Robust monitoring conditional volatility change for time series based on support vector regression
This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a (nonlinear) generalized autoregressive conditional heteroscedastic (GARCH) model. We employ a specifically designed cumulative sum (CUSUM) met...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 54; no. 6; pp. 2201 - 2220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
03.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a (nonlinear) generalized autoregressive conditional heteroscedastic (GARCH) model. We employ a specifically designed cumulative sum (CUSUM) method hybridized with the asymmetric Huber support vector regression, named AHSVR. AHSVR-GARCH model provides an effective way to model nonlinear GARCH time series while significantly augmenting the performance of the proposed monitoring process in terms of stability and detection ability. Monte Carlo simulations illustrate the functionality of AHSVR-GARCH monitoring scheme, demonstrating AHSVR-GARCH model's superiority over the standard SVR-GARCH model when monitoring GARCH-type time series. Data analysis using the S&P 500, NASDAQ index, and Korea Composite Stock Price Index (KOSPI) also affirms our method's efficacy in real-world applications. |
---|---|
AbstractList | This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a (nonlinear) generalized autoregressive conditional heteroscedastic (GARCH) model. We employ a specifically designed cumulative sum (CUSUM) method hybridized with the asymmetric Huber support vector regression, named AHSVR. AHSVR-GARCH model provides an effective way to model nonlinear GARCH time series while significantly augmenting the performance of the proposed monitoring process in terms of stability and detection ability. Monte Carlo simulations illustrate the functionality of AHSVR-GARCH monitoring scheme, demonstrating AHSVR-GARCH model's superiority over the standard SVR-GARCH model when monitoring GARCH-type time series. Data analysis using the S&P 500, NASDAQ index, and Korea Composite Stock Price Index (KOSPI) also affirms our method's efficacy in real-world applications. |
Author | Yoon, Min Hyeok Kim, Chang Kyeom Lee, Sangyeol |
Author_xml | – sequence: 1 givenname: Min Hyeok surname: Yoon fullname: Yoon, Min Hyeok organization: Department of Statistics, Seoul National University – sequence: 2 givenname: Chang Kyeom surname: Kim fullname: Kim, Chang Kyeom organization: Department of Statistics, Seoul National University – sequence: 3 givenname: Sangyeol surname: Lee fullname: Lee, Sangyeol organization: Department of Statistics, Seoul National University |
BookMark | eNp9kF1LwzAYhYNMcJv-BCF_oDMfTZveKcMvGAii1yFN38xIm4wkm-zf27J569W5OeeB8yzQzAcPCN1SsqJEkjvCK0oaKleMsHLFOC0rIS_QnArOipKWdIbmU6eYSldokdI3IYTLUs5R-x7afcp4CN7lEJ3fYhN857ILXvf4EHqdXe_yEZsv7beAbYg4uwFwgugg4VYn6HDwOO13uxAzPoAZQTjCNkJKI-YaXVrdJ7g55xJ9Pj1-rF-Kzdvz6_phUxgmZC6ssLLRbV0xyQQvdSup5bUVjTGNbUjHLMhKalNaaiRQ0bUdl8AbWkvb1lDzJRInrokhpQhW7aIbdDwqStQkSv2JUpModRY17u5PO-fHc4P-CbHvVNbHPkQbtTcuKf4_4heHJXRE |
Cites_doi | 10.1016/0304-4076(86)90063-1 10.1016/j.econlet.2017.01.003 10.1007/s10260-011-0162-3 10.1016/j.jspi.2003.07.014 10.1002/for.1134 10.1007/s005210170010 10.1109/ICNN.1995.488968 10.1016/j.jmva.2008.08.005 10.1016/j.spl.2004.10.010 10.1088/1469-7688/3/3/302 10.1016/j.asoc.2020.106101 10.1093/biomet/41.1-2.100 10.1007/s11063-018-9875-8 10.3390/e22111312 10.2307/1912773 10.3390/e22050578 10.1080/00949655.2020.1775833 10.1080/00949655.2022.2086983 10.1007/s10614-019-09896-w 10.2307/2333401 10.1007/s00500-017-2615-6 10.14490/jjss.34.173 10.1016/S0165-1765(00)00270-6 10.1007/978-0-8176-4801-5 10.1007/s10463-018-0679-4 10.1007/s10287-016-0267-0 10.1007/978-1-4757-3264-1 |
ContentType | Journal Article |
Copyright | 2024 Taylor & Francis Group, LLC 2024 |
Copyright_xml | – notice: 2024 Taylor & Francis Group, LLC 2024 |
DBID | AAYXX CITATION |
DOI | 10.1080/03610918.2024.2314658 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 2220 |
ExternalDocumentID | 10_1080_03610918_2024_2314658 2314658 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea – fundername: Ministry of Science, ICT and Future Planning grantid: 2021R1A2C1004009 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE ADYSH AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAYXX CITATION |
ID | FETCH-LOGICAL-c258t-f5f89ab76282534ab81f37f59cc9f90d2fe868ac4f1c8e15dbd38e39178fb7e73 |
ISSN | 0361-0918 |
IngestDate | Thu Jul 10 08:09:33 EDT 2025 Thu Jul 03 04:11:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c258t-f5f89ab76282534ab81f37f59cc9f90d2fe868ac4f1c8e15dbd38e39178fb7e73 |
PageCount | 20 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610918_2024_2314658 crossref_primary_10_1080_03610918_2024_2314658 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-03 |
PublicationDateYYYYMMDD | 2025-06-03 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 Montgomery D. C. (e_1_3_2_25_1) 2012 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_26_1 Vapnik V. (e_1_3_2_33_1) 1998 e_1_3_2_16_1 e_1_3_2_9_1 Billingsley P. (e_1_3_2_5_1) 1968 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 Hwang C.-H (e_1_3_2_17_1) 2010; 21 e_1_3_2_3_1 de Pooter M. (e_1_3_2_11_1) 2004 e_1_3_2_15_1 Csörgő M. (e_1_3_2_10_1) 1997 |
References_xml | – ident: e_1_3_2_6_1 doi: 10.1016/0304-4076(86)90063-1 – ident: e_1_3_2_16_1 doi: 10.1016/j.econlet.2017.01.003 – volume: 21 start-page: 419 issue: 3 year: 2010 ident: e_1_3_2_17_1 article-title: Estimating garch models using kernel machine learning publication-title: Journal of the Korean Data and Information Science Society – ident: e_1_3_2_26_1 doi: 10.1007/s10260-011-0162-3 – ident: e_1_3_2_15_1 doi: 10.1016/j.jspi.2003.07.014 – ident: e_1_3_2_9_1 doi: 10.1002/for.1134 – ident: e_1_3_2_7_1 doi: 10.1007/s005210170010 – ident: e_1_3_2_18_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_3_2_14_1 doi: 10.1016/j.jmva.2008.08.005 – ident: e_1_3_2_3_1 doi: 10.1016/j.spl.2004.10.010 – ident: e_1_3_2_30_1 doi: 10.1088/1469-7688/3/3/302 – volume-title: Statistical quality control year: 2012 ident: e_1_3_2_25_1 – ident: e_1_3_2_23_1 doi: 10.1016/j.asoc.2020.106101 – ident: e_1_3_2_28_1 doi: 10.1093/biomet/41.1-2.100 – ident: e_1_3_2_2_1 doi: 10.1007/s11063-018-9875-8 – ident: e_1_3_2_22_1 doi: 10.3390/e22111312 – ident: e_1_3_2_12_1 doi: 10.2307/1912773 – ident: e_1_3_2_21_1 doi: 10.3390/e22050578 – ident: e_1_3_2_19_1 doi: 10.1080/00949655.2020.1775833 – ident: e_1_3_2_20_1 doi: 10.1080/00949655.2022.2086983 – volume-title: Limit Theorems in Change-Point Analysis year: 1997 ident: e_1_3_2_10_1 – ident: e_1_3_2_32_1 doi: 10.1007/s10614-019-09896-w – ident: e_1_3_2_29_1 doi: 10.2307/2333401 – ident: e_1_3_2_31_1 doi: 10.1007/s00500-017-2615-6 – ident: e_1_3_2_24_1 doi: 10.14490/jjss.34.173 – volume-title: Statistical learning theory year: 1998 ident: e_1_3_2_33_1 – ident: e_1_3_2_13_1 doi: 10.1016/S0165-1765(00)00270-6 – ident: e_1_3_2_8_1 doi: 10.1007/978-0-8176-4801-5 – volume-title: Econometric Institute Research Papers EI 2004-38 year: 2004 ident: e_1_3_2_11_1 – ident: e_1_3_2_27_1 doi: 10.1007/s10463-018-0679-4 – ident: e_1_3_2_4_1 doi: 10.1007/s10287-016-0267-0 – ident: e_1_3_2_34_1 doi: 10.1007/978-1-4757-3264-1 – volume-title: Convergence of Probability Measure year: 1968 ident: e_1_3_2_5_1 |
SSID | ssj0003848 |
Score | 2.371381 |
Snippet | This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a... |
SourceID | crossref informaworld |
SourceType | Index Database Publisher |
StartPage | 2201 |
SubjectTerms | Asymmetric huber SVR CUSUM monitoring Nonlinear GARCH time series Robust method Statistical process control |
Title | Robust monitoring conditional volatility change for time series based on support vector regression |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2024.2314658 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOPAqI5SUfuEWpGjtOnCNCoAq0e6BdaTlFdmKjlWhStQkS-0f27zJ-5MWuEI9L1NpNamU-z4ztmW8QelMWpSH9IKFIBQtjmEChkFqEZSZ1toSZXlp2_dOzZHUef7xgF7PZ9ShqqW3kori6Na_kX6QKbSBXkyX7F5LtHwoN8BnkC1eQMFz_SMafa9kemmBr5-Xepc-aI2i3vQeKB35n3WyX3utCCi-3KjCjU4fAmLDSHBcc2p3xw4Pvdg8_2KuvLjy2Gvuuk1wSG0ZrspEc0fMiWF9ufSWwLlVu106P-b_UXaR-Fax-qLrPEfIVnW2iQ_AJera_hAmtoQOav423KAizoVS0B9XmRrWQkZKjSRSCz-J0sOqUMAnjyBFidVraUU17NE5ULvG7Icp_tcl1N02Dj6Wkhl8-MkF9JF6AcxsnjA-2sI9Q9D130F0C6w9TGoMuz3oTT7kty9YPvksNM6Ttt_3BxOmZUOKOnJnNQ3Tfr0LwWwepR2imqjl60FX4wF7hz9G9057V9zBHx-te3o-RdODDA_jwCHx4AB924MMwGmzAhx34sAUfrivswYcd-PAAvifo_MP7zbtV6At2hAVhvAk10zwTEuwrJ4zGQvJI01SzrCgymPkl0YonXBSxjgquIlbKknJFsyjlWqYqpU_RUVVX6hnCYHoSWGnTotQspksuwM8XJFKJEBx8LnWCFt0bzXeOlyWPOrpbL4LciCD3IjhB2fi9540FpXZ4zOlv733-H_e-QMfDlHiJjpp9q16BH9vI1xZTPwEdrp51 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsNAEB1xFEDBEUDcbEHrEHt9rEuEQOFICgQSnbUnQggnIg4FX8-M10YBCRp6j-U95s3hmTcAJ0YbIv2IApnJJIhRgQKpnAxMrlzeQ003Nbv-YJj2H-Lrx-RxpheGyiophnaeKKLGalJuSka3JXGniLrEZ0mVWVHcRQ8lRjs6D4tJnmY0xYD3hl9ozEU9QYtEApJpu3h-e803-_SNvXTG7lyugW6_2JebvHSnlerqjx9kjv9b0jqsNm4pO_P3aAPmbNmBtXbkA2sQoAMrgy-a10kHlslV9UzPm6DuRmo6qdhrjRKULmQYa5tnn2xkCIP4LDn9zDcbM1wzo9H2jLTAThgZVMNGJZtMxxQVsPf6jwJ7s0--WLfcgofLi_vzftBMcAh0lIgqcIkTuVQIuBiI8lgqETqeuSTXOserYCJnRSqkjl2ohQ0TowwXlmMIKZzKbMa3YaEclXYHGGJRiqEX18YlMe8JiY6fjEKbSinQCNtd6LbnVow9UUcRtvynzeYWtLlFs7m7kM-eblHVGRLnx5kU_E_ZvX_IHsNS_35wW9xeDW_2YTmiecKU1eEHsFC9Te0hOjmVOqpv8ScsMPG0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gOjBalV8uwevqU02STdHUYuvFhEL3sJudldETItJPfjrnckmRQW9eM-E7GO-eWTmG4BjnWki_Qg82ZORF6ICeVJZ6elE2aSLmq4rdv3BML4chdePUVNNWNRllRRDW0cUUWE1KfdE26Yi7gRBl-gsqTArCDvooIRoRudhMSbycOri6A5nYMxFNUCLRDySaZp4fnvNN_P0jbz0i9npt0A1H-yqTV4601J1so8fXI7_WtEarNZOKTt1t2gd5kzehlYz8IHV-t-GlcGM5LVowzI5qo7neQPU_VhNi5K9VhhByUKGkbZ-dqlGhiCIz5LLz1yrMcMlMxpsz0gHTMHInGo2zlkxnVBMwN6r_wnszTy5Ut18E0b9i4ezS6-e3-BlQSRKz0ZWJFIh3GIYykOphG95z0ZJliV4EXRgjYiFzELrZ8L4kVaaC8MxgBRW9UyPb8FCPs7NNjBEohgDL55pG4W8KyS6fTLwTSylQBNsdqDTHFs6cTQdqd-wn9abm9LmpvXm7kDy9XDTssqPWDfMJOV_yu7-Q_YIlu7O--nt1fBmD5YDGiZMKR2-Dwvl29QcoIdTqsPqDn8CPFjwWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+monitoring+conditional+volatility+change+for+time+series+based+on+support+vector+regression&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Yoon%2C+Min+Hyeok&rft.au=Kim%2C+Chang+Kyeom&rft.au=Lee%2C+Sangyeol&rft.date=2025-06-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=54&rft.issue=6&rft.spage=2201&rft.epage=2220&rft_id=info:doi/10.1080%2F03610918.2024.2314658&rft.externalDocID=2314658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |