-4628
DOI10.1002/app.57470

Cover

Abstract ABSTRACT Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m−1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m−1, confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs. This study introduces a pH‐sensitive polymer gel for enhanced oil recovery in fractured tight reservoirs. Composed of citric acid, nano‐silica, HPAM, and phenol‐formaldehyde, the gel exhibits ultra‐low initial viscosity (≤ 100 mPa·s), tunable gelation (20–40 h), and robust stability (storage modulus > 15 Pa after 180 days). Its high breakthrough pressure gradient (0.84–2.45 MPa·m−1) ensures effective fracture plugging, improving sweep efficiency.
AbstractList ABSTRACT Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m−1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m−1, confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs. This study introduces a pH‐sensitive polymer gel for enhanced oil recovery in fractured tight reservoirs. Composed of citric acid, nano‐silica, HPAM, and phenol‐formaldehyde, the gel exhibits ultra‐low initial viscosity (≤ 100 mPa·s), tunable gelation (20–40 h), and robust stability (storage modulus > 15 Pa after 180 days). Its high breakthrough pressure gradient (0.84–2.45 MPa·m−1) ensures effective fracture plugging, improving sweep efficiency.
Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m−1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m−1, confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs.
Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through high‐conductivity fractures, resulting in inefficient energy replenishment. To mitigate this challenge, we engineered a pH‐responsive polymer gel system with balanced injectability and plugging strength. The gel comprises citric acid (0.1%–0.4%), nano‐silica (0.1%–0.4%), partially hydrolyzed polyacrylamide (HPAM; 0.3%–0.6%), and water‐soluble phenol‐formaldehyde (WSPF; 0.4%–1.0%). Experimental results demonstrated that the initial viscosity of the gel solution was controlled below 100 mPa·s (minimum: about 20 mPa·s), with gelation time adjustable between 20 and 40 h at 70°C. After aging for 7 days at 70°C, the storage modulus (15.0–30.0 Pa) significantly exceeded the loss modulus (1.0–3.0 Pa), indicating high elasticity and low viscosity. Long‐term stability tests in 70,000 MPa·m −1 saline formation water (70°C, 180 days) revealed retained storage modulus (> 15.0 Pa) and dehydration rate (< 10%). Breakthrough pressure gradients for the optimized formulation in 0.5–3.0 mm diameter slim pipes were 2.45–0.84 MPa·m −1 , confirming robust fracture‐plugging capability. This study systematically evaluates the design, performance, and application potential of pH‐sensitive gels for enhancing oil recovery in fractured tight reservoirs.
Author Liu, Chao
Yu, Zhigang
Cao, Zuowei
Jia, Hu
Fu, Gaoqiang
Liu, Siqi
He, Dongxu
Deng, Xuan
Author_xml – sequence: 1
  givenname: Siqi
  orcidid: 0009-0002-0765-582X
  surname: Liu
  fullname: Liu, Siqi
  organization: Southwest Petroleum University
– sequence: 2
  givenname: Hu
  orcidid: 0000-0001-9671-7791
  surname: Jia
  fullname: Jia, Hu
  email: jiahuswpu@swpu.edu.cn, 165597687@qq.com
  organization: Southwest Petroleum University
– sequence: 3
  givenname: Zuowei
  surname: Cao
  fullname: Cao, Zuowei
  organization: CNPC Dagang Oilfield
– sequence: 4
  givenname: Gaoqiang
  surname: Fu
  fullname: Fu, Gaoqiang
  organization: CNPC Dagang Oilfield
– sequence: 5
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: Southwest Petroleum University
– sequence: 6
  givenname: Dongxu
  surname: He
  fullname: He, Dongxu
  organization: SINOPEC Shengli Oilfield
– sequence: 7
  givenname: Xuan
  surname: Deng
  fullname: Deng, Xuan
  organization: CNOOC Zhanjiang
– sequence: 8
  givenname: Zhigang
  surname: Yu
  fullname: Yu, Zhigang
  organization: CNOOC Zhanjiang
BookMark eNp1kE1OwzAQRi1UJNrCghtYYsUirWPHccKuqvqDVERUyjpynEnrKnWCnRZlxxE4IychULas5pPmfaPRG6CeqQwgdOuTkU8IHcu6HnERCHKB-j6JhReENOqhfrfzvSiO-RUaOLcnxPc5CftoWy-_Pj5fwDjd6BPgpCrbA1i8gNLhorJ49rzG2uC5lao5WsjxRm93DV6DA3uqtHUP-AnUThrtGq2wNDlOwHbNgzQK8MTIsnXaXaPLQpYObv7mEL3OZ5vp0ls9Lx6nk5WnKI-JF4qQZRHjQQFC8CLKqYJcRiKUKiaCZ4JIylXWJUUzFsmiyGWsgFLKopxnjA3R3flubau3I7gm3VdH2z3hUkYDHhDCgrCj7s-UspVzFoq0tvogbZv6JP3xmHYe01-PHTs-s--6hPZ_MJ0kybnxDb0Md4s
Cites_doi 10.1002/app.56235
10.1007/s10553‐020‐01183‐x
10.1088/2053‐1591/aaf36c
10.1002/adfm.202007664
10.1002/adma.202102479
10.1021/acs.energyfuels.4c01825
10.1021/acsomega.4c02410
10.3390/gels10090599
10.3390/polym16111585
10.1016/j.cej.2023.144625
10.1016/j.fuel.2017.08.095
10.1016/j.petrol.2022.110256
10.1016/j.petsci.2022.07.006
10.1002/adma.202007829
10.1002/app.53873
10.1016/j.geoen.2024.213371
10.3390/en16134907
10.1007/s12182‐021‐00546‐1
10.1016/j.jngse.2022.104658
10.1016/j.colsurfa.2023.132669
10.1002/adfm.202009334
10.1016/j.petrol.2022.111185
10.3390/gels10050325
10.1016/j.cej.2021.132252
10.1021/acsomega.3c10034
10.1016/j.molliq.2024.124318
10.1021/acs.macromol.0c01242
10.2118/219736‐PA
10.1515/epoly‐2020‐0045
10.1039/D1MH01324F
10.1038/s41467‐023‐39235‐5
10.1016/j.petrol.2017.11.030
10.1016/j.petrol.2015.11.039
10.3390/ma11050856
10.1016/j.colsurfa.2018.04.067
10.3390/gels10080511
10.1126/sciadv.abl5066
10.1016/j.carbpol.2024.122320
10.1080/10916466.2022.2108839
10.1016/j.molliq.2024.125046
10.1039/D2TA01960D
10.1002/adfm.202307402
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.57470
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_57470
APP57470
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52250001
– fundername: Key Project of the Natural Science Foundation of Sichuan
  funderid: 2025ZNSFSC0029
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2590-6763b8354fe775f8d2ceda876ac9075b70a25cb75bc2b38affda9ce22238d5b33
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Wed Sep 17 00:33:04 EDT 2025
Wed Sep 03 16:36:00 EDT 2025
Mon Sep 01 09:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2590-6763b8354fe775f8d2ceda876ac9075b70a25cb75bc2b38affda9ce22238d5b33
Notes Funding
This work was supported by the Key Project of the Natural Science Foundation of Sichuan (2025ZNSFSC0029) and the National Natural Science Foundation of China (52250001).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-0765-582X
0000-0001-9671-7791
PQID 3245400346
PQPubID 1006379
PageCount 20
ParticipantIDs proquest_journals_3245400346
crossref_primary_10_1002_app_57470
wiley_primary_10_1002_app_57470_APP57470
PublicationCentury 2000
PublicationDate October 10 2025
PublicationDateYYYYMMDD 2025-10-10
PublicationDate_xml – month: 10
  year: 2025
  text: October 10 2025
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 8
2018; 165
2023; 14
2023; 33
2020; 20
2023; 140
2023; 16
2024; 405
2023; 221
2024; 680
2024; 141
2024; 341
2024; 10
2024; 243
2020; 56
2017; 210
2024; 38
2024; 16
2018; 6
2018; 551
2023; 41
2021; 31
2021; 33
2020; 53
2023; 471
2023; 212
2021; 18
2024; 9
2022; 8
2016; 138
2024; 399
2022; 429
2022; 10
2018; 11
2022; 104
2024; 29
2022; 19
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 18
  start-page: 450
  year: 2021
  end-page: 478
  article-title: Water Shutoff and Conformance Improvement: An Introduction
  publication-title: Petroleum Science
– volume: 31
  year: 2021
  article-title: Euryhaline Hydrogel With Constant Swelling and Salinity‐Enhanced Mechanical Strength in a Wide Salinity Range
  publication-title: Advanced Functional Materials
– volume: 341
  year: 2024
  article-title: Nanocellulose/Scleroglucan‐Enhanced Robust, Heat‐Resistant Composite Hydrogels for Oilfield Water Plugging
  publication-title: Carbohydrate Polymers
– volume: 104
  year: 2022
  article-title: Chemical Water Shutoff Agents and Their Plugging Mechanism for Gas Reservoirs: A Review and Prospects
  publication-title: Journal of Natural Gas Science and Engineering
– volume: 221
  year: 2023
  article-title: A Technical Review of CO for Enhanced Oil Recovery in Unconventional Oil Reservoirs
  publication-title: Geoenergy Science and Engineering
– volume: 165
  start-page: 28
  year: 2018
  end-page: 41
  article-title: Structural Regeneration of Fracture‐Vug Network in Naturally Fractured Vuggy Reservoirs
  publication-title: Journal of Petroleum Science and Engineering
– volume: 8
  year: 2022
  article-title: A Versatile Hydrogel Network–Repairing Strategy Achieved by the Covalent‐Like Hydrogen Bond Interaction
  publication-title: Science Advances
– volume: 405
  year: 2024
  article-title: Magnetic Smart Polymer Gel With Directional Plugging for Conformance Control in Oil Reservoirs
  publication-title: Journal of Molecular Liquids
– volume: 41
  start-page: 2204
  year: 2023
  end-page: 2239
  article-title: Nanocomposite Gels for Water Shut‐Off and Temporary Plugging in the Petroleum Industry: A Review
  publication-title: Petroleum Science and Technology
– volume: 10
  year: 2024
  article-title: High‐Strength Controllable Resin Plugging Agent and Its Performance Evaluation for Fractured Formation
  publication-title: Gels
– volume: 680
  year: 2024
  article-title: Design of Low‐Consumption Epoxy Resin Porous Plugging Material via Emulsification‐Curing Method
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 11
  year: 2018
  article-title: A Polymer Plugging Gel for the Fractured Strata and Its Application
  publication-title: Materials
– volume: 29
  year: 2024
  article-title: Study on the Dispersion Stability and Sealing Performance of Nanoscale Plugging Materials for Shale Formations
  publication-title: SPE Journal
– volume: 33
  year: 2023
  article-title: A Facile Strategy to Fabricate Tough and Adhesive Elastomers by In Situ Formation of Coordination Complexes as Physical Crosslinks
  publication-title: Advanced Functional Materials
– volume: 471
  year: 2023
  article-title: Robust and Smart Underwater Adhesion of Hydrophobic Hydrogel by Phase Change
  publication-title: Chemical Engineering Journal
– volume: 33
  year: 2021
  article-title: Poly (Vinyl Alcohol) Hydrogels With Broad‐Range Tunable Mechanical Properties via the Hofmeister Effect
  publication-title: Advanced Materials
– volume: 138
  start-page: 218
  year: 2016
  end-page: 233
  article-title: Rheological Evaluation of a Sodium Silicate Gel System for Water Management in Mature, Naturally‐Fractured Oilfields
  publication-title: Journal of Petroleum Science and Engineering
– volume: 429
  year: 2022
  article-title: Flexible Lignin‐Based Hydrogels With Self‐Healing and Adhesive Ability Driven by Noncovalent Interactions
  publication-title: Chemical Engineering Journal
– volume: 16
  year: 2024
  article-title: Gelation and Plugging Performance of Low‐Concentration Partially Hydrolyzed Polyacrylamide/Polyethyleneimine System at Moderate Temperature and in Fractured Low‐Permeability Reservoir
  publication-title: Polymers
– volume: 141
  year: 2024
  article-title: Experimental Investigation on Plugging and Transport Characteristics of Low‐Density Preformed Particle Gels in Fractured Tight Reservoirs for Enhanced Oil Recovery
  publication-title: Journal of Applied Polymer Science
– volume: 551
  start-page: 95
  year: 2018
  end-page: 107
  article-title: Experimental Study of Low Molecular Weight Polymer/Nanoparticle Dispersed Gel for Water Plugging in Fractures
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 9
  start-page: 33702
  year: 2024
  end-page: 33709
  article-title: Synthesis and Performance Study of Self‐Degradable Gel Plugging Agents Suitable for Medium‐and Low‐Temperature Reservoirs
  publication-title: ACS Omega
– volume: 10
  year: 2024
  article-title: A Solidified Controllable Resin System Suitable for Fracture Cavity Formation Plugging and Its Performance Characterization
  publication-title: Gels
– volume: 399
  year: 2024
  article-title: Review of the Micro and Macro Mechanisms of Gel‐Based Plugging Agents for Enhancing Oil Recovery of Unconventional Water Flooding Oil Reservoirs
  publication-title: Journal of Molecular Liquids
– volume: 19
  start-page: 2150
  year: 2022
  end-page: 2164
  article-title: Double Network Self‐Healing Hydrogel Based on Hydrophobic Association and Ionic Bond for Formation Plugging
  publication-title: Petroleum Science
– volume: 33
  year: 2021
  article-title: High‐Strength and Nonfouling Zwitterionic Triple‐Network Hydrogel in Saline Environments
  publication-title: Advanced Materials
– volume: 210
  start-page: 425
  year: 2017
  end-page: 445
  article-title: Advances in Improved/Enhanced Oil Recovery Technologies for Tight and Shale Reservoirs
  publication-title: Fuel
– volume: 38
  start-page: 15887
  year: 2024
  end-page: 15912
  article-title: Review on Foam‐Assisted Gas Injection in Fractured Carbonates for Enhanced Oil Recovery
  publication-title: Energy & Fuels
– volume: 8
  start-page: 3409
  year: 2021
  end-page: 3416
  article-title: Design of Ultra‐Stretchable, Highly Adhesive and Self‐Healable Hydrogels via Tannic Acid‐Enabled Dynamic Interactions
  publication-title: Materials Horizons
– volume: 243
  year: 2024
  article-title: Evaluation of Inorganic and Organic Composite Plugging Materials With High Performance and Adaptive Fracture Scale
  publication-title: Geoenergy Science and Engineering
– volume: 20
  start-page: 411
  year: 2020
  end-page: 422
  article-title: Plugging Mechanisms of Polymer Gel Used for Hydraulic Fracture Water Shutoff
  publication-title: E‐Polymers
– volume: 9
  start-page: 19992
  year: 2024
  end-page: 20002
  article-title: Preparation of Low‐Viscosity Epoxy Resin Sealing Agent and Evaluation of Injection, Plugging, and Degradation Properties
  publication-title: ACS Omega
– volume: 140
  year: 2023
  article-title: Research and Performance Evaluation of Modified Nano‐Silica Gel Plugging Agent
  publication-title: Journal of Applied Polymer Science
– volume: 10
  start-page: 11823
  year: 2022
  end-page: 11853
  article-title: Hydrogels for Underwater Adhesion: Adhesion Mechanism, Design Strategies and Applications
  publication-title: Journal of Materials Chemistry A
– volume: 14
  year: 2023
  article-title: Multi‐Layered Cement‐Hydrogel Composite With High Toughness, Low Thermal Conductivity, and Self‐Healing Capability
  publication-title: Nature Communications
– volume: 31
  year: 2021
  article-title: Barnacle Cement Proteins‐Inspired Tough Hydrogels With Robust, Long‐Lasting, and Repeatable Underwater Adhesion
  publication-title: Advanced Functional Materials
– volume: 53
  start-page: 6566
  year: 2020
  end-page: 6575
  article-title: Self‐Healing and Moldable Poly (2‐Isopropenyl‐2‐Oxazoline) Supramolecular Hydrogels Based on a Transient Metal Coordination Network
  publication-title: Macromolecules
– volume: 16
  year: 2023
  article-title: Overview of Methods for Enhanced Oil Recovery From Conventional and Unconventional Reservoirs
  publication-title: Energies
– volume: 212
  year: 2023
  article-title: A Review on Mechanism and Adaptive Materials of Temporary Plugging Agent for Chemical Diverting Fracturing
  publication-title: Journal of Petroleum Science and Engineering
– volume: 6
  year: 2018
  article-title: Polymer Nanocomposites for Water Shutoff Application—A Review
  publication-title: Materials Research Express
– volume: 10
  year: 2024
  article-title: Effect of Polymer and Crosslinker Concentration on Static and Dynamic Gelation Behavior of Phenolic Resin Hydrogel
  publication-title: Gels
– volume: 56
  start-page: 707
  year: 2020
  end-page: 717
  article-title: Preparation and Performance Evaluation of a Hydrophobically Associating Polymer as a High‐Strength Water‐Swelling Temporary Plugging Material
  publication-title: Chemistry and Technology of Fuels and Oils
– ident: e_1_2_9_19_1
  doi: 10.1002/app.56235
– ident: e_1_2_9_34_1
  doi: 10.1007/s10553‐020‐01183‐x
– ident: e_1_2_9_13_1
  doi: 10.1088/2053‐1591/aaf36c
– ident: e_1_2_9_43_1
  doi: 10.1002/adfm.202007664
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.202102479
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.energyfuels.4c01825
– ident: e_1_2_9_37_1
  doi: 10.1021/acsomega.4c02410
– ident: e_1_2_9_16_1
  doi: 10.3390/gels10090599
– ident: e_1_2_9_39_1
  doi: 10.3390/polym16111585
– ident: e_1_2_9_38_1
  doi: 10.1016/j.cej.2023.144625
– ident: e_1_2_9_6_1
  doi: 10.1016/j.fuel.2017.08.095
– ident: e_1_2_9_10_1
  doi: 10.1016/j.petrol.2022.110256
– ident: e_1_2_9_22_1
  doi: 10.1016/j.petsci.2022.07.006
– ident: e_1_2_9_32_1
  doi: 10.1002/adma.202007829
– ident: e_1_2_9_20_1
  doi: 10.1002/app.53873
– ident: e_1_2_9_44_1
  doi: 10.1016/j.geoen.2024.213371
– ident: e_1_2_9_5_1
  doi: 10.3390/en16134907
– ident: e_1_2_9_11_1
  doi: 10.1007/s12182‐021‐00546‐1
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jngse.2022.104658
– ident: e_1_2_9_17_1
  doi: 10.1016/j.colsurfa.2023.132669
– ident: e_1_2_9_30_1
  doi: 10.1002/adfm.202009334
– ident: e_1_2_9_3_1
  doi: 10.1016/j.petrol.2022.111185
– ident: e_1_2_9_24_1
– ident: e_1_2_9_23_1
  doi: 10.3390/gels10050325
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cej.2021.132252
– ident: e_1_2_9_18_1
  doi: 10.1021/acsomega.3c10034
– ident: e_1_2_9_7_1
  doi: 10.1016/j.molliq.2024.124318
– ident: e_1_2_9_29_1
  doi: 10.1021/acs.macromol.0c01242
– ident: e_1_2_9_40_1
  doi: 10.2118/219736‐PA
– ident: e_1_2_9_8_1
  doi: 10.1515/epoly‐2020‐0045
– ident: e_1_2_9_36_1
  doi: 10.1039/D1MH01324F
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467‐023‐39235‐5
– ident: e_1_2_9_2_1
  doi: 10.1016/j.petrol.2017.11.030
– ident: e_1_2_9_14_1
  doi: 10.1016/j.petrol.2015.11.039
– ident: e_1_2_9_21_1
  doi: 10.3390/ma11050856
– ident: e_1_2_9_25_1
  doi: 10.1016/j.colsurfa.2018.04.067
– ident: e_1_2_9_15_1
  doi: 10.3390/gels10080511
– ident: e_1_2_9_28_1
  doi: 10.1126/sciadv.abl5066
– ident: e_1_2_9_41_1
  doi: 10.1016/j.carbpol.2024.122320
– ident: e_1_2_9_9_1
  doi: 10.1080/10916466.2022.2108839
– ident: e_1_2_9_31_1
  doi: 10.1016/j.molliq.2024.125046
– ident: e_1_2_9_35_1
  doi: 10.1039/D2TA01960D
– ident: e_1_2_9_26_1
  doi: 10.1002/adfm.202307402
SSID ssj0011506
Score 2.4738054
Snippet ABSTRACT Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through...
Fractured tight reservoirs are characterized by dual‐permeability systems (matrix and fractures), where injected fluids predominantly channel through...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms applications
Citric acid
colloids
Dehydration
Fractures
gels
Loss modulus
oil and gas
Oil recovery
Performance evaluation
Plugging
Polyacrylamide
Polymer gels
Polymers
Pressure gradients
Reservoirs
Stability tests
Storage modulus
Viscosity
Title pH‐Sensitive Polymer Gels for EOR in Fractured Tight Reservoirs: Mechanistic and Performance Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.57470
https://www.proquest.com/docview/3245400346
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KJz34FqtVFvHgJZpk89jqqWhrEdRQFXoQwr4ioqaStoKe_An-Rn-JM0nTVkEQL2EPuyGZ3Zn5Zpj5lpBdO_HsRHmg34Yzy-N1bUnF4OFIITwlONOYGji_CNo33lnX71bIUdkLU_BDjBNuqBm5vUYFF7J_MCENxWuwfADDGK87LEDe_JPOmDoKgU5QlHc4FsQUfskqZLsH45XffdEEYE7D1NzPtBbIbfmFRXnJw_5wIPfV2w_yxn_-wiKZH-FP2igOzBKpmHSZzE2xEq6Qu-f25_vHFVa2oy2kUe_x9clk9BTcKAWMS5uXHXqf0hY2WA0zo-k1RvgUi_iyl9591j-k5wY7inMSaCpSTaNJfwIteVBWyU2reX3ctkb3MVgKgiTsEgiYxERRYsLQT7h2ldECzKlQEGL7MrSF6ysJI-VKxkWSaFFXBhEI175kbI3MpL3UrBOqYQpAB2EAgXqcce6EjusIaThaCVdVyU65M_FzQbsRFwTLbgxSi3OpVUmt3LN4pHn9GAAigFCbeUGV7OXC__0FcSOK8sHG36duklkXrwDGoha7RmYG2dBsAS4ZyO38AH4BzZXfpw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_NAEB5ED-rBz1esn4t48BJNskm7ihdRa_2oFq3gRcJ-RURNJbaCnvwJ_kZ_iTNJ0-oLgngJe9gNyezOzDPDzLMAq24cuLEOUL-t4E4gNo2jNMeHp6QMtBTcUGqgflquXQZHV-HVAGwXvTA5P0Qv4UaakdlrUnBKSG_0WUPpHqwQ0TAG7EMBAg0KvfbOe-RRBHXKeYGH52BUERa8Qq6_0Vv63Rv1IeZXoJp5muo4XBffmBeY3K132mpdv_5H3_jXn5iAsS4EZTv5mZmEAZtMwegXYsJpuHmsfby9X1BxO5lD1mjdvzzYlB2gJ2UIc9n-2Tm7TViVeqw6qTWsSUE-ozq-9Ll1mz5tsbqlpuKMB5rJxLBGv0WBFVQo_-Cyut_crTndKxkcjXESNQqUuaJcUWwrlTAWxtfWSLSoUmOUHaqKK_1QKxxpX3Eh49jITW0JhAgTKs5nYDBpJXYWmMEpiB6kRRAaCC6EV_F8TyoryFD4ugQrxdZEjznzRpRzLPsRSi3KpFaChWLToq7yPUWIERGHujwol2Atk_7PL4h2Go1sMPf7qcswXGvWT6KTw9PjeRjx6UZgqnFxF2CwnXbsIsKUtlrKTuMn06Djxg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9tAEMdHCCQEBx6FihRoV1UPvTjYXttZ4BRB0vC2AkgcKln7MkJtncgkSHDiI_AZ-STM2HFCkSpVXKw92Ja9uzP7m9XMfwG-uWngpjpA-7aCO4HYNo7SHC-ekjLQUnBDWwMnp1HnMji8Cq-mYLeqhSn1IcYbbmQZhb8mA--bdGsiGkrHYIUIwxivzwQRkgQRUXesHUWkE5X5HZ6DQUVYyQq5_tb40b8XowlhvubUYqFpL8LP6hPL_JJf9eFA1fXDG_XGd_7DEiyMAJQ1yxmzDFM2-wDzr2QJV-C633l-fDqn1HZyhizu_b7_Y3P2A9dRhpDLWmdddpOxNlVYDXNr2AWF-Iyy-PK73k1-u8NOLJUUFyrQTGaGxZMCBVYJoazCZbt1sddxRgcyOBqjJCoTiLiinaLUNhphKoyvrZHoT6XGGDtUDVf6oVbY0r7iQqapkdvaEoIIEyrOP8J01svsGjCDtyA7SIsIGgguhNfwfE8qK8hN-LoGX6uRSfql7kZSKiz7CfZaUvRaDTaqMUtGpnebICEihbo8iGrwvej8f78gacZx0fj0_7d-gdl4v50cH5wercOcT8cBU4KLuwHTg3xoN5FRBupzMRdfAEg-4nU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH+%E2%80%90Sensitive+Polymer+Gels+for+EOR+in+Fractured+Tight+Reservoirs%3A+Mechanistic+and+Performance+Analysis&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Liu%2C+Siqi&rft.au=Jia%2C+Hu&rft.au=Cao%2C+Zuowei&rft.au=Fu%2C+Gaoqiang&rft.date=2025-10-10&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=142&rft.issue=38&rft_id=info:doi/10.1002%2Fapp.57470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_app_57470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon