Robust monitoring conditional volatility change for time series based on support vector regression

This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a (nonlinear) generalized autoregressive conditional heteroscedastic (GARCH) model. We employ a specifically designed cumulative sum (CUSUM) met...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 54; no. 6; pp. 2201 - 2220
Main Authors Yoon, Min Hyeok, Kim, Chang Kyeom, Lee, Sangyeol
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a (nonlinear) generalized autoregressive conditional heteroscedastic (GARCH) model. We employ a specifically designed cumulative sum (CUSUM) method hybridized with the asymmetric Huber support vector regression, named AHSVR. AHSVR-GARCH model provides an effective way to model nonlinear GARCH time series while significantly augmenting the performance of the proposed monitoring process in terms of stability and detection ability. Monte Carlo simulations illustrate the functionality of AHSVR-GARCH monitoring scheme, demonstrating AHSVR-GARCH model's superiority over the standard SVR-GARCH model when monitoring GARCH-type time series. Data analysis using the S&P 500, NASDAQ index, and Korea Composite Stock Price Index (KOSPI) also affirms our method's efficacy in real-world applications.
AbstractList This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a (nonlinear) generalized autoregressive conditional heteroscedastic (GARCH) model. We employ a specifically designed cumulative sum (CUSUM) method hybridized with the asymmetric Huber support vector regression, named AHSVR. AHSVR-GARCH model provides an effective way to model nonlinear GARCH time series while significantly augmenting the performance of the proposed monitoring process in terms of stability and detection ability. Monte Carlo simulations illustrate the functionality of AHSVR-GARCH monitoring scheme, demonstrating AHSVR-GARCH model's superiority over the standard SVR-GARCH model when monitoring GARCH-type time series. Data analysis using the S&P 500, NASDAQ index, and Korea Composite Stock Price Index (KOSPI) also affirms our method's efficacy in real-world applications.
Author Yoon, Min Hyeok
Kim, Chang Kyeom
Lee, Sangyeol
Author_xml – sequence: 1
  givenname: Min Hyeok
  surname: Yoon
  fullname: Yoon, Min Hyeok
  organization: Department of Statistics, Seoul National University
– sequence: 2
  givenname: Chang Kyeom
  surname: Kim
  fullname: Kim, Chang Kyeom
  organization: Department of Statistics, Seoul National University
– sequence: 3
  givenname: Sangyeol
  surname: Lee
  fullname: Lee, Sangyeol
  organization: Department of Statistics, Seoul National University
BookMark eNp9kF1LwzAYhYNMcJv-BCF_oDMfTZveKcMvGAii1yFN38xIm4wkm-zf27J569W5OeeB8yzQzAcPCN1SsqJEkjvCK0oaKleMsHLFOC0rIS_QnArOipKWdIbmU6eYSldokdI3IYTLUs5R-x7afcp4CN7lEJ3fYhN857ILXvf4EHqdXe_yEZsv7beAbYg4uwFwgugg4VYn6HDwOO13uxAzPoAZQTjCNkJKI-YaXVrdJ7g55xJ9Pj1-rF-Kzdvz6_phUxgmZC6ssLLRbV0xyQQvdSup5bUVjTGNbUjHLMhKalNaaiRQ0bUdl8AbWkvb1lDzJRInrokhpQhW7aIbdDwqStQkSv2JUpModRY17u5PO-fHc4P-CbHvVNbHPkQbtTcuKf4_4heHJXRE
Cites_doi 10.1016/0304-4076(86)90063-1
10.1016/j.econlet.2017.01.003
10.1007/s10260-011-0162-3
10.1016/j.jspi.2003.07.014
10.1002/for.1134
10.1007/s005210170010
10.1109/ICNN.1995.488968
10.1016/j.jmva.2008.08.005
10.1016/j.spl.2004.10.010
10.1088/1469-7688/3/3/302
10.1016/j.asoc.2020.106101
10.1093/biomet/41.1-2.100
10.1007/s11063-018-9875-8
10.3390/e22111312
10.2307/1912773
10.3390/e22050578
10.1080/00949655.2020.1775833
10.1080/00949655.2022.2086983
10.1007/s10614-019-09896-w
10.2307/2333401
10.1007/s00500-017-2615-6
10.14490/jjss.34.173
10.1016/S0165-1765(00)00270-6
10.1007/978-0-8176-4801-5
10.1007/s10463-018-0679-4
10.1007/s10287-016-0267-0
10.1007/978-1-4757-3264-1
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
DBID AAYXX
CITATION
DOI 10.1080/03610918.2024.2314658
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 2220
ExternalDocumentID 10_1080_03610918_2024_2314658
2314658
Genre Research Article
GrantInformation_xml – fundername: National Research Foundation of Korea
– fundername: Ministry of Science, ICT and Future Planning
  grantid: 2021R1A2C1004009
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
ADYSH
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-f5f89ab76282534ab81f37f59cc9f90d2fe868ac4f1c8e15dbd38e39178fb7e73
ISSN 0361-0918
IngestDate Thu Jul 10 08:09:33 EDT 2025
Thu Jul 03 04:11:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-f5f89ab76282534ab81f37f59cc9f90d2fe868ac4f1c8e15dbd38e39178fb7e73
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_03610918_2024_2314658
crossref_primary_10_1080_03610918_2024_2314658
PublicationCentury 2000
PublicationDate 2025-06-03
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-03
  day: 03
PublicationDecade 2020
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
Montgomery D. C. (e_1_3_2_25_1) 2012
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_26_1
Vapnik V. (e_1_3_2_33_1) 1998
e_1_3_2_16_1
e_1_3_2_9_1
Billingsley P. (e_1_3_2_5_1) 1968
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
Hwang C.-H (e_1_3_2_17_1) 2010; 21
e_1_3_2_3_1
de Pooter M. (e_1_3_2_11_1) 2004
e_1_3_2_15_1
Csörgő M. (e_1_3_2_10_1) 1997
References_xml – ident: e_1_3_2_6_1
  doi: 10.1016/0304-4076(86)90063-1
– ident: e_1_3_2_16_1
  doi: 10.1016/j.econlet.2017.01.003
– volume: 21
  start-page: 419
  issue: 3
  year: 2010
  ident: e_1_3_2_17_1
  article-title: Estimating garch models using kernel machine learning
  publication-title: Journal of the Korean Data and Information Science Society
– ident: e_1_3_2_26_1
  doi: 10.1007/s10260-011-0162-3
– ident: e_1_3_2_15_1
  doi: 10.1016/j.jspi.2003.07.014
– ident: e_1_3_2_9_1
  doi: 10.1002/for.1134
– ident: e_1_3_2_7_1
  doi: 10.1007/s005210170010
– ident: e_1_3_2_18_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_3_2_14_1
  doi: 10.1016/j.jmva.2008.08.005
– ident: e_1_3_2_3_1
  doi: 10.1016/j.spl.2004.10.010
– ident: e_1_3_2_30_1
  doi: 10.1088/1469-7688/3/3/302
– volume-title: Statistical quality control
  year: 2012
  ident: e_1_3_2_25_1
– ident: e_1_3_2_23_1
  doi: 10.1016/j.asoc.2020.106101
– ident: e_1_3_2_28_1
  doi: 10.1093/biomet/41.1-2.100
– ident: e_1_3_2_2_1
  doi: 10.1007/s11063-018-9875-8
– ident: e_1_3_2_22_1
  doi: 10.3390/e22111312
– ident: e_1_3_2_12_1
  doi: 10.2307/1912773
– ident: e_1_3_2_21_1
  doi: 10.3390/e22050578
– ident: e_1_3_2_19_1
  doi: 10.1080/00949655.2020.1775833
– ident: e_1_3_2_20_1
  doi: 10.1080/00949655.2022.2086983
– volume-title: Limit Theorems in Change-Point Analysis
  year: 1997
  ident: e_1_3_2_10_1
– ident: e_1_3_2_32_1
  doi: 10.1007/s10614-019-09896-w
– ident: e_1_3_2_29_1
  doi: 10.2307/2333401
– ident: e_1_3_2_31_1
  doi: 10.1007/s00500-017-2615-6
– ident: e_1_3_2_24_1
  doi: 10.14490/jjss.34.173
– volume-title: Statistical learning theory
  year: 1998
  ident: e_1_3_2_33_1
– ident: e_1_3_2_13_1
  doi: 10.1016/S0165-1765(00)00270-6
– ident: e_1_3_2_8_1
  doi: 10.1007/978-0-8176-4801-5
– volume-title: Econometric Institute Research Papers EI 2004-38
  year: 2004
  ident: e_1_3_2_11_1
– ident: e_1_3_2_27_1
  doi: 10.1007/s10463-018-0679-4
– ident: e_1_3_2_4_1
  doi: 10.1007/s10287-016-0267-0
– ident: e_1_3_2_34_1
  doi: 10.1007/978-1-4757-3264-1
– volume-title: Convergence of Probability Measure
  year: 1968
  ident: e_1_3_2_5_1
SSID ssj0003848
Score 2.371381
Snippet This study considers a robust monitoring procedure aimed at detecting an anomaly of conditional volatility from sequentially observed time series following a...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 2201
SubjectTerms Asymmetric huber SVR
CUSUM monitoring
Nonlinear GARCH time series
Robust method
Statistical process control
Title Robust monitoring conditional volatility change for time series based on support vector regression
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2024.2314658
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOPAqI5SUfuEWpGjtOnCNCoAq0e6BdaTlFdmKjlWhStQkS-0f27zJ-5MWuEI9L1NpNamU-z4ztmW8QelMWpSH9IKFIBQtjmEChkFqEZSZ1toSZXlp2_dOzZHUef7xgF7PZ9ShqqW3kori6Na_kX6QKbSBXkyX7F5LtHwoN8BnkC1eQMFz_SMafa9kemmBr5-Xepc-aI2i3vQeKB35n3WyX3utCCi-3KjCjU4fAmLDSHBcc2p3xw4Pvdg8_2KuvLjy2Gvuuk1wSG0ZrspEc0fMiWF9ufSWwLlVu106P-b_UXaR-Fax-qLrPEfIVnW2iQ_AJera_hAmtoQOav423KAizoVS0B9XmRrWQkZKjSRSCz-J0sOqUMAnjyBFidVraUU17NE5ULvG7Icp_tcl1N02Dj6Wkhl8-MkF9JF6AcxsnjA-2sI9Q9D130F0C6w9TGoMuz3oTT7kty9YPvksNM6Ttt_3BxOmZUOKOnJnNQ3Tfr0LwWwepR2imqjl60FX4wF7hz9G9057V9zBHx-te3o-RdODDA_jwCHx4AB924MMwGmzAhx34sAUfrivswYcd-PAAvifo_MP7zbtV6At2hAVhvAk10zwTEuwrJ4zGQvJI01SzrCgymPkl0YonXBSxjgquIlbKknJFsyjlWqYqpU_RUVVX6hnCYHoSWGnTotQspksuwM8XJFKJEBx8LnWCFt0bzXeOlyWPOrpbL4LciCD3IjhB2fi9540FpXZ4zOlv733-H_e-QMfDlHiJjpp9q16BH9vI1xZTPwEdrp51
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsNAEB1xFEDBEUDcbEHrEHt9rEuEQOFICgQSnbUnQggnIg4FX8-M10YBCRp6j-U95s3hmTcAJ0YbIv2IApnJJIhRgQKpnAxMrlzeQ003Nbv-YJj2H-Lrx-RxpheGyiophnaeKKLGalJuSka3JXGniLrEZ0mVWVHcRQ8lRjs6D4tJnmY0xYD3hl9ozEU9QYtEApJpu3h-e803-_SNvXTG7lyugW6_2JebvHSnlerqjx9kjv9b0jqsNm4pO_P3aAPmbNmBtXbkA2sQoAMrgy-a10kHlslV9UzPm6DuRmo6qdhrjRKULmQYa5tnn2xkCIP4LDn9zDcbM1wzo9H2jLTAThgZVMNGJZtMxxQVsPf6jwJ7s0--WLfcgofLi_vzftBMcAh0lIgqcIkTuVQIuBiI8lgqETqeuSTXOserYCJnRSqkjl2ohQ0TowwXlmMIKZzKbMa3YaEclXYHGGJRiqEX18YlMe8JiY6fjEKbSinQCNtd6LbnVow9UUcRtvynzeYWtLlFs7m7kM-eblHVGRLnx5kU_E_ZvX_IHsNS_35wW9xeDW_2YTmiecKU1eEHsFC9Te0hOjmVOqpv8ScsMPG0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gOjBalV8uwevqU02STdHUYuvFhEL3sJudldETItJPfjrnckmRQW9eM-E7GO-eWTmG4BjnWki_Qg82ZORF6ICeVJZ6elE2aSLmq4rdv3BML4chdePUVNNWNRllRRDW0cUUWE1KfdE26Yi7gRBl-gsqTArCDvooIRoRudhMSbycOri6A5nYMxFNUCLRDySaZp4fnvNN_P0jbz0i9npt0A1H-yqTV4601J1so8fXI7_WtEarNZOKTt1t2gd5kzehlYz8IHV-t-GlcGM5LVowzI5qo7neQPU_VhNi5K9VhhByUKGkbZ-dqlGhiCIz5LLz1yrMcMlMxpsz0gHTMHInGo2zlkxnVBMwN6r_wnszTy5Ut18E0b9i4ezS6-e3-BlQSRKz0ZWJFIh3GIYykOphG95z0ZJliV4EXRgjYiFzELrZ8L4kVaaC8MxgBRW9UyPb8FCPs7NNjBEohgDL55pG4W8KyS6fTLwTSylQBNsdqDTHFs6cTQdqd-wn9abm9LmpvXm7kDy9XDTssqPWDfMJOV_yu7-Q_YIlu7O--nt1fBmD5YDGiZMKR2-Dwvl29QcoIdTqsPqDn8CPFjwWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+monitoring+conditional+volatility+change+for+time+series+based+on+support+vector+regression&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Yoon%2C+Min+Hyeok&rft.au=Kim%2C+Chang+Kyeom&rft.au=Lee%2C+Sangyeol&rft.date=2025-06-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=54&rft.issue=6&rft.spage=2201&rft.epage=2220&rft_id=info:doi/10.1080%2F03610918.2024.2314658&rft.externalDocID=2314658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon