Scalable weighted-cumulated methodology for fatigue estimation
Purpose The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent decades. The use of S-EMG is interesting because it allows accessing the muscular structure and function through the use of a noninvasive techn...
Saved in:
Published in | Research on biomedical engineering Vol. 38; no. 4; pp. 1087 - 1101 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent decades. The use of S-EMG is interesting because it allows accessing the muscular structure and function through the use of a noninvasive technique. This is a subject of interest to many areas of science such as clinical and orthopedic medicine, biomechanics, physiotherapy and rehabilitation, telemedicine, control of interfaces, intelligent prosthetics, and exoskeletons control and for expert systems to support medical diagnosis to neuromuscular diseases. Changes in the spectral signature of the S-EMG signal such as spectral shift for low frequencies and the increase in the dynamic range of the signal indicate the installation of the biological phenomenon of fatigue. For instance, classical techniques such as zero-crossing, median frequency (MDF), and mean power frequency (MPF) are able to perceive the spectral shift in S-EMG signals. On the other hand, techniques such as root mean square (RMS) values can only perceive the variation in the dynamic range of the S-EMG signal.
Methods
In this work, new mathematical models for the objective assessment of muscle fatigue are presented. We sought to design models for objective fatigue estimators that simultaneously perceive the spectral shift for low frequencies and the increase in the dynamic range in the S-EMG signal during the instauration of the fatigue process. The new approach is integrated to the weighted-cumulated methodology framework previously proposed. Three new objective muscle fatigue estimators were conceived: the scalable weighted-cumulated Fourier estimator, the weighted-cumulated wavelet estimator (SWCW), and the weighted-cumulated p-side lobe attenuation algorithm (p-SL).
Results
To evaluate the proposed tools based on the scalable weighted-cumulated methodology, we investigated two dynamic protocols with muscle fatigue production. The S-EMG signals recorded from the
biceps brachii
and from the
vastus lateralis
were used. The results obtained with the application of the new proposed objective fatigue estimators are shown. The results are discussed and compared with the weighted-cumulated models.
Conclusions
The scalable fatigue estimators exhibited an experimental behavior consistent with the assumptions on which they were designed. The results have been promising. |
---|---|
AbstractList | Purpose
The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent decades. The use of S-EMG is interesting because it allows accessing the muscular structure and function through the use of a noninvasive technique. This is a subject of interest to many areas of science such as clinical and orthopedic medicine, biomechanics, physiotherapy and rehabilitation, telemedicine, control of interfaces, intelligent prosthetics, and exoskeletons control and for expert systems to support medical diagnosis to neuromuscular diseases. Changes in the spectral signature of the S-EMG signal such as spectral shift for low frequencies and the increase in the dynamic range of the signal indicate the installation of the biological phenomenon of fatigue. For instance, classical techniques such as zero-crossing, median frequency (MDF), and mean power frequency (MPF) are able to perceive the spectral shift in S-EMG signals. On the other hand, techniques such as root mean square (RMS) values can only perceive the variation in the dynamic range of the S-EMG signal.
Methods
In this work, new mathematical models for the objective assessment of muscle fatigue are presented. We sought to design models for objective fatigue estimators that simultaneously perceive the spectral shift for low frequencies and the increase in the dynamic range in the S-EMG signal during the instauration of the fatigue process. The new approach is integrated to the weighted-cumulated methodology framework previously proposed. Three new objective muscle fatigue estimators were conceived: the scalable weighted-cumulated Fourier estimator, the weighted-cumulated wavelet estimator (SWCW), and the weighted-cumulated p-side lobe attenuation algorithm (p-SL).
Results
To evaluate the proposed tools based on the scalable weighted-cumulated methodology, we investigated two dynamic protocols with muscle fatigue production. The S-EMG signals recorded from the
biceps brachii
and from the
vastus lateralis
were used. The results obtained with the application of the new proposed objective fatigue estimators are shown. The results are discussed and compared with the weighted-cumulated models.
Conclusions
The scalable fatigue estimators exhibited an experimental behavior consistent with the assumptions on which they were designed. The results have been promising. |
Author | de Oliveira Nascimento, Francisco Assis de Araújo Rocha, Valdinar do Carmo, Jake Carvalho |
Author_xml | – sequence: 1 givenname: Francisco Assis orcidid: 0000-0002-8217-1983 surname: de Oliveira Nascimento fullname: de Oliveira Nascimento, Francisco Assis email: assis@ene.unb.br, assis@unb.br organization: Group of Digital Signal Processing, Department of Electrical Engineering, University of Brasília – sequence: 2 givenname: Valdinar surname: de Araújo Rocha fullname: de Araújo Rocha, Valdinar organization: Group of Digital Signal Processing, Department of Electrical Engineering, University of Brasília – sequence: 3 givenname: Jake Carvalho surname: do Carmo fullname: do Carmo, Jake Carvalho organization: Laboratory of Biological Signal Processing, Faculty of Physical Education, University of Brasília |
BookMark | eNp9kLFOwzAURS1UJErpDzDlBwzPjmsnCxKqgCJVYgBmK7Ff0lRJjOxEqPl6DGFgYnp3uOfp6lySRe96JOSawQ0DULdBcAlAgXMKwAWj0xlZciEkFUrA4k--IOsQjgDApGJ5xpbk7tUUbVG2mHxiUx8GtNSM3dgWMSUdDgdnXevqU1I5n1TF0NQjJhiGpovZ9VfkvCragOvfuyLvjw9v2x3dvzw9b-_31PBNNlEubJZlUHEreKpUBkqVSpYSUsOkNYjW2jJnJt8YUVRSlIxxJmMhBTSp4umK8Pmv8S4Ej5X-8HGCP2kG-luCniXoKEH_SNBThNIZCrHc1-j10Y2-jzv_o74AhkZh2Q |
Cites_doi | 10.1016/j.jelekin.2014.11.008 10.1007/BF02441600 10.1088/1361-6579/aa60b9 10.1016/j.medengphy.2016.09.009 10.1016/j.bspc.2019.02.007 10.1016/j.jelekin.2008.02.007 10.1016/j.jelekin.2013.05.001 10.1016/j.jelekin.2008.11.005 10.3390/s110403545 10.1109/TBME.2012.2215031 10.1016/j.proeng.2012.01.1263 10.1016/j.jelekin.2007.01.007 10.1016/j.jelekin.2009.01.008 10.1016/S1050-6411(98)00042-X 10.1016/j.bspc.2021.102510 10.1109/JBHI.2014.2356340 10.1016/S1050-6411(97)00043-6 10.1109/TNSRE.2016.2632755 10.1016/j.jbiomech.2010.01.027 10.3390/e22050529 10.1002/mus.23926 10.1016/j.jelekin.2013.05.005 10.1109/TBCAS.2016.2520563 10.1109/JBHI.2017.2783849 10.1016/j.jelekin.2009.03.011 10.1007/s12541-013-0161-4 10.1007/s42600-019-00010-5 10.1109/JBHI.2013.2286408 10.1016/j.jelekin.2016.08.002 10.1049/el.2015.3460 10.1016/j.jelekin.2008.07.006 10.4236/am.2014.513181 10.1016/j.jbmt.2017.03.021 10.1049/el.2012.2316 10.1016/j.jelekin.2007.10.012 10.1007/s00421-015-3100-5 10.1016/j.bspc.2021.102578 10.1109/TNSRE.2016.2628373 10.1016/j.jelekin.2011.05.002 10.1155/2017/3937254 10.1364/BOE.403976 10.1016/j.jbiomech.2010.05.009 10.1016/j.jsams |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s42600-022-00241-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2446-4740 |
EndPage | 1101 |
ExternalDocumentID | 10_1007_s42600_022_00241_z |
GrantInformation_xml | – fundername: Fundação de Apoio à Pesquisa do Distrito Federal grantid: 00193-00000126/2019-46 funderid: http://dx.doi.org/10.13039/501100005668 |
GroupedDBID | -EM 406 5VS AAFGU AAHNG AATNV AAUYE AAYFA ABECU ABFGW ABFTV ABJNI ABKAS ABKCH ABMQK ABTEG ABTKH ABTMW ABXHO ABXPI ACBMV ACBRV ACBYP ACHSB ACIGE ACIPQ ACMLO ACOKC ACTTH ACVWB ACWMK ADBBV ADKNI ADMDM ADOXG ADTPH ADURQ ADYFF AEFTE AEJRE AESKC AESTI AEVTX AFNRJ AFQWF AGDGC AGGBP AGJBK AGMZJ AILAN AIMYW AITGF AJDOV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF APOWU AXYYD AZFZN BGNMA CSCUP DPUIP EBLON EBS EJD FFXSO FNLPD GGCAI GROUPED_DOAJ IAO IHR IKXTQ INH IPNFZ ISR IWAJR JZLTJ KOV KQ8 LLZTM M4Y M~E NPVJJ NQJWS NU0 OK1 PT4 RIG RSC RSV SCD SNE SNPRN SOHCF SOJ SRMVM SSLCW TSG UOJIU UTJUX VEKWB VFIZW ZMTXR 0R~ AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AIGIU CITATION FIGPU ITC SJYHP |
ID | FETCH-LOGICAL-c258z-24d8880f2d423778077b76b603c16dceedddb91c95c4af64b112166b630ec3723 |
ISSN | 2446-4740 |
IngestDate | Thu Sep 26 16:28:20 EDT 2024 Sat Dec 16 12:05:52 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Fourier transform Wavelet transform Weighted-cumulated methodology Muscle fatigue Surface electromyography signals |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c258z-24d8880f2d423778077b76b603c16dceedddb91c95c4af64b112166b630ec3723 |
ORCID | 0000-0002-8217-1983 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1007_s42600_022_00241_z springer_journals_10_1007_s42600_022_00241_z |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Research on biomedical engineering |
PublicationTitleAbbrev | Res. Biomed. Eng |
PublicationYear | 2022 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Al-Mulla, Sepulveda, Colley (CR1) 2011; 11 De Luca, Gilmore, Kuznetsov, Roy (CR8) 2010; 43 Nascimento, Rocha, Andrade, Carmo (CR32) 2019; 35 Hu, Huang, Li (CR17) 2013; 49 Huebner, Faenger, Schenk, Scholle, Anders (CR18) 2014; 25 Arabadzhiev, Dimitrov, Dimitrova, Dimitrov (CR2) 2010; 20 Gonzalez-Izal, Cadore, Izquierdo (CR11) 2014; 49 Biagetti, Crippa, Curzi, Orcioni, Turchetti (CR3) 2015; 19 CR16 Karthick, Ramakrishnan (CR21) 2016; 3 Marco, Alberto, Taian (CR25) 2017; 38 CR13 González-Izal, Malanda, Navarro-Amézqueta, Gorostiaga, Mallor, Ibañez, Izquierdo (CR12) 2010; 20 Koutsos, Cretu, Georgiou (CR23) 2016; 10 Chowdhury, Nimbarte, Jaridi, Creese (CR5) 2013; 23 Ericson (CR9) 1986; 16 Piitulainen, Rantalainen, Linnamo, Komi, Avela (CR34) 2009; 19 Marri, Swaminathan (CR26) 2015; 51 Sung, Zurcher, Kaufman (CR44) 2010; 20 Thongpanja, Phinyomark, Phukpattaranont, Limsakul (CR45) 2012; 32 Coorevits, Danneels, Cambier, Ramon, Vanderstraeten (CR7) 2008; 18 Greco, Valenza, Bicchi, Bianchi, Scilingo (CR14) 2019; 51 Kahl, Hofmann (CR20) 2016; 38 Xu, Rabotti, Mischi (CR47) 2017; 25 Rocha, Carmo, Nascimento (CR39) 2018; 22 Rogers, MacIsaac (CR40) 2013; 23 Coorevits, Danneels, Cambier, Ramon, Druyts, Karlsson, De Moor, Vanderstraeten (CR6) 2008; 8 Wang, Tang, Wang, Mo (CR46) 2021; 67 Na, Kim (CR31) 2016; 25 Rogers, MacIsaac (CR41) 2011; 2 Nascimento, Trabuco, Macchiavello, Gusmão, Costa (CR33) 2021; 68 CR28 Yochum, Bakir, Lepers, Binczak (CR48) 2012; 59 CR27 Miranda, Maia, Oliveira, Farias, da Silva, Lima, Willardson, Paz (CR30) 2018; 22 Rocha, Bottaro, Pereira, Ferreira, Carmo, Brown, Nascimento (CR38) 2015; 3 Bigliassi, Scalassara, Kanthack, Abrão, de Moraes, Altimari (CR4) 2014; 5 Ertl, Kruse, Tilp (CR10) 2016; 30 CR43 Rainoldi, Galard, Maderna, Comi, Conte, Merletti (CR37) 1999; 2 CR42 Hogrel, Duchêne, Marini (CR15) 1998; 8 Inbar, Allin, Paiss, Kranz (CR19) 1986; 24 Rampichini, Vieira, Castiglioni, Merati (CR36) 2020; 22 Liu, Chang, Cheng (CR24) 2014; 18 Kim, Kim, Park, Ahn, Lee, Kim (CR22) 2013; 14 Pitt, Dotan, Millar, Long, Tokuno, O’Brien, Falk (CR35) 2015; 115 Mesin, Merletti, Rainoldi (CR29) 2009; 19 P Coorevits (241_CR6) 2008; 8 M Gonzalez-Izal (241_CR11) 2014; 49 S Wang (241_CR46) 2021; 67 P Ertl (241_CR10) 2016; 30 J Kim (241_CR22) 2013; 14 VA Rocha (241_CR39) 2018; 22 241_CR43 A Huebner (241_CR18) 2014; 25 241_CR42 L Mesin (241_CR29) 2009; 19 M Bigliassi (241_CR4) 2014; 5 S Rampichini (241_CR36) 2020; 22 M Yochum (241_CR48) 2012; 59 241_CR16 L Xu (241_CR47) 2017; 25 B Pitt (241_CR35) 2015; 115 H Miranda (241_CR30) 2018; 22 P Coorevits (241_CR7) 2008; 18 FAO Nascimento (241_CR32) 2019; 35 241_CR13 GF Inbar (241_CR19) 1986; 24 Y Na (241_CR31) 2016; 25 E Koutsos (241_CR23) 2016; 10 WW Hu (241_CR17) 2013; 49 G Marco (241_CR25) 2017; 38 VAR Rocha Jr (241_CR38) 2015; 3 SK Chowdhury (241_CR5) 2013; 23 TI Arabadzhiev (241_CR2) 2010; 20 G Biagetti (241_CR3) 2015; 19 A Greco (241_CR14) 2019; 51 A Rainoldi (241_CR37) 1999; 2 PS Sung (241_CR44) 2010; 20 DR Rogers (241_CR41) 2011; 2 M González-Izal (241_CR12) 2010; 20 H Piitulainen (241_CR34) 2009; 19 MR Al-Mulla (241_CR1) 2011; 11 L Kahl (241_CR20) 2016; 38 K Marri (241_CR26) 2015; 51 241_CR27 241_CR28 DR Rogers (241_CR40) 2013; 23 S-H Liu (241_CR24) 2014; 18 JY Hogrel (241_CR15) 1998; 8 FAO Nascimento (241_CR33) 2021; 68 M Ericson (241_CR9) 1986; 16 S Thongpanja (241_CR45) 2012; 32 CJ De Luca (241_CR8) 2010; 43 PA Karthick (241_CR21) 2016; 3 |
References_xml | – volume: 25 start-page: 214 issue: 2 year: 2014 end-page: 223 ident: CR18 article-title: Alteration of surface EMG amplitude levels of five major trunk muscles by defined electrode location displacement publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2014.11.008 contributor: fullname: Anders – volume: 24 start-page: 10 year: 1986 end-page: 18 ident: CR19 article-title: Monitoring surface EMG spectral changes by zero crossing rate publication-title: Med Biol Eng Compu doi: 10.1007/BF02441600 contributor: fullname: Kranz – volume: 38 start-page: R27 year: 2017 end-page: R60 ident: CR25 article-title: Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue publication-title: Physiol Meas doi: 10.1088/1361-6579/aa60b9 contributor: fullname: Taian – ident: CR43 – volume: 38 start-page: 1260 year: 2016 end-page: 1269 ident: CR20 article-title: Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.09.009 contributor: fullname: Hofmann – volume: 51 start-page: 42 year: 2019 end-page: 49 ident: CR14 article-title: Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.02.007 contributor: fullname: Scilingo – volume: 19 start-page: 667 year: 2009 end-page: 675 ident: CR34 article-title: Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2008.02.007 contributor: fullname: Avela – volume: 23 start-page: 995 issue: 5 year: 2013 end-page: 1003 ident: CR5 article-title: Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2013.05.001 contributor: fullname: Creese – volume: 20 start-page: 25 year: 2010 end-page: 30 ident: CR44 article-title: Reliability difference between spectral and entropic measures of erector spinae muscle fatigability publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2008.11.005 contributor: fullname: Kaufman – ident: CR16 – volume: 11 start-page: 3545 year: 2011 end-page: 3594 ident: CR1 article-title: A review of non-invasive techniques to detect and predict localized muscle fatigue publication-title: Sensors doi: 10.3390/s110403545 contributor: fullname: Colley – volume: 59 start-page: 3372 issue: 12 year: 2012 end-page: 3378 ident: CR48 article-title: Estimation of muscular fatigue under electromyostimulation using CWT publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2215031 contributor: fullname: Binczak – volume: 32 start-page: 239 year: 2012 end-page: 245 ident: CR45 article-title: A feasibility study of fatigue and muscle contraction indices based on EMG time-dependent spectral analysis publication-title: Procedia Eng doi: 10.1016/j.proeng.2012.01.1263 contributor: fullname: Limsakul – volume: 8 start-page: 798 year: 2008 end-page: 806 ident: CR6 article-title: Test–retest reliability of wavelet – and Fourier based EMG (instantaneous) median frequencies in the evaluation of back and hip muscle fatigue during isometric back extensions publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2007.01.007 contributor: fullname: Vanderstraeten – volume: 20 start-page: 223 year: 2010 end-page: 232 ident: CR2 article-title: Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2009.01.008 contributor: fullname: Dimitrov – volume: 2 start-page: 105 year: 1999 end-page: 119 ident: CR37 article-title: Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(98)00042-X contributor: fullname: Merletti – volume: 67 start-page: 1 year: 2021 end-page: 9 ident: CR46 article-title: Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102510 contributor: fullname: Mo – volume: 19 start-page: 1672 issue: 5 year: 2015 end-page: 1681 ident: CR3 article-title: Analysis of the EMG signal during cyclic movements using multicomponent AM–FM decomposition publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2014.2356340 contributor: fullname: Turchetti – volume: 8 start-page: 305 year: 1998 end-page: 315 ident: CR15 article-title: Variability of some SEMG parameter estimates with electrode location publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(97)00043-6 contributor: fullname: Marini – volume: 25 start-page: 1453 issue: 9 year: 2017 end-page: 1460 ident: CR47 article-title: Towards real-time estimation of muscle-fiber conduction velocity using delay-locked loop publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2632755 contributor: fullname: Mischi – volume: 43 start-page: 1573 issue: 8 year: 2010 end-page: 1579 ident: CR8 article-title: Filtering the surface EMG signal: movement artifact and baseline noise contamination publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.01.027 contributor: fullname: Roy – ident: CR27 – volume: 22 start-page: 1 year: 2020 end-page: 31 ident: CR36 article-title: Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: a review publication-title: Entropy doi: 10.3390/e22050529 contributor: fullname: Merati – ident: CR42 – volume: 49 start-page: 389 issue: 3 year: 2014 end-page: 397 ident: CR11 article-title: Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue publication-title: Muscle Nerve doi: 10.1002/mus.23926 contributor: fullname: Izquierdo – volume: 23 start-page: 1004 year: 2013 end-page: 1011 ident: CR40 article-title: A comparison of EMG-based muscle fatigue assessments during dynamic contractions publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2013.05.005 contributor: fullname: MacIsaac – volume: 16 start-page: 1 year: 1986 end-page: 43 ident: CR9 article-title: On the biomechanics of cycling, a study of joint and muscle load during exercise on the bicycle ergometer publication-title: J Rehab Med Supp contributor: fullname: Ericson – volume: 10 start-page: 1119 issue: 6 year: 2016 end-page: 1128 ident: CR23 article-title: A muscle fibre conduction velocity tracking ASIC for local fatigue monitoring publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2016.2520563 contributor: fullname: Georgiou – volume: 22 start-page: 1854 issue: 6 year: 2018 end-page: 1862 ident: CR39 article-title: Weighted-cumulated S-EMG muscle fatigue estimator publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2783849 contributor: fullname: Nascimento – volume: 20 start-page: 233 year: 2010 end-page: 240 ident: CR12 article-title: EMG spectral indices and muscle power fatigue during dynamic contractions publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2009.03.011 contributor: fullname: Izquierdo – volume: 14 start-page: 1185 issue: 7 year: 2013 end-page: 1191 ident: CR22 article-title: Bandwidth optimization of the fatigue index to estimate muscle fatigue during dynamic contractions publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-013-0161-4 contributor: fullname: Kim – volume: 35 start-page: 77 year: 2019 end-page: 87 ident: CR32 article-title: Cycling fatigue evaluation using weighted-cumulated methodology publication-title: Research on Biomedical Engineering doi: 10.1007/s42600-019-00010-5 contributor: fullname: Carmo – volume: 18 start-page: 1647 issue: 5 year: 2014 end-page: 1658 ident: CR24 article-title: The progression of muscle fatigue during exercise estimation with the aid of high-frequency component parameters derived from ensemble empirical mode decomposition publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2286408 contributor: fullname: Cheng – volume: 30 start-page: 216 year: 2016 end-page: 230 ident: CR10 article-title: Detecting fatigue thresholds from electromyographic signals: a systematic review on approaches and methodologies publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2016.08.002 contributor: fullname: Tilp – ident: CR13 – volume: 3 start-page: 185 year: 2016 end-page: 186 ident: CR21 article-title: Muscle fatigue analysis using surface EMG signals and time–frequency based medium-to-low band power ratio publication-title: Electron Lett doi: 10.1049/el.2015.3460 contributor: fullname: Ramakrishnan – volume: 19 start-page: 719 issue: 5 year: 2009 end-page: 726 ident: CR29 article-title: Surface EMG: the issue of electrode location publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2008.07.006 contributor: fullname: Rainoldi – volume: 5 start-page: 1878 year: 2014 end-page: 1886 ident: CR4 article-title: Fourier and wavelet spectral analysis of EMG signals in 1-km cycling time-trial publication-title: Appl Math doi: 10.4236/am.2014.513181 contributor: fullname: Altimari – volume: 22 start-page: 178 year: 2018 end-page: 183 ident: CR30 article-title: Myoeletric indices of fatigue adopting different rest intervals during leg press sets publication-title: J Bodyw Mov Ther doi: 10.1016/j.jbmt.2017.03.021 contributor: fullname: Paz – volume: 49 start-page: 89 issue: 2 year: 2013 end-page: 91 ident: CR17 article-title: Improved algorithm of muscle fatigue detection using linear regression analysis publication-title: Electron Lett doi: 10.1049/el.2012.2316 contributor: fullname: Li – volume: 18 start-page: 997 issue: 6 year: 2008 end-page: 1005 ident: CR7 article-title: Assessment of the validity of the Biering-Sørensen test for measuring back muscle fatigue based on EMG median frequency characteristics of back and hip muscles publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2007.10.012 contributor: fullname: Vanderstraeten – volume: 51 start-page: 107 year: 2015 end-page: 114 ident: CR26 article-title: Identification of onset of fatigue in biceps brachii muscles using surface EMG and multifractal DMA algorithm publication-title: Biomed Sci Instrum contributor: fullname: Swaminathan – ident: CR28 – volume: 115 start-page: 1273 issue: 6 year: 2015 end-page: 1281 ident: CR35 article-title: The electromyographic threshold in boys and men publication-title: Eur J Appl Physiol doi: 10.1007/s00421-015-3100-5 contributor: fullname: Falk – volume: 3 start-page: 7 year: 2015 end-page: 15 ident: CR38 article-title: Reliability of normalized surface electromyographic signals of maximal upper-body isokinetic strength publication-title: Isokinet Exerc Sci contributor: fullname: Nascimento – volume: 68 start-page: 102578 year: 2021 end-page: 102588 ident: CR33 article-title: Improved two-dimensional dynamic S-EMG signal compression with robust automatic segmentation publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102578 contributor: fullname: Costa – volume: 25 start-page: 1431 issue: 9 year: 2016 end-page: 1439 ident: CR31 article-title: Dynamic elbow flexion force estimation through a muscle twitch model and sEMG in a fatigue condition publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2628373 contributor: fullname: Kim – volume: 2 start-page: 811 year: 2011 end-page: 818 ident: CR41 article-title: EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2011.05.002 contributor: fullname: MacIsaac – ident: 241_CR43 doi: 10.1155/2017/3937254 – volume: 68 start-page: 102578 year: 2021 ident: 241_CR33 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102578 contributor: fullname: FAO Nascimento – volume: 20 start-page: 233 year: 2010 ident: 241_CR12 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2009.03.011 contributor: fullname: M González-Izal – volume: 18 start-page: 1647 issue: 5 year: 2014 ident: 241_CR24 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2013.2286408 contributor: fullname: S-H Liu – volume: 8 start-page: 798 year: 2008 ident: 241_CR6 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2007.01.007 contributor: fullname: P Coorevits – volume: 3 start-page: 185 year: 2016 ident: 241_CR21 publication-title: Electron Lett doi: 10.1049/el.2015.3460 contributor: fullname: PA Karthick – volume: 11 start-page: 3545 year: 2011 ident: 241_CR1 publication-title: Sensors doi: 10.3390/s110403545 contributor: fullname: MR Al-Mulla – ident: 241_CR16 – ident: 241_CR42 doi: 10.1364/BOE.403976 – volume: 20 start-page: 25 year: 2010 ident: 241_CR44 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2008.11.005 contributor: fullname: PS Sung – volume: 23 start-page: 1004 year: 2013 ident: 241_CR40 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2013.05.005 contributor: fullname: DR Rogers – volume: 22 start-page: 178 year: 2018 ident: 241_CR30 publication-title: J Bodyw Mov Ther doi: 10.1016/j.jbmt.2017.03.021 contributor: fullname: H Miranda – ident: 241_CR13 doi: 10.1016/j.jbiomech.2010.05.009 – volume: 51 start-page: 107 year: 2015 ident: 241_CR26 publication-title: Biomed Sci Instrum contributor: fullname: K Marri – volume: 16 start-page: 1 year: 1986 ident: 241_CR9 publication-title: J Rehab Med Supp contributor: fullname: M Ericson – volume: 10 start-page: 1119 issue: 6 year: 2016 ident: 241_CR23 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2016.2520563 contributor: fullname: E Koutsos – volume: 67 start-page: 1 year: 2021 ident: 241_CR46 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102510 contributor: fullname: S Wang – volume: 59 start-page: 3372 issue: 12 year: 2012 ident: 241_CR48 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2215031 contributor: fullname: M Yochum – volume: 22 start-page: 1 year: 2020 ident: 241_CR36 publication-title: Entropy doi: 10.3390/e22050529 contributor: fullname: S Rampichini – volume: 49 start-page: 389 issue: 3 year: 2014 ident: 241_CR11 publication-title: Muscle Nerve doi: 10.1002/mus.23926 contributor: fullname: M Gonzalez-Izal – volume: 2 start-page: 105 year: 1999 ident: 241_CR37 publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(98)00042-X contributor: fullname: A Rainoldi – volume: 25 start-page: 1453 issue: 9 year: 2017 ident: 241_CR47 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2632755 contributor: fullname: L Xu – volume: 35 start-page: 77 year: 2019 ident: 241_CR32 publication-title: Research on Biomedical Engineering doi: 10.1007/s42600-019-00010-5 contributor: fullname: FAO Nascimento – ident: 241_CR28 – volume: 115 start-page: 1273 issue: 6 year: 2015 ident: 241_CR35 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-015-3100-5 contributor: fullname: B Pitt – volume: 49 start-page: 89 issue: 2 year: 2013 ident: 241_CR17 publication-title: Electron Lett doi: 10.1049/el.2012.2316 contributor: fullname: WW Hu – volume: 20 start-page: 223 year: 2010 ident: 241_CR2 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2009.01.008 contributor: fullname: TI Arabadzhiev – volume: 23 start-page: 995 issue: 5 year: 2013 ident: 241_CR5 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2013.05.001 contributor: fullname: SK Chowdhury – volume: 51 start-page: 42 year: 2019 ident: 241_CR14 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.02.007 contributor: fullname: A Greco – volume: 5 start-page: 1878 year: 2014 ident: 241_CR4 publication-title: Appl Math doi: 10.4236/am.2014.513181 contributor: fullname: M Bigliassi – volume: 24 start-page: 10 year: 1986 ident: 241_CR19 publication-title: Med Biol Eng Compu doi: 10.1007/BF02441600 contributor: fullname: GF Inbar – volume: 32 start-page: 239 year: 2012 ident: 241_CR45 publication-title: Procedia Eng doi: 10.1016/j.proeng.2012.01.1263 contributor: fullname: S Thongpanja – volume: 18 start-page: 997 issue: 6 year: 2008 ident: 241_CR7 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2007.10.012 contributor: fullname: P Coorevits – volume: 38 start-page: 1260 year: 2016 ident: 241_CR20 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.09.009 contributor: fullname: L Kahl – volume: 19 start-page: 1672 issue: 5 year: 2015 ident: 241_CR3 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2014.2356340 contributor: fullname: G Biagetti – volume: 14 start-page: 1185 issue: 7 year: 2013 ident: 241_CR22 publication-title: Int J Precis Eng Manuf doi: 10.1007/s12541-013-0161-4 contributor: fullname: J Kim – volume: 30 start-page: 216 year: 2016 ident: 241_CR10 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2016.08.002 contributor: fullname: P Ertl – volume: 19 start-page: 667 year: 2009 ident: 241_CR34 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2008.02.007 contributor: fullname: H Piitulainen – volume: 2 start-page: 811 year: 2011 ident: 241_CR41 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2011.05.002 contributor: fullname: DR Rogers – volume: 19 start-page: 719 issue: 5 year: 2009 ident: 241_CR29 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2008.07.006 contributor: fullname: L Mesin – volume: 43 start-page: 1573 issue: 8 year: 2010 ident: 241_CR8 publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.01.027 contributor: fullname: CJ De Luca – volume: 3 start-page: 7 year: 2015 ident: 241_CR38 publication-title: Isokinet Exerc Sci contributor: fullname: VAR Rocha Jr – volume: 25 start-page: 1431 issue: 9 year: 2016 ident: 241_CR31 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2628373 contributor: fullname: Y Na – volume: 38 start-page: R27 year: 2017 ident: 241_CR25 publication-title: Physiol Meas doi: 10.1088/1361-6579/aa60b9 contributor: fullname: G Marco – volume: 22 start-page: 1854 issue: 6 year: 2018 ident: 241_CR39 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2783849 contributor: fullname: VA Rocha – volume: 8 start-page: 305 year: 1998 ident: 241_CR15 publication-title: J Electromyogr Kinesiol doi: 10.1016/S1050-6411(97)00043-6 contributor: fullname: JY Hogrel – ident: 241_CR27 doi: 10.1016/j.jsams – volume: 25 start-page: 214 issue: 2 year: 2014 ident: 241_CR18 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2014.11.008 contributor: fullname: A Huebner |
SSID | ssj0001671981 |
Score | 2.2595592 |
Snippet | Purpose
The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1087 |
SubjectTerms | Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Engineering Original Article |
Title | Scalable weighted-cumulated methodology for fatigue estimation |
URI | https://link.springer.com/article/10.1007/s42600-022-00241-z |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGcoEDKpsom3LgNriKHcdOLkhtBapAgIAW9RZ5GxjBTNAsQpp_wr_te3a20gFRLlFiJVbyvufnL36LCXnGfSq1FDm1wI2psNxSk9ucaq28kNpkucHc4bfv5PGpeH2Wn41GvwZRS-uV2bebrXkl_4MqtAGumCV7BWS7TqEBzgFfOALCcPwnjD-BgEPq08-wwOkdtesZ7scFLDJuDR0rLGEo4QSe-YKlWmFMz3o42trcTQAe-g5iRn4Az_fVCltknB-__w4mcrrQYJphAsXlxbrlwHa6tDViPl0OHjhYaHTIH8JXjT_WNvqYPmv0e-kuONjVGH0yi54g_c3jFQjraz1cmOB8EOQR7BcQB0BfxWpM-35LW2OAs2KgaGJgTVnaTMZxZgamwrZa_RjosQzF9im-CTIPRjf9HNf69X-b-rqAxK54c-ijgj6q0Ee1uUauc7BhaDzffCj65TupWBm2wO0-qUnJComZl17lIu256HMPVOZkl9xq_kGSg6hQt8nIz--Qm4PKlHfJi1a1ksuqlQxUKwHVShrVSnrVukdOX708OTqmzVYb1PK82FAuXAGWfMIdhkmpIlXKKGlkmlkmHRIp50zJbJlboSdSGKDpTMINWeptpnh2n-zM67l_QBLHSu0m2nidC6FsoUvHYPSXhdJGAP_dI-NWEtWPWFGl-rP498jzVlhVM_KWf7n94ZU6f0Ru9Ir7mOysFmv_BDjmyjwNaJ8D_sx42Q |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+weighted-cumulated+methodology+for+fatigue+estimation&rft.jtitle=Research+on+biomedical+engineering&rft.au=de+Oliveira+Nascimento%2C+Francisco+Assis&rft.au=de+Ara%C3%BAjo+Rocha%2C+Valdinar&rft.au=do+Carmo%2C+Jake+Carvalho&rft.date=2022-12-01&rft.issn=2446-4740&rft.eissn=2446-4740&rft.volume=38&rft.issue=4&rft.spage=1087&rft.epage=1101&rft_id=info:doi/10.1007%2Fs42600-022-00241-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42600_022_00241_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2446-4740&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2446-4740&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2446-4740&client=summon |