Scalable weighted-cumulated methodology for fatigue estimation

Purpose The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent decades. The use of S-EMG is interesting because it allows accessing the muscular structure and function through the use of a noninvasive techn...

Full description

Saved in:
Bibliographic Details
Published inResearch on biomedical engineering Vol. 38; no. 4; pp. 1087 - 1101
Main Authors de Oliveira Nascimento, Francisco Assis, de Araújo Rocha, Valdinar, do Carmo, Jake Carvalho
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent decades. The use of S-EMG is interesting because it allows accessing the muscular structure and function through the use of a noninvasive technique. This is a subject of interest to many areas of science such as clinical and orthopedic medicine, biomechanics, physiotherapy and rehabilitation, telemedicine, control of interfaces, intelligent prosthetics, and exoskeletons control and for expert systems to support medical diagnosis to neuromuscular diseases. Changes in the spectral signature of the S-EMG signal such as spectral shift for low frequencies and the increase in the dynamic range of the signal indicate the installation of the biological phenomenon of fatigue. For instance, classical techniques such as zero-crossing, median frequency (MDF), and mean power frequency (MPF) are able to perceive the spectral shift in S-EMG signals. On the other hand, techniques such as root mean square (RMS) values can only perceive the variation in the dynamic range of the S-EMG signal. Methods In this work, new mathematical models for the objective assessment of muscle fatigue are presented. We sought to design models for objective fatigue estimators that simultaneously perceive the spectral shift for low frequencies and the increase in the dynamic range in the S-EMG signal during the instauration of the fatigue process. The new approach is integrated to the weighted-cumulated methodology framework previously proposed. Three new objective muscle fatigue estimators were conceived: the scalable weighted-cumulated Fourier estimator, the weighted-cumulated wavelet estimator (SWCW), and the weighted-cumulated p-side lobe attenuation algorithm (p-SL). Results To evaluate the proposed tools based on the scalable weighted-cumulated methodology, we investigated two dynamic protocols with muscle fatigue production. The S-EMG signals recorded from the biceps brachii and from the vastus lateralis were used. The results obtained with the application of the new proposed objective fatigue estimators are shown. The results are discussed and compared with the weighted-cumulated models. Conclusions The scalable fatigue estimators exhibited an experimental behavior consistent with the assumptions on which they were designed. The results have been promising.
AbstractList Purpose The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent decades. The use of S-EMG is interesting because it allows accessing the muscular structure and function through the use of a noninvasive technique. This is a subject of interest to many areas of science such as clinical and orthopedic medicine, biomechanics, physiotherapy and rehabilitation, telemedicine, control of interfaces, intelligent prosthetics, and exoskeletons control and for expert systems to support medical diagnosis to neuromuscular diseases. Changes in the spectral signature of the S-EMG signal such as spectral shift for low frequencies and the increase in the dynamic range of the signal indicate the installation of the biological phenomenon of fatigue. For instance, classical techniques such as zero-crossing, median frequency (MDF), and mean power frequency (MPF) are able to perceive the spectral shift in S-EMG signals. On the other hand, techniques such as root mean square (RMS) values can only perceive the variation in the dynamic range of the S-EMG signal. Methods In this work, new mathematical models for the objective assessment of muscle fatigue are presented. We sought to design models for objective fatigue estimators that simultaneously perceive the spectral shift for low frequencies and the increase in the dynamic range in the S-EMG signal during the instauration of the fatigue process. The new approach is integrated to the weighted-cumulated methodology framework previously proposed. Three new objective muscle fatigue estimators were conceived: the scalable weighted-cumulated Fourier estimator, the weighted-cumulated wavelet estimator (SWCW), and the weighted-cumulated p-side lobe attenuation algorithm (p-SL). Results To evaluate the proposed tools based on the scalable weighted-cumulated methodology, we investigated two dynamic protocols with muscle fatigue production. The S-EMG signals recorded from the biceps brachii and from the vastus lateralis were used. The results obtained with the application of the new proposed objective fatigue estimators are shown. The results are discussed and compared with the weighted-cumulated models. Conclusions The scalable fatigue estimators exhibited an experimental behavior consistent with the assumptions on which they were designed. The results have been promising.
Author de Oliveira Nascimento, Francisco Assis
de Araújo Rocha, Valdinar
do Carmo, Jake Carvalho
Author_xml – sequence: 1
  givenname: Francisco Assis
  orcidid: 0000-0002-8217-1983
  surname: de Oliveira Nascimento
  fullname: de Oliveira Nascimento, Francisco Assis
  email: assis@ene.unb.br, assis@unb.br
  organization: Group of Digital Signal Processing, Department of Electrical Engineering, University of Brasília
– sequence: 2
  givenname: Valdinar
  surname: de Araújo Rocha
  fullname: de Araújo Rocha, Valdinar
  organization: Group of Digital Signal Processing, Department of Electrical Engineering, University of Brasília
– sequence: 3
  givenname: Jake Carvalho
  surname: do Carmo
  fullname: do Carmo, Jake Carvalho
  organization: Laboratory of Biological Signal Processing, Faculty of Physical Education, University of Brasília
BookMark eNp9kLFOwzAURS1UJErpDzDlBwzPjmsnCxKqgCJVYgBmK7Ff0lRJjOxEqPl6DGFgYnp3uOfp6lySRe96JOSawQ0DULdBcAlAgXMKwAWj0xlZciEkFUrA4k--IOsQjgDApGJ5xpbk7tUUbVG2mHxiUx8GtNSM3dgWMSUdDgdnXevqU1I5n1TF0NQjJhiGpovZ9VfkvCragOvfuyLvjw9v2x3dvzw9b-_31PBNNlEubJZlUHEreKpUBkqVSpYSUsOkNYjW2jJnJt8YUVRSlIxxJmMhBTSp4umK8Pmv8S4Ej5X-8HGCP2kG-luCniXoKEH_SNBThNIZCrHc1-j10Y2-jzv_o74AhkZh2Q
Cites_doi 10.1016/j.jelekin.2014.11.008
10.1007/BF02441600
10.1088/1361-6579/aa60b9
10.1016/j.medengphy.2016.09.009
10.1016/j.bspc.2019.02.007
10.1016/j.jelekin.2008.02.007
10.1016/j.jelekin.2013.05.001
10.1016/j.jelekin.2008.11.005
10.3390/s110403545
10.1109/TBME.2012.2215031
10.1016/j.proeng.2012.01.1263
10.1016/j.jelekin.2007.01.007
10.1016/j.jelekin.2009.01.008
10.1016/S1050-6411(98)00042-X
10.1016/j.bspc.2021.102510
10.1109/JBHI.2014.2356340
10.1016/S1050-6411(97)00043-6
10.1109/TNSRE.2016.2632755
10.1016/j.jbiomech.2010.01.027
10.3390/e22050529
10.1002/mus.23926
10.1016/j.jelekin.2013.05.005
10.1109/TBCAS.2016.2520563
10.1109/JBHI.2017.2783849
10.1016/j.jelekin.2009.03.011
10.1007/s12541-013-0161-4
10.1007/s42600-019-00010-5
10.1109/JBHI.2013.2286408
10.1016/j.jelekin.2016.08.002
10.1049/el.2015.3460
10.1016/j.jelekin.2008.07.006
10.4236/am.2014.513181
10.1016/j.jbmt.2017.03.021
10.1049/el.2012.2316
10.1016/j.jelekin.2007.10.012
10.1007/s00421-015-3100-5
10.1016/j.bspc.2021.102578
10.1109/TNSRE.2016.2628373
10.1016/j.jelekin.2011.05.002
10.1155/2017/3937254
10.1364/BOE.403976
10.1016/j.jbiomech.2010.05.009
10.1016/j.jsams
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s42600-022-00241-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2446-4740
EndPage 1101
ExternalDocumentID 10_1007_s42600_022_00241_z
GrantInformation_xml – fundername: Fundação de Apoio à Pesquisa do Distrito Federal
  grantid: 00193-00000126/2019-46
  funderid: http://dx.doi.org/10.13039/501100005668
GroupedDBID -EM
406
5VS
AAFGU
AAHNG
AATNV
AAUYE
AAYFA
ABECU
ABFGW
ABFTV
ABJNI
ABKAS
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXHO
ABXPI
ACBMV
ACBRV
ACBYP
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADBBV
ADKNI
ADMDM
ADOXG
ADTPH
ADURQ
ADYFF
AEFTE
AEJRE
AESKC
AESTI
AEVTX
AFNRJ
AFQWF
AGDGC
AGGBP
AGJBK
AGMZJ
AILAN
AIMYW
AITGF
AJDOV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
APOWU
AXYYD
AZFZN
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FFXSO
FNLPD
GGCAI
GROUPED_DOAJ
IAO
IHR
IKXTQ
INH
IPNFZ
ISR
IWAJR
JZLTJ
KOV
KQ8
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
OK1
PT4
RIG
RSC
RSV
SCD
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
0R~
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
CITATION
FIGPU
ITC
SJYHP
ID FETCH-LOGICAL-c258z-24d8880f2d423778077b76b603c16dceedddb91c95c4af64b112166b630ec3723
ISSN 2446-4740
IngestDate Thu Sep 26 16:28:20 EDT 2024
Sat Dec 16 12:05:52 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fourier transform
Wavelet transform
Weighted-cumulated methodology
Muscle fatigue
Surface electromyography signals
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258z-24d8880f2d423778077b76b603c16dceedddb91c95c4af64b112166b630ec3723
ORCID 0000-0002-8217-1983
PageCount 15
ParticipantIDs crossref_primary_10_1007_s42600_022_00241_z
springer_journals_10_1007_s42600_022_00241_z
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Research on biomedical engineering
PublicationTitleAbbrev Res. Biomed. Eng
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Al-Mulla, Sepulveda, Colley (CR1) 2011; 11
De Luca, Gilmore, Kuznetsov, Roy (CR8) 2010; 43
Nascimento, Rocha, Andrade, Carmo (CR32) 2019; 35
Hu, Huang, Li (CR17) 2013; 49
Huebner, Faenger, Schenk, Scholle, Anders (CR18) 2014; 25
Arabadzhiev, Dimitrov, Dimitrova, Dimitrov (CR2) 2010; 20
Gonzalez-Izal, Cadore, Izquierdo (CR11) 2014; 49
Biagetti, Crippa, Curzi, Orcioni, Turchetti (CR3) 2015; 19
CR16
Karthick, Ramakrishnan (CR21) 2016; 3
Marco, Alberto, Taian (CR25) 2017; 38
CR13
González-Izal, Malanda, Navarro-Amézqueta, Gorostiaga, Mallor, Ibañez, Izquierdo (CR12) 2010; 20
Koutsos, Cretu, Georgiou (CR23) 2016; 10
Chowdhury, Nimbarte, Jaridi, Creese (CR5) 2013; 23
Ericson (CR9) 1986; 16
Piitulainen, Rantalainen, Linnamo, Komi, Avela (CR34) 2009; 19
Marri, Swaminathan (CR26) 2015; 51
Sung, Zurcher, Kaufman (CR44) 2010; 20
Thongpanja, Phinyomark, Phukpattaranont, Limsakul (CR45) 2012; 32
Coorevits, Danneels, Cambier, Ramon, Vanderstraeten (CR7) 2008; 18
Greco, Valenza, Bicchi, Bianchi, Scilingo (CR14) 2019; 51
Kahl, Hofmann (CR20) 2016; 38
Xu, Rabotti, Mischi (CR47) 2017; 25
Rocha, Carmo, Nascimento (CR39) 2018; 22
Rogers, MacIsaac (CR40) 2013; 23
Coorevits, Danneels, Cambier, Ramon, Druyts, Karlsson, De Moor, Vanderstraeten (CR6) 2008; 8
Wang, Tang, Wang, Mo (CR46) 2021; 67
Na, Kim (CR31) 2016; 25
Rogers, MacIsaac (CR41) 2011; 2
Nascimento, Trabuco, Macchiavello, Gusmão, Costa (CR33) 2021; 68
CR28
Yochum, Bakir, Lepers, Binczak (CR48) 2012; 59
CR27
Miranda, Maia, Oliveira, Farias, da Silva, Lima, Willardson, Paz (CR30) 2018; 22
Rocha, Bottaro, Pereira, Ferreira, Carmo, Brown, Nascimento (CR38) 2015; 3
Bigliassi, Scalassara, Kanthack, Abrão, de Moraes, Altimari (CR4) 2014; 5
Ertl, Kruse, Tilp (CR10) 2016; 30
CR43
Rainoldi, Galard, Maderna, Comi, Conte, Merletti (CR37) 1999; 2
CR42
Hogrel, Duchêne, Marini (CR15) 1998; 8
Inbar, Allin, Paiss, Kranz (CR19) 1986; 24
Rampichini, Vieira, Castiglioni, Merati (CR36) 2020; 22
Liu, Chang, Cheng (CR24) 2014; 18
Kim, Kim, Park, Ahn, Lee, Kim (CR22) 2013; 14
Pitt, Dotan, Millar, Long, Tokuno, O’Brien, Falk (CR35) 2015; 115
Mesin, Merletti, Rainoldi (CR29) 2009; 19
P Coorevits (241_CR6) 2008; 8
M Gonzalez-Izal (241_CR11) 2014; 49
S Wang (241_CR46) 2021; 67
P Ertl (241_CR10) 2016; 30
J Kim (241_CR22) 2013; 14
VA Rocha (241_CR39) 2018; 22
241_CR43
A Huebner (241_CR18) 2014; 25
241_CR42
L Mesin (241_CR29) 2009; 19
M Bigliassi (241_CR4) 2014; 5
S Rampichini (241_CR36) 2020; 22
M Yochum (241_CR48) 2012; 59
241_CR16
L Xu (241_CR47) 2017; 25
B Pitt (241_CR35) 2015; 115
H Miranda (241_CR30) 2018; 22
P Coorevits (241_CR7) 2008; 18
FAO Nascimento (241_CR32) 2019; 35
241_CR13
GF Inbar (241_CR19) 1986; 24
Y Na (241_CR31) 2016; 25
E Koutsos (241_CR23) 2016; 10
WW Hu (241_CR17) 2013; 49
G Marco (241_CR25) 2017; 38
VAR Rocha Jr (241_CR38) 2015; 3
SK Chowdhury (241_CR5) 2013; 23
TI Arabadzhiev (241_CR2) 2010; 20
G Biagetti (241_CR3) 2015; 19
A Greco (241_CR14) 2019; 51
A Rainoldi (241_CR37) 1999; 2
PS Sung (241_CR44) 2010; 20
DR Rogers (241_CR41) 2011; 2
M González-Izal (241_CR12) 2010; 20
H Piitulainen (241_CR34) 2009; 19
MR Al-Mulla (241_CR1) 2011; 11
L Kahl (241_CR20) 2016; 38
K Marri (241_CR26) 2015; 51
241_CR27
241_CR28
DR Rogers (241_CR40) 2013; 23
S-H Liu (241_CR24) 2014; 18
JY Hogrel (241_CR15) 1998; 8
FAO Nascimento (241_CR33) 2021; 68
M Ericson (241_CR9) 1986; 16
S Thongpanja (241_CR45) 2012; 32
CJ De Luca (241_CR8) 2010; 43
PA Karthick (241_CR21) 2016; 3
References_xml – volume: 25
  start-page: 214
  issue: 2
  year: 2014
  end-page: 223
  ident: CR18
  article-title: Alteration of surface EMG amplitude levels of five major trunk muscles by defined electrode location displacement
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2014.11.008
  contributor:
    fullname: Anders
– volume: 24
  start-page: 10
  year: 1986
  end-page: 18
  ident: CR19
  article-title: Monitoring surface EMG spectral changes by zero crossing rate
  publication-title: Med Biol Eng Compu
  doi: 10.1007/BF02441600
  contributor:
    fullname: Kranz
– volume: 38
  start-page: R27
  year: 2017
  end-page: R60
  ident: CR25
  article-title: Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa60b9
  contributor:
    fullname: Taian
– ident: CR43
– volume: 38
  start-page: 1260
  year: 2016
  end-page: 1269
  ident: CR20
  article-title: Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2016.09.009
  contributor:
    fullname: Hofmann
– volume: 51
  start-page: 42
  year: 2019
  end-page: 49
  ident: CR14
  article-title: Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.02.007
  contributor:
    fullname: Scilingo
– volume: 19
  start-page: 667
  year: 2009
  end-page: 675
  ident: CR34
  article-title: Innervation zone shift at different levels of isometric contraction in the biceps brachii muscle
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2008.02.007
  contributor:
    fullname: Avela
– volume: 23
  start-page: 995
  issue: 5
  year: 2013
  end-page: 1003
  ident: CR5
  article-title: Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2013.05.001
  contributor:
    fullname: Creese
– volume: 20
  start-page: 25
  year: 2010
  end-page: 30
  ident: CR44
  article-title: Reliability difference between spectral and entropic measures of erector spinae muscle fatigability
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2008.11.005
  contributor:
    fullname: Kaufman
– ident: CR16
– volume: 11
  start-page: 3545
  year: 2011
  end-page: 3594
  ident: CR1
  article-title: A review of non-invasive techniques to detect and predict localized muscle fatigue
  publication-title: Sensors
  doi: 10.3390/s110403545
  contributor:
    fullname: Colley
– volume: 59
  start-page: 3372
  issue: 12
  year: 2012
  end-page: 3378
  ident: CR48
  article-title: Estimation of muscular fatigue under electromyostimulation using CWT
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2215031
  contributor:
    fullname: Binczak
– volume: 32
  start-page: 239
  year: 2012
  end-page: 245
  ident: CR45
  article-title: A feasibility study of fatigue and muscle contraction indices based on EMG time-dependent spectral analysis
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2012.01.1263
  contributor:
    fullname: Limsakul
– volume: 8
  start-page: 798
  year: 2008
  end-page: 806
  ident: CR6
  article-title: Test–retest reliability of wavelet – and Fourier based EMG (instantaneous) median frequencies in the evaluation of back and hip muscle fatigue during isometric back extensions
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2007.01.007
  contributor:
    fullname: Vanderstraeten
– volume: 20
  start-page: 223
  year: 2010
  end-page: 232
  ident: CR2
  article-title: Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2009.01.008
  contributor:
    fullname: Dimitrov
– volume: 2
  start-page: 105
  year: 1999
  end-page: 119
  ident: CR37
  article-title: Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(98)00042-X
  contributor:
    fullname: Merletti
– volume: 67
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR46
  article-title: Analysis of fatigue in the biceps brachii by using rapid refined composite multiscale sample entropy
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102510
  contributor:
    fullname: Mo
– volume: 19
  start-page: 1672
  issue: 5
  year: 2015
  end-page: 1681
  ident: CR3
  article-title: Analysis of the EMG signal during cyclic movements using multicomponent AM–FM decomposition
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2356340
  contributor:
    fullname: Turchetti
– volume: 8
  start-page: 305
  year: 1998
  end-page: 315
  ident: CR15
  article-title: Variability of some SEMG parameter estimates with electrode location
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(97)00043-6
  contributor:
    fullname: Marini
– volume: 25
  start-page: 1453
  issue: 9
  year: 2017
  end-page: 1460
  ident: CR47
  article-title: Towards real-time estimation of muscle-fiber conduction velocity using delay-locked loop
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2632755
  contributor:
    fullname: Mischi
– volume: 43
  start-page: 1573
  issue: 8
  year: 2010
  end-page: 1579
  ident: CR8
  article-title: Filtering the surface EMG signal: movement artifact and baseline noise contamination
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.01.027
  contributor:
    fullname: Roy
– ident: CR27
– volume: 22
  start-page: 1
  year: 2020
  end-page: 31
  ident: CR36
  article-title: Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: a review
  publication-title: Entropy
  doi: 10.3390/e22050529
  contributor:
    fullname: Merati
– ident: CR42
– volume: 49
  start-page: 389
  issue: 3
  year: 2014
  end-page: 397
  ident: CR11
  article-title: Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23926
  contributor:
    fullname: Izquierdo
– volume: 23
  start-page: 1004
  year: 2013
  end-page: 1011
  ident: CR40
  article-title: A comparison of EMG-based muscle fatigue assessments during dynamic contractions
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2013.05.005
  contributor:
    fullname: MacIsaac
– volume: 16
  start-page: 1
  year: 1986
  end-page: 43
  ident: CR9
  article-title: On the biomechanics of cycling, a study of joint and muscle load during exercise on the bicycle ergometer
  publication-title: J Rehab Med Supp
  contributor:
    fullname: Ericson
– volume: 10
  start-page: 1119
  issue: 6
  year: 2016
  end-page: 1128
  ident: CR23
  article-title: A muscle fibre conduction velocity tracking ASIC for local fatigue monitoring
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2016.2520563
  contributor:
    fullname: Georgiou
– volume: 22
  start-page: 1854
  issue: 6
  year: 2018
  end-page: 1862
  ident: CR39
  article-title: Weighted-cumulated S-EMG muscle fatigue estimator
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2783849
  contributor:
    fullname: Nascimento
– volume: 20
  start-page: 233
  year: 2010
  end-page: 240
  ident: CR12
  article-title: EMG spectral indices and muscle power fatigue during dynamic contractions
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2009.03.011
  contributor:
    fullname: Izquierdo
– volume: 14
  start-page: 1185
  issue: 7
  year: 2013
  end-page: 1191
  ident: CR22
  article-title: Bandwidth optimization of the fatigue index to estimate muscle fatigue during dynamic contractions
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-013-0161-4
  contributor:
    fullname: Kim
– volume: 35
  start-page: 77
  year: 2019
  end-page: 87
  ident: CR32
  article-title: Cycling fatigue evaluation using weighted-cumulated methodology
  publication-title: Research on Biomedical Engineering
  doi: 10.1007/s42600-019-00010-5
  contributor:
    fullname: Carmo
– volume: 18
  start-page: 1647
  issue: 5
  year: 2014
  end-page: 1658
  ident: CR24
  article-title: The progression of muscle fatigue during exercise estimation with the aid of high-frequency component parameters derived from ensemble empirical mode decomposition
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2286408
  contributor:
    fullname: Cheng
– volume: 30
  start-page: 216
  year: 2016
  end-page: 230
  ident: CR10
  article-title: Detecting fatigue thresholds from electromyographic signals: a systematic review on approaches and methodologies
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2016.08.002
  contributor:
    fullname: Tilp
– ident: CR13
– volume: 3
  start-page: 185
  year: 2016
  end-page: 186
  ident: CR21
  article-title: Muscle fatigue analysis using surface EMG signals and time–frequency based medium-to-low band power ratio
  publication-title: Electron Lett
  doi: 10.1049/el.2015.3460
  contributor:
    fullname: Ramakrishnan
– volume: 19
  start-page: 719
  issue: 5
  year: 2009
  end-page: 726
  ident: CR29
  article-title: Surface EMG: the issue of electrode location
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2008.07.006
  contributor:
    fullname: Rainoldi
– volume: 5
  start-page: 1878
  year: 2014
  end-page: 1886
  ident: CR4
  article-title: Fourier and wavelet spectral analysis of EMG signals in 1-km cycling time-trial
  publication-title: Appl Math
  doi: 10.4236/am.2014.513181
  contributor:
    fullname: Altimari
– volume: 22
  start-page: 178
  year: 2018
  end-page: 183
  ident: CR30
  article-title: Myoeletric indices of fatigue adopting different rest intervals during leg press sets
  publication-title: J Bodyw Mov Ther
  doi: 10.1016/j.jbmt.2017.03.021
  contributor:
    fullname: Paz
– volume: 49
  start-page: 89
  issue: 2
  year: 2013
  end-page: 91
  ident: CR17
  article-title: Improved algorithm of muscle fatigue detection using linear regression analysis
  publication-title: Electron Lett
  doi: 10.1049/el.2012.2316
  contributor:
    fullname: Li
– volume: 18
  start-page: 997
  issue: 6
  year: 2008
  end-page: 1005
  ident: CR7
  article-title: Assessment of the validity of the Biering-Sørensen test for measuring back muscle fatigue based on EMG median frequency characteristics of back and hip muscles
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2007.10.012
  contributor:
    fullname: Vanderstraeten
– volume: 51
  start-page: 107
  year: 2015
  end-page: 114
  ident: CR26
  article-title: Identification of onset of fatigue in biceps brachii muscles using surface EMG and multifractal DMA algorithm
  publication-title: Biomed Sci Instrum
  contributor:
    fullname: Swaminathan
– ident: CR28
– volume: 115
  start-page: 1273
  issue: 6
  year: 2015
  end-page: 1281
  ident: CR35
  article-title: The electromyographic threshold in boys and men
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-015-3100-5
  contributor:
    fullname: Falk
– volume: 3
  start-page: 7
  year: 2015
  end-page: 15
  ident: CR38
  article-title: Reliability of normalized surface electromyographic signals of maximal upper-body isokinetic strength
  publication-title: Isokinet Exerc Sci
  contributor:
    fullname: Nascimento
– volume: 68
  start-page: 102578
  year: 2021
  end-page: 102588
  ident: CR33
  article-title: Improved two-dimensional dynamic S-EMG signal compression with robust automatic segmentation
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102578
  contributor:
    fullname: Costa
– volume: 25
  start-page: 1431
  issue: 9
  year: 2016
  end-page: 1439
  ident: CR31
  article-title: Dynamic elbow flexion force estimation through a muscle twitch model and sEMG in a fatigue condition
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2628373
  contributor:
    fullname: Kim
– volume: 2
  start-page: 811
  year: 2011
  end-page: 818
  ident: CR41
  article-title: EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2011.05.002
  contributor:
    fullname: MacIsaac
– ident: 241_CR43
  doi: 10.1155/2017/3937254
– volume: 68
  start-page: 102578
  year: 2021
  ident: 241_CR33
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102578
  contributor:
    fullname: FAO Nascimento
– volume: 20
  start-page: 233
  year: 2010
  ident: 241_CR12
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2009.03.011
  contributor:
    fullname: M González-Izal
– volume: 18
  start-page: 1647
  issue: 5
  year: 2014
  ident: 241_CR24
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2013.2286408
  contributor:
    fullname: S-H Liu
– volume: 8
  start-page: 798
  year: 2008
  ident: 241_CR6
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2007.01.007
  contributor:
    fullname: P Coorevits
– volume: 3
  start-page: 185
  year: 2016
  ident: 241_CR21
  publication-title: Electron Lett
  doi: 10.1049/el.2015.3460
  contributor:
    fullname: PA Karthick
– volume: 11
  start-page: 3545
  year: 2011
  ident: 241_CR1
  publication-title: Sensors
  doi: 10.3390/s110403545
  contributor:
    fullname: MR Al-Mulla
– ident: 241_CR16
– ident: 241_CR42
  doi: 10.1364/BOE.403976
– volume: 20
  start-page: 25
  year: 2010
  ident: 241_CR44
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2008.11.005
  contributor:
    fullname: PS Sung
– volume: 23
  start-page: 1004
  year: 2013
  ident: 241_CR40
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2013.05.005
  contributor:
    fullname: DR Rogers
– volume: 22
  start-page: 178
  year: 2018
  ident: 241_CR30
  publication-title: J Bodyw Mov Ther
  doi: 10.1016/j.jbmt.2017.03.021
  contributor:
    fullname: H Miranda
– ident: 241_CR13
  doi: 10.1016/j.jbiomech.2010.05.009
– volume: 51
  start-page: 107
  year: 2015
  ident: 241_CR26
  publication-title: Biomed Sci Instrum
  contributor:
    fullname: K Marri
– volume: 16
  start-page: 1
  year: 1986
  ident: 241_CR9
  publication-title: J Rehab Med Supp
  contributor:
    fullname: M Ericson
– volume: 10
  start-page: 1119
  issue: 6
  year: 2016
  ident: 241_CR23
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2016.2520563
  contributor:
    fullname: E Koutsos
– volume: 67
  start-page: 1
  year: 2021
  ident: 241_CR46
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102510
  contributor:
    fullname: S Wang
– volume: 59
  start-page: 3372
  issue: 12
  year: 2012
  ident: 241_CR48
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2215031
  contributor:
    fullname: M Yochum
– volume: 22
  start-page: 1
  year: 2020
  ident: 241_CR36
  publication-title: Entropy
  doi: 10.3390/e22050529
  contributor:
    fullname: S Rampichini
– volume: 49
  start-page: 389
  issue: 3
  year: 2014
  ident: 241_CR11
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23926
  contributor:
    fullname: M Gonzalez-Izal
– volume: 2
  start-page: 105
  year: 1999
  ident: 241_CR37
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(98)00042-X
  contributor:
    fullname: A Rainoldi
– volume: 25
  start-page: 1453
  issue: 9
  year: 2017
  ident: 241_CR47
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2632755
  contributor:
    fullname: L Xu
– volume: 35
  start-page: 77
  year: 2019
  ident: 241_CR32
  publication-title: Research on Biomedical Engineering
  doi: 10.1007/s42600-019-00010-5
  contributor:
    fullname: FAO Nascimento
– ident: 241_CR28
– volume: 115
  start-page: 1273
  issue: 6
  year: 2015
  ident: 241_CR35
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-015-3100-5
  contributor:
    fullname: B Pitt
– volume: 49
  start-page: 89
  issue: 2
  year: 2013
  ident: 241_CR17
  publication-title: Electron Lett
  doi: 10.1049/el.2012.2316
  contributor:
    fullname: WW Hu
– volume: 20
  start-page: 223
  year: 2010
  ident: 241_CR2
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2009.01.008
  contributor:
    fullname: TI Arabadzhiev
– volume: 23
  start-page: 995
  issue: 5
  year: 2013
  ident: 241_CR5
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2013.05.001
  contributor:
    fullname: SK Chowdhury
– volume: 51
  start-page: 42
  year: 2019
  ident: 241_CR14
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.02.007
  contributor:
    fullname: A Greco
– volume: 5
  start-page: 1878
  year: 2014
  ident: 241_CR4
  publication-title: Appl Math
  doi: 10.4236/am.2014.513181
  contributor:
    fullname: M Bigliassi
– volume: 24
  start-page: 10
  year: 1986
  ident: 241_CR19
  publication-title: Med Biol Eng Compu
  doi: 10.1007/BF02441600
  contributor:
    fullname: GF Inbar
– volume: 32
  start-page: 239
  year: 2012
  ident: 241_CR45
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2012.01.1263
  contributor:
    fullname: S Thongpanja
– volume: 18
  start-page: 997
  issue: 6
  year: 2008
  ident: 241_CR7
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2007.10.012
  contributor:
    fullname: P Coorevits
– volume: 38
  start-page: 1260
  year: 2016
  ident: 241_CR20
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2016.09.009
  contributor:
    fullname: L Kahl
– volume: 19
  start-page: 1672
  issue: 5
  year: 2015
  ident: 241_CR3
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2356340
  contributor:
    fullname: G Biagetti
– volume: 14
  start-page: 1185
  issue: 7
  year: 2013
  ident: 241_CR22
  publication-title: Int J Precis Eng Manuf
  doi: 10.1007/s12541-013-0161-4
  contributor:
    fullname: J Kim
– volume: 30
  start-page: 216
  year: 2016
  ident: 241_CR10
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2016.08.002
  contributor:
    fullname: P Ertl
– volume: 19
  start-page: 667
  year: 2009
  ident: 241_CR34
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2008.02.007
  contributor:
    fullname: H Piitulainen
– volume: 2
  start-page: 811
  year: 2011
  ident: 241_CR41
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2011.05.002
  contributor:
    fullname: DR Rogers
– volume: 19
  start-page: 719
  issue: 5
  year: 2009
  ident: 241_CR29
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2008.07.006
  contributor:
    fullname: L Mesin
– volume: 43
  start-page: 1573
  issue: 8
  year: 2010
  ident: 241_CR8
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.01.027
  contributor:
    fullname: CJ De Luca
– volume: 3
  start-page: 7
  year: 2015
  ident: 241_CR38
  publication-title: Isokinet Exerc Sci
  contributor:
    fullname: VAR Rocha Jr
– volume: 25
  start-page: 1431
  issue: 9
  year: 2016
  ident: 241_CR31
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2628373
  contributor:
    fullname: Y Na
– volume: 38
  start-page: R27
  year: 2017
  ident: 241_CR25
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa60b9
  contributor:
    fullname: G Marco
– volume: 22
  start-page: 1854
  issue: 6
  year: 2018
  ident: 241_CR39
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2783849
  contributor:
    fullname: VA Rocha
– volume: 8
  start-page: 305
  year: 1998
  ident: 241_CR15
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/S1050-6411(97)00043-6
  contributor:
    fullname: JY Hogrel
– ident: 241_CR27
  doi: 10.1016/j.jsams
– volume: 25
  start-page: 214
  issue: 2
  year: 2014
  ident: 241_CR18
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2014.11.008
  contributor:
    fullname: A Huebner
SSID ssj0001671981
Score 2.2595592
Snippet Purpose The objective measurement of muscle fatigue through the analysis of surface electromyographic signals (S-EMG) has been the object of study in recent...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1087
SubjectTerms Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Engineering
Original Article
Title Scalable weighted-cumulated methodology for fatigue estimation
URI https://link.springer.com/article/10.1007/s42600-022-00241-z
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGcoEDKpsom3LgNriKHcdOLkhtBapAgIAW9RZ5GxjBTNAsQpp_wr_te3a20gFRLlFiJVbyvufnL36LCXnGfSq1FDm1wI2psNxSk9ucaq28kNpkucHc4bfv5PGpeH2Wn41GvwZRS-uV2bebrXkl_4MqtAGumCV7BWS7TqEBzgFfOALCcPwnjD-BgEPq08-wwOkdtesZ7scFLDJuDR0rLGEo4QSe-YKlWmFMz3o42trcTQAe-g5iRn4Az_fVCltknB-__w4mcrrQYJphAsXlxbrlwHa6tDViPl0OHjhYaHTIH8JXjT_WNvqYPmv0e-kuONjVGH0yi54g_c3jFQjraz1cmOB8EOQR7BcQB0BfxWpM-35LW2OAs2KgaGJgTVnaTMZxZgamwrZa_RjosQzF9im-CTIPRjf9HNf69X-b-rqAxK54c-ijgj6q0Ee1uUauc7BhaDzffCj65TupWBm2wO0-qUnJComZl17lIu256HMPVOZkl9xq_kGSg6hQt8nIz--Qm4PKlHfJi1a1ksuqlQxUKwHVShrVSnrVukdOX708OTqmzVYb1PK82FAuXAGWfMIdhkmpIlXKKGlkmlkmHRIp50zJbJlboSdSGKDpTMINWeptpnh2n-zM67l_QBLHSu0m2nidC6FsoUvHYPSXhdJGAP_dI-NWEtWPWFGl-rP498jzVlhVM_KWf7n94ZU6f0Ru9Ir7mOysFmv_BDjmyjwNaJ8D_sx42Q
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+weighted-cumulated+methodology+for+fatigue+estimation&rft.jtitle=Research+on+biomedical+engineering&rft.au=de+Oliveira+Nascimento%2C+Francisco+Assis&rft.au=de+Ara%C3%BAjo+Rocha%2C+Valdinar&rft.au=do+Carmo%2C+Jake+Carvalho&rft.date=2022-12-01&rft.issn=2446-4740&rft.eissn=2446-4740&rft.volume=38&rft.issue=4&rft.spage=1087&rft.epage=1101&rft_id=info:doi/10.1007%2Fs42600-022-00241-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42600_022_00241_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2446-4740&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2446-4740&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2446-4740&client=summon