A Load-Insensitive Hybrid LSK Back Telemetry System With Slope-Based Demodulation for Inductively Powered Biomedical Devices
This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil ( L 1 ) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of op...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 16; no. 4; pp. 651 - 663 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2022.3192248 |
Cover
Loading…
Abstract | This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil ( L 1 ) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of open- and short-coil functions for hybrid-LSK modulation in addition to wireless power conversion operation. Load-insensitive L 1 voltage changes can be demodulated using the proposed slope- based demodulator, which utilizes the threshold slope of L 1 voltage changes over the back data pulse width, enabling robust data recovery regardless of the load conditions. The 0.56-mm 2 0.18-μm standard CMOS hybrid-LSK prototype demonstrated that the variation of L 1 voltage changes could be minimized to 60 mV under load changes between 50 Ω and 50 kΩ at coil separation distance of 10 mm, achieving 88.2% reduction compared to the conventional short-coil LSK with 510 mV variation. The proposed back telemetry system also achieved a bit error rate (BER) of < 9.1 × 10 −10 under load ranges from 50 Ω to 50 kΩ and data rate of 1 Mbps, ensuring reliable back data recovery against load variations. |
---|---|
AbstractList | This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil (L1) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of open- and short-coil functions for hybrid-LSK modulation in addition to wireless power conversion operation. Load-insensitive L1 voltage changes can be demodulated using the proposed slope- based demodulator, which utilizes the threshold slope of L1 voltage changes over the back data pulse width, enabling robust data recovery regardless of the load conditions. The 0.56-mm2 0.18-μm standard CMOS hybrid-LSK prototype demonstrated that the variation of L1 voltage changes could be minimized to 60 mV under load changes between 50 Ω and 50 kΩ at coil separation distance of 10 mm, achieving 88.2% reduction compared to the conventional short-coil LSK with 510 mV variation. The proposed back telemetry system also achieved a bit error rate (BER) of < 9.1 × 10-10 under load ranges from 50 Ω to 50 kΩ and data rate of 1 Mbps, ensuring reliable back data recovery against load variations.This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil (L1) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of open- and short-coil functions for hybrid-LSK modulation in addition to wireless power conversion operation. Load-insensitive L1 voltage changes can be demodulated using the proposed slope- based demodulator, which utilizes the threshold slope of L1 voltage changes over the back data pulse width, enabling robust data recovery regardless of the load conditions. The 0.56-mm2 0.18-μm standard CMOS hybrid-LSK prototype demonstrated that the variation of L1 voltage changes could be minimized to 60 mV under load changes between 50 Ω and 50 kΩ at coil separation distance of 10 mm, achieving 88.2% reduction compared to the conventional short-coil LSK with 510 mV variation. The proposed back telemetry system also achieved a bit error rate (BER) of < 9.1 × 10-10 under load ranges from 50 Ω to 50 kΩ and data rate of 1 Mbps, ensuring reliable back data recovery against load variations. This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil ( L1 ) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of open- and short-coil functions for hybrid-LSK modulation in addition to wireless power conversion operation. Load-insensitive L1 voltage changes can be demodulated using the proposed slope- based demodulator, which utilizes the threshold slope of L1 voltage changes over the back data pulse width, enabling robust data recovery regardless of the load conditions. The 0.56-mm2 0.18-μm standard CMOS hybrid-LSK prototype demonstrated that the variation of L1 voltage changes could be minimized to 60 mV under load changes between 50 Ω and 50 kΩ at coil separation distance of 10 mm, achieving 88.2% reduction compared to the conventional short-coil LSK with 510 mV variation. The proposed back telemetry system also achieved a bit error rate (BER) of < 9.1 × 10−10 under load ranges from 50 Ω to 50 kΩ and data rate of 1 Mbps, ensuring reliable back data recovery against load variations. This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil ( L 1 ) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of open- and short-coil functions for hybrid-LSK modulation in addition to wireless power conversion operation. Load-insensitive L 1 voltage changes can be demodulated using the proposed slope- based demodulator, which utilizes the threshold slope of L 1 voltage changes over the back data pulse width, enabling robust data recovery regardless of the load conditions. The 0.56-mm 2 0.18-μm standard CMOS hybrid-LSK prototype demonstrated that the variation of L 1 voltage changes could be minimized to 60 mV under load changes between 50 Ω and 50 kΩ at coil separation distance of 10 mm, achieving 88.2% reduction compared to the conventional short-coil LSK with 510 mV variation. The proposed back telemetry system also achieved a bit error rate (BER) of < 9.1 × 10 −10 under load ranges from 50 Ω to 50 kΩ and data rate of 1 Mbps, ensuring reliable back data recovery against load variations. |
Author | Kang, Minil Ahn, Jisan Lee, Hyung-Min Lee, Hyun-Su |
Author_xml | – sequence: 1 givenname: Hyun-Su orcidid: 0000-0001-8408-1183 surname: Lee fullname: Lee, Hyun-Su email: hyunsu.solid.state@gmail.com organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 2 givenname: Jisan orcidid: 0000-0002-8307-9580 surname: Ahn fullname: Ahn, Jisan email: promise0w0@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: Minil surname: Kang fullname: Kang, Minil email: kuniverse@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 4 givenname: Hyung-Min orcidid: 0000-0003-1191-3553 surname: Lee fullname: Lee, Hyung-Min email: hyungmin@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea |
BookMark | eNp9kUtvEzEUhS1URB_wB2BjiQ2bCX527GWSAo2IBFKCWFoe-1q4zIyDPVM0Ej-eSVOx6ILVvYvvnHt1ziU661MPCL2mZEEp0e_3q_Vyt2CEsQWnmjGhnqELqgWptNbk7LhzVgkp5Dm6LOWOEHnNNHuBzrlUkpNaXKA_S7xN1lebvkBf4hDvAd9OTY4eb3ef8cq6n3gPLXQw5AnvpjJAh7_H4QfetekA1coW8PgGuuTH1g4x9TikjDe9H93RrJ3w1_Qb8gytYurAR2fbmb-PDspL9DzYtsCrx3mFvn38sF_fVtsvnzbr5bZyTKqhCtLXRDkmINigg4CGMFcH73mjdHBWKaBWMyudhhACeOJVw2SwgtOGi8Cv0LuT7yGnXyOUwXSxOGhb20Mai2HXmtZKSy1m9O0T9C6NuZ-_M6xmXM3JajlT7ES5nErJEMwhx87myVBijt2Yh27MsRvz2M0sUk9ELg4PkQ3Zxvb_0jcnaQSAf7e04pwTzf8Co7yenA |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1109_JSSC_2023_3334753 crossref_primary_10_1002_cta_3923 crossref_primary_10_1109_JSSC_2023_3335158 crossref_primary_10_1109_LMWT_2024_3411572 crossref_primary_10_1109_JSSC_2023_3305521 crossref_primary_10_1109_TCSI_2023_3268686 crossref_primary_10_1109_TCSI_2024_3429297 crossref_primary_10_1109_JSSC_2024_3372418 crossref_primary_10_1109_JSSC_2024_3410685 |
Cites_doi | 10.1109/TBCAS.2017.2775638 10.1109/TBME.2012.2214385 10.1109/CICC51472.2021.9431451 10.1109/TBCAS.2021.3083276 10.1109/JSSC.2004.835822 10.1109/JSSC.2014.2364824 10.1109/TCSI.2005.858163 10.1109/isscc42613.2021.9365750 10.1109/TBCAS.2021.3135843 10.1109/MCOM.2018.1800052 10.1109/MSPEC.2006.1604837 10.1109/JSSC.2020.3005772 10.1109/TBCAS.2008.2005295 10.1109/TBCAS.2016.2580513 10.1017/cbo9780511817281 10.1109/JSSC.2014.2355814 10.1109/TBCAS.2019.2943506 10.1109/BioCAS49922.2021.9644982 10.1109/TBCAS.2012.2198649 10.1038/s41587-020-0679-9 10.1109/CICC53496.2022.9772833 10.1109/TPEL.2022.3151427 10.1109/JSSC.2016.2611678 10.1109/ISCAS.2007.378508 10.1109/TBCAS.2019.2918761 10.1109/MSP.2011.941880 10.1109/TBCAS.2018.2881800 10.1109/TBCAS.2019.2891303 10.1109/TCSI.2008.924877 10.1109/TCSI.2005.852923 10.1109/JSSC.2016.2600864 10.1109/JSSC.2018.2867293 10.1109/TCSI.2010.2103172 10.1109/JSSC.2021.3087629 10.1038/s41928-021-00631-8 10.1109/TBCAS.2015.2501320 10.1109/TBCAS.2016.2646901 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2022.3192248 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 663 |
ExternalDocumentID | 10_1109_TBCAS_2022_3192248 9833309 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Trade, Industry & Energy (MOTIE), Korea grantid: RS-2022-00154983 |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c258t-f5d708c24efaf9f4eb02c7fdd3b89fca88e1a92a5c9efffed0d8b25fa431b34f3 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 15:27:01 EDT 2025 Sun Jun 29 15:27:26 EDT 2025 Tue Jul 01 03:26:37 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Wed Aug 27 02:18:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c258t-f5d708c24efaf9f4eb02c7fdd3b89fca88e1a92a5c9efffed0d8b25fa431b34f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8408-1183 0000-0002-8307-9580 0000-0003-1191-3553 |
PMID | 35853074 |
PQID | 2723899995 |
PQPubID | 85510 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2723899995 proquest_miscellaneous_2691789594 ieee_primary_9833309 crossref_primary_10_1109_TBCAS_2022_3192248 crossref_citationtrail_10_1109_TBCAS_2022_3192248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1109/TBCAS.2017.2775638 – ident: ref27 doi: 10.1109/TBME.2012.2214385 – ident: ref16 doi: 10.1109/CICC51472.2021.9431451 – ident: ref37 doi: 10.1109/TBCAS.2021.3083276 – ident: ref36 doi: 10.1109/JSSC.2004.835822 – ident: ref19 doi: 10.1109/JSSC.2014.2364824 – ident: ref25 doi: 10.1109/TCSI.2005.858163 – ident: ref2 doi: 10.1109/isscc42613.2021.9365750 – ident: ref13 doi: 10.1109/TBCAS.2021.3135843 – ident: ref15 doi: 10.1109/MCOM.2018.1800052 – ident: ref6 doi: 10.1109/MSPEC.2006.1604837 – ident: ref21 doi: 10.1109/JSSC.2020.3005772 – ident: ref26 doi: 10.1109/TBCAS.2008.2005295 – ident: ref29 doi: 10.1109/TBCAS.2016.2580513 – ident: ref33 doi: 10.1017/cbo9780511817281 – ident: ref11 doi: 10.1109/JSSC.2014.2355814 – ident: ref22 doi: 10.1109/TBCAS.2019.2943506 – ident: ref31 doi: 10.1109/BioCAS49922.2021.9644982 – ident: ref35 doi: 10.1109/TBCAS.2012.2198649 – ident: ref1 doi: 10.1038/s41587-020-0679-9 – ident: ref9 doi: 10.1109/CICC53496.2022.9772833 – ident: ref7 doi: 10.1109/TPEL.2022.3151427 – ident: ref17 doi: 10.1109/JSSC.2016.2611678 – ident: ref32 doi: 10.1109/ISCAS.2007.378508 – ident: ref10 doi: 10.1109/TBCAS.2019.2918761 – ident: ref14 doi: 10.1109/MSP.2011.941880 – ident: ref5 doi: 10.1109/TBCAS.2018.2881800 – ident: ref8 doi: 10.1109/TBCAS.2019.2891303 – ident: ref30 doi: 10.1109/TCSI.2008.924877 – ident: ref24 doi: 10.1109/TCSI.2005.852923 – ident: ref28 doi: 10.1109/JSSC.2016.2600864 – ident: ref18 doi: 10.1109/JSSC.2018.2867293 – ident: ref34 doi: 10.1109/TCSI.2010.2103172 – ident: ref4 doi: 10.1109/JSSC.2021.3087629 – ident: ref3 doi: 10.1038/s41928-021-00631-8 – ident: ref23 doi: 10.1109/TBCAS.2015.2501320 – ident: ref12 doi: 10.1109/TBCAS.2016.2646901 |
SSID | ssj0056292 |
Score | 2.3852918 |
Snippet | This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 651 |
SubjectTerms | Back Back telemetry Batteries Bit error rate Coils Data recovery Demodulation Demodulators Electric potential Energy conversion hybrid load-shift keying Hybrid systems implantable medical device Keying Load distribution Load fluctuation load-insensitive data telemetry Modulation Pulse duration Rectifiers slope-based demodulator Telemetry uplink Variation Voltage Wireless communication wireless power transfer |
Title | A Load-Insensitive Hybrid LSK Back Telemetry System With Slope-Based Demodulation for Inductively Powered Biomedical Devices |
URI | https://ieeexplore.ieee.org/document/9833309 https://www.proquest.com/docview/2723899995 https://www.proquest.com/docview/2691789594 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61PcGBAgWRtqBF4gabOmtvsntMSqsABSElFb1Z-5gVqGlctc4hiB_PzNqOKCDEzZLHL83szDfrmfkYe-WCd9oNcmGUHApciVpYL41A8OtzGBWgYpr2-Wk4PS_eX6iLLfZm0wsDAKn4DPp0mP7lh8qvaKvsyOgc02-zzbbRzJperc7rYhhPBMiER2iOt-oaZDJzNJ8cj2eYCkqJGarBmEUkfTniZLTv4k48SgQrf3jlFGpOd9nH7iWbCpPL_qp2ff_9t_mN__sVD9mDFnPycWMkj9gWLB-z-79MItxjP8b8rLJBvKOt5ttUT8Sna-rm4mezD3xi_SWfA5Wa1zdr3ow551--1V_5bFFdg5hgMAz8LVxVoeUD44iGORGDJIe6WPPPxMeGQpPU8E-2gfLJTz1h56cn8-OpaIkZhJdK1yKqMMq0lwVEG00swGXSj2IIudMmeqs1DKyRVnkDMUYIWdBOqmgRrbi8iPlTtrOslvCM8YA-QzpjB5jhF5kfGYv5lNbWK2XBatVjg049pW-nlhN5xqJM2UtmyqTdkrRbttrtsdeba66bmR3_lN4jHW0kW_X02GFnBWW7rG9LSRRtCKkNvtfLzWlckPSXxS6hWqHMEDNgbZQp9v9-5wN2j57fVBEesp36ZgXPEdnU7kUy6Z93NPSL |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGeIA9MGAgChsYiTdwlzp2az-2G1PHugmpndhb5B9ngdY105Y-FPHHc3aSChhCvEXKJXJ057vv4rv7CHlnvbPK9nKmJe8z3ImKGcc1Q_DrchgIkCFN-zzrj8_Fpwt5sUE-rHthACAVn0E3XqazfF-6ZfxVtq9Vjum3vkfuY9wXsu7Wav0uBvJEgRwRSZzkLdsWmUzvz0YHwykmg5xjjqoxakWavhyRMlq4-C0iJYqVO345BZujbXLaLrOuMbnsLivbdd__mOD4v9_xmDxqUCcd1mbyhGzA4inZ-mUW4Q75MaST0nh2HH8236aKIjpexX4uOpme0JFxl3QGsdi8ulnRetA5_fKt-kqn8_Ia2AjDoaeHcFX6hhGMIh6mkRokudT5in6OjGwoNEot_9E6UD55qmfk_Ojj7GDMGmoG5rhUFQvSDzLluIBggg4CbMbdIHifW6WDM0pBz2hupNMQQgCfeWW5DAbxis1FyJ-TzUW5gBeEevQa3GrTwxxfZG6gDWZUShknpQGjZIf0WvUUrplbHukz5kXKXzJdJO0WUbtFo90Oeb9-5rqe2vFP6Z2oo7Vko54O2W2toGg29m3BI0kbgmqN63q7vo1bMp6zmAWUS5TpYw6stNTi5d_f_IY8GM9OJ8Xk-OzkFXkY11LXFO6SzepmCXuIcyr7Opn3T2dv99g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Load-Insensitive+Hybrid+LSK+Back+Telemetry+System+With+Slope-Based+Demodulation+for+Inductively+Powered+Biomedical+Devices&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Lee%2C+Hyun-Su&rft.au=Ahn%2C+Jisan&rft.au=Kang%2C+Minil&rft.au=Lee%2C+Hyung-Min&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1932-4545&rft.volume=16&rft.issue=4&rft.spage=651&rft.epage=663&rft_id=info:doi/10.1109%2FTBCAS.2022.3192248&rft_id=info%3Apmid%2F35853074&rft.externalDocID=9833309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |