Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading
•A performance-based design (PBD) framework for Normal Strength Concrete (NRC) & Ultra-High Strength Concrete (UHSC) panel subjected to air blast loading is developed.•Fragility estimation is done to show the credibility of models.•Developed Load & Resistance factors circumvent the existing...
Saved in:
Published in | Reliability engineering & system safety Vol. 228; p. 108751 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.12.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A performance-based design (PBD) framework for Normal Strength Concrete (NRC) & Ultra-High Strength Concrete (UHSC) panel subjected to air blast loading is developed.•Fragility estimation is done to show the credibility of models.•Developed Load & Resistance factors circumvent the existing limitations of the current code provisions.•Hazard curves are developed for mass and stand-off distance from available literature.•The total probability of failure is estimated for the panels to check for the overall vulnerability of the structure.
A multilevel performance-based design (PBD) framework is developed for panels of Protective structures subjected to air blast. These provisions improve the existing design approach of blast resistance structures for ultimate limit state. Present study develops probabilistic deflection-based capacity and demand models for three performance levels associated with four damage states occurring during an air blast. The chosen protective structures for current study are reinforced Normal Strength Concrete (NRC) and reinforced Ultra-High Strength Concrete (UHSC) panels. The probabilistic models are developed using Bayesian inference (Posterior Statistics). The database is generated through numerical experimental design using finite element (FE) based software, LS-DYNA. The influence of air blast on panel is validated on a panel and obtained results shows the trustworthiness of numerical model. Grounded on these models the fragility estimation is carried out and attained plots demonstrates the consistency. Using a reliability based approach, the Load and Resistance Factors for Design (LRFD) are developed associated with the proposed three performance levels. Hazard curves and total probability are estimated using established dataset from literature available. The estimated LRFD factors can be used for the design of NRC & UHSC panel of slab/walls of protective structure subjected to air blast. |
---|---|
AbstractList | •A performance-based design (PBD) framework for Normal Strength Concrete (NRC) & Ultra-High Strength Concrete (UHSC) panel subjected to air blast loading is developed.•Fragility estimation is done to show the credibility of models.•Developed Load & Resistance factors circumvent the existing limitations of the current code provisions.•Hazard curves are developed for mass and stand-off distance from available literature.•The total probability of failure is estimated for the panels to check for the overall vulnerability of the structure.
A multilevel performance-based design (PBD) framework is developed for panels of Protective structures subjected to air blast. These provisions improve the existing design approach of blast resistance structures for ultimate limit state. Present study develops probabilistic deflection-based capacity and demand models for three performance levels associated with four damage states occurring during an air blast. The chosen protective structures for current study are reinforced Normal Strength Concrete (NRC) and reinforced Ultra-High Strength Concrete (UHSC) panels. The probabilistic models are developed using Bayesian inference (Posterior Statistics). The database is generated through numerical experimental design using finite element (FE) based software, LS-DYNA. The influence of air blast on panel is validated on a panel and obtained results shows the trustworthiness of numerical model. Grounded on these models the fragility estimation is carried out and attained plots demonstrates the consistency. Using a reliability based approach, the Load and Resistance Factors for Design (LRFD) are developed associated with the proposed three performance levels. Hazard curves and total probability are estimated using established dataset from literature available. The estimated LRFD factors can be used for the design of NRC & UHSC panel of slab/walls of protective structure subjected to air blast. A multilevel performance-based design (PBD) framework is developed for panels of Protective structures subjected to air blast. These provisions improve the existing design approach of blast resistance structures for ultimate limit state. Present study develops probabilistic deflection-based capacity and demand models for three performance levels associated with four damage states occurring during an air blast. The chosen protective structures for current study are reinforced Normal Strength Concrete (NRC) and reinforced Ultra-High Strength Concrete (UHSC) panels. The probabilistic models are developed using Bayesian inference (Posterior Statistics). The database is generated through numerical experimental design using finite element (FE) based software, LS-DYNA. The influence of air blast on panel is validated on a panel and obtained results shows the trustworthiness of numerical model. Grounded on these models the fragility estimation is carried out and attained plots demonstrates the consistency. Using a reliability based approach, the Load and Resistance Factors for Design (LRFD) are developed associated with the proposed three performance levels. Hazard curves and total probability are estimated using established dataset from literature available. The estimated LRFD factors can be used for the design of NRC & UHSC panel of slab/walls of protective structure subjected to air blast. |
ArticleNumber | 108751 |
Author | Sharma, Hrishikesh Bhuyan, Kasturi |
Author_xml | – sequence: 1 givenname: Kasturi surname: Bhuyan fullname: Bhuyan, Kasturi – sequence: 2 givenname: Hrishikesh orcidid: 0000-0001-8550-7668 surname: Sharma fullname: Sharma, Hrishikesh email: shrishi@iitg.ac.in |
BookMark | eNp9kEtrHDEMgE1JoZs0f6AnQ6G32fix84JeSmgeEAiU5mxkW1M8OOOt5UnZU_96vd2eeshJQtInpO-cnS1pQcY-SLGVQnZX8zYj0VYJpWph6Fv5hm3k0I-NGHR3xjZibGUzaCXesXOiWQixG9t-w35_wxjAhhjKgcMC8UCB-Ce-xzyl_AyLw8YCoecueeQOYrAZSkgLr31OESxd_YIYiaeJ73Mq6Ep4QU4lr66s9SxOq51rlZfEIWRuI1DhMYEPy4_37O0EkfDyX7xgTzdfv1_fNQ-Pt_fXXx4ap9qhNDhCj072vdJ66kcEOQCC06isAocKfc36wVuv2l2Hupu8Qg2tH6QV3U7oC_bxtLee-HNFKmZOa67_klF92ynZtVrVKXWacjkRZZzMPodnyAcjhTmKNrM5ijZH0eYkukLDf5AL5a-ikiHE19HPJxTr6y8BsyEXsDr3IVdjxqfwGv4Hibue7Q |
CitedBy_id | crossref_primary_10_1016_j_ress_2024_110472 crossref_primary_10_1016_j_ress_2023_109577 crossref_primary_10_1002_suco_202400804 crossref_primary_10_1016_j_ress_2023_109277 crossref_primary_10_1016_j_ress_2023_109683 crossref_primary_10_1016_j_ress_2024_110665 crossref_primary_10_1016_j_ress_2024_110338 crossref_primary_10_1016_j_engstruct_2023_116803 |
Cites_doi | 10.1061/(ASCE)0733-9445(2007)133:3(311) 10.1016/j.ress.2020.107371 10.1260/2041-4196.1.4.543 10.1016/j.ress.2021.107464 10.1016/j.strusafe.2018.06.001 10.1016/j.strusafe.2018.04.002 10.1061/(ASCE)0733-9399(2002)128:10(1024) 10.1016/j.ijimpeng.2022.104207 10.1016/j.ijimpeng.2014.07.018 10.1016/j.ijimpeng.2014.02.001 10.1016/j.ress.2006.12.015 10.1016/j.engstruct.2014.06.004 10.1016/j.strusafe.2017.10.010 10.1016/j.strusafe.2014.07.003 10.1016/j.ress.2020.106813 10.1016/j.strusafe.2019.04.001 10.1016/j.engfailanal.2016.04.027 10.1016/S0167-4730(02)00025-5 10.1016/j.strusafe.2009.06.007 10.1016/j.strusafe.2011.08.001 10.1016/j.ress.2008.02.019 10.1617/s11527-015-0523-8 10.1177/2041419619871305 10.1016/j.ress.2018.09.023 10.1260/2041-4196.1.4.571 10.1016/j.engstruct.2009.03.020 10.1016/j.conbuildmat.2011.09.014 10.1016/j.tws.2018.11.013 10.1016/j.ress.2022.108497 10.1016/j.ress.2022.108729 10.1016/j.ress.2020.107053 10.1016/S0167-4730(01)00011-X 10.56748/ejse.671 10.1016/j.ijimpeng.2013.01.006 10.1061/(ASCE)CF.1943-5509.0000748 10.1016/j.engstruct.2015.08.032 10.1007/s12273-008-8527-8 10.3390/infrastructures4020028 10.1590/S1678-58782010000200004 10.1061/(ASCE)CF.1943-5509.0000694 10.1016/j.ress.2019.03.032 10.1177/2041419617721552 10.1016/j.strusafe.2020.102030 10.1016/j.matdes.2015.05.045 10.1016/j.ress.2020.107220 10.1016/j.conbuildmat.2004.07.021 10.1016/j.ijimpeng.2011.11.007 10.1016/j.matdes.2013.11.069 10.1016/j.ijimpeng.2013.10.003 10.1016/j.ijimpeng.2008.01.004 10.1016/S0167-4730(02)00011-5 10.1080/15732479.2019.1566389 10.1016/j.ress.2016.10.014 10.1016/j.ijimpeng.2009.02.009 |
ContentType | Journal Article |
Copyright | 2022 Copyright Elsevier BV Dec 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Dec 2022 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2022.108751 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2022_108751 S095183202200374X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 8FD C1K EFKBS FR3 SOI |
ID | FETCH-LOGICAL-c258t-e9a7ec177233f79ea18aeac3e2b2ace2ede2b78dbd2546e36fd2e3a5d81b06403 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Wed Aug 13 11:02:33 EDT 2025 Tue Jul 01 00:45:08 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:40:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Performance-based analysis and design Fragility estimates Code calibration Protective structure Load and resistance factors Performance levels Probabilistic capacity and demand models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c258t-e9a7ec177233f79ea18aeac3e2b2ace2ede2b78dbd2546e36fd2e3a5d81b06403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8550-7668 |
PQID | 2756216532 |
PQPubID | 2045406 |
ParticipantIDs | proquest_journals_2756216532 crossref_primary_10_1016_j_ress_2022_108751 crossref_citationtrail_10_1016_j_ress_2022_108751 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108751 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Stewart (bib0036) 2018; 71 Hallquist (bib0067) 2006 Whittaker, Hamburger, Mahoney (bib0028) 2003 Gangolu, Kumar, Bhuyan, Sharma (bib0027) 2022; 164 Olmati, Petrini, Gkoumas (bib0029) 2014; 78 Modarres (bib0032) 2009; 94 US Department of Defense. Structures to resist the effects of accidental explosions. US Department of Defense; 2008. UFC 3-340-02. Li, Hao (bib0007) 2014; 68 Hao, Ma, Wang, Feng, Wang, Li (bib0020) 2019; 80 Hao, Li, Shi (bib0040) 2016; 30 BSI, BS EN 1991-1-7:2006, Eurocode 1 — Actions on Structures —Part 1-7: General Actions — Accidental Actions, Incorporating Corrigendum February 2010, British Standards Institution, London, 2006. LSTC LD. Keyword User's Manual. Livermore: Livermore Software Technology Corporation (LSTC). 2007 May. Lan, Lok, Heng (bib0008) 2005; 19 Tran, Balchanos, Domerçant, Mavris (bib0064) 2017; 158 Huang, Zhang, Kou, Yin, Mi, Li (bib0054) 2020; 204 Gerassis, Albuquerque, García, Boente, Giráldez, Taboada (bib0055) 2019; 188 Netherton, Stewart (bib0042) 2009; 36 Alfredo, Wilson (bib0061) 1975 Holmquist, Johnson, Cook (bib0069) 1993 ISO 2394 IS. General principles on reliability for structures. Zurich: ISO. 1998 June. Zhou, Kuznetsov, Hao, Waschl (bib0009) 2008; 35 Hadianfard, Malekpour, Momeni (bib0034) 2018; 75 Yao, Zhang, Chen, Lu, Wang (bib0015) 2016; 66 Minas, Chandler, Rossetto (bib0059) 2018; 74 Ren, Wu, Fang, Kong (bib0071) 2017; 8 Grant, Stewart (bib0077) 2015; 29 Hyde DW. Li, Wu, Hao (bib0005) 2015; 82 Gangolu, Kumar, Bhuyan, Sharma (bib0026) 2022 (bib0070) 1993 Box, Tiao (bib0074) 1992 Mao, Barnett, Begg, Schleyer, Wight (bib0012) 2014; 64 Shi, Stewart (bib0035) 2015; 53 Ngo, Mendis, Gupta, Ramsay (bib0016) 2007; 7 Li, Wu, Hao (bib0017) 2015; 102 Yi, Kim, Han, Cho, Lee (bib0004) 2012; 28 Foschi, Li, Zhang (bib0023) 2002; 24 Schwer L. An introduction to the Winfrith concrete model. Schwer Engineering & Consulting Services. 2010 Apr:1-28. Army Engineer Waterways Experiment Station Vicksburg MS Structures Lab; 1988 Apr 1. Wen (bib0022) 2001; 23 Andreini, Gardoni, Pagliara, Sassu (bib0057) 2019; 181 Sharma, Hurlebaus, Gardoni (bib0025) 2012; 43 Stewart (bib0043) 2019; 15 Becker (bib0021) 2008; 1 Aktan, Ellingwood, Kehoe (bib0047) 2007; 133 Kelliher, Sutton-Swaby (bib0041) 2012; 34 Kammouh, Gardoni, Cimellaro (bib0033) 2020; 198 Low, Hao (bib0038) 2001; 23 Easa, Yan (bib0048) 2019; 4 Thiagarajan, Kadambi, Robert, Johnson (bib0013) 2015; 75 Hao, Stewart, Li, Shi (bib0039) 2010; 1 Möller, Foschi, Quiroz, Rubinstein (bib0024) 2009; 31 Lin, Zhang, Hazell (bib0011) 2014; 56 Netherton, Stewart (bib0044) 2010; 1 Gardoni, Der Kiureghian, Mosalam (bib0060) 2002; 128 Stewart, Li (bib0018) 2021; 88 Grant, Stewart (bib0076) 2012; 5 Cai, Zhang, Wang, Liu, Ji, Gao (bib0056) 2021; 209 Tabatabaei, Volz, Baird, Gliha, Keener (bib0010) 2013; 57 Beck, De Souza (bib0045) 2010; 32 Dusenberry (bib0050) 2010 Stewart, Netherton, Baldacchino (bib0037) 2020; 11 Zhang, Mahadevan (bib0058) 2021; 209 Brooks, Newmark (bib0073) 1953 Adedipe, Shafiee, Zio (bib0063) 2020; 202 (bib0052) 2010 Zhao, Wang, Lu, Wang (bib0006) 2019; 135 Bhuyan, Jujjavarapu, Sharma (bib0031) 2021; 81 Ditlevsen, Madsen (bib0019) 1996; 178 Rebentrost, Wight (bib0003) 2008 Kishore, Gangolu, Ramancha, Bhuyan, Sharma (bib0030) 2022 Razaqpur, Campidelli, Foo (bib0053) 2012 Melchers, Beck (bib0046) 2018 Gunst, Myers, Montgomery (bib0066) 1996; 38 Matsagar (bib0014) 2016; 49 Choe, Gardoni, Rosowsky, Haukaas (bib0062) 2008; 93 Wu, Oehlers, Rebentrost, Leach, Whittaker (bib0002) 2009; 31 US Department of the Army. Structures to resist the effects of accidental explosions. Technical manual TM5-1300; 1990. (10.1016/j.ress.2022.108751_bib0070) 1993 Razaqpur (10.1016/j.ress.2022.108751_bib0053) 2012 Tran (10.1016/j.ress.2022.108751_bib0064) 2017; 158 Low (10.1016/j.ress.2022.108751_bib0038) 2001; 23 Gunst (10.1016/j.ress.2022.108751_bib0066) 1996; 38 Matsagar (10.1016/j.ress.2022.108751_bib0014) 2016; 49 Huang (10.1016/j.ress.2022.108751_bib0054) 2020; 204 Olmati (10.1016/j.ress.2022.108751_bib0029) 2014; 78 Lan (10.1016/j.ress.2022.108751_bib0008) 2005; 19 Möller (10.1016/j.ress.2022.108751_bib0024) 2009; 31 Hao (10.1016/j.ress.2022.108751_bib0020) 2019; 80 10.1016/j.ress.2022.108751_bib0072 Bhuyan (10.1016/j.ress.2022.108751_bib0031) 2021; 81 Stewart (10.1016/j.ress.2022.108751_bib0037) 2020; 11 Wu (10.1016/j.ress.2022.108751_bib0002) 2009; 31 Easa (10.1016/j.ress.2022.108751_bib0048) 2019; 4 Stewart (10.1016/j.ress.2022.108751_bib0018) 2021; 88 Zhang (10.1016/j.ress.2022.108751_bib0058) 2021; 209 Grant (10.1016/j.ress.2022.108751_bib0076) 2012; 5 Wen (10.1016/j.ress.2022.108751_bib0022) 2001; 23 Stewart (10.1016/j.ress.2022.108751_bib0043) 2019; 15 10.1016/j.ress.2022.108751_bib0075 Hadianfard (10.1016/j.ress.2022.108751_bib0034) 2018; 75 Brooks (10.1016/j.ress.2022.108751_bib0073) 1953 10.1016/j.ress.2022.108751_bib0049 Hao (10.1016/j.ress.2022.108751_bib0040) 2016; 30 Netherton (10.1016/j.ress.2022.108751_bib0042) 2009; 36 Ditlevsen (10.1016/j.ress.2022.108751_bib0019) 1996; 178 Kelliher (10.1016/j.ress.2022.108751_bib0041) 2012; 34 Kammouh (10.1016/j.ress.2022.108751_bib0033) 2020; 198 Shi (10.1016/j.ress.2022.108751_bib0035) 2015; 53 Yao (10.1016/j.ress.2022.108751_bib0015) 2016; 66 Box (10.1016/j.ress.2022.108751_bib0074) 1992 Andreini (10.1016/j.ress.2022.108751_bib0057) 2019; 181 10.1016/j.ress.2022.108751_bib0001 Mao (10.1016/j.ress.2022.108751_bib0012) 2014; 64 Gangolu (10.1016/j.ress.2022.108751_bib0026) 2022 Dusenberry (10.1016/j.ress.2022.108751_bib0050) 2010 Zhao (10.1016/j.ress.2022.108751_bib0006) 2019; 135 Li (10.1016/j.ress.2022.108751_bib0007) 2014; 68 Kishore (10.1016/j.ress.2022.108751_bib0030) 2022 Sharma (10.1016/j.ress.2022.108751_bib0025) 2012; 43 Cai (10.1016/j.ress.2022.108751_bib0056) 2021; 209 Tabatabaei (10.1016/j.ress.2022.108751_bib0010) 2013; 57 Ngo (10.1016/j.ress.2022.108751_bib0016) 2007; 7 Modarres (10.1016/j.ress.2022.108751_bib0032) 2009; 94 Gerassis (10.1016/j.ress.2022.108751_bib0055) 2019; 188 Hao (10.1016/j.ress.2022.108751_bib0039) 2010; 1 10.1016/j.ress.2022.108751_bib0051 Li (10.1016/j.ress.2022.108751_bib0005) 2015; 82 Adedipe (10.1016/j.ress.2022.108751_bib0063) 2020; 202 Minas (10.1016/j.ress.2022.108751_bib0059) 2018; 74 Beck (10.1016/j.ress.2022.108751_bib0045) 2010; 32 Becker (10.1016/j.ress.2022.108751_bib0021) 2008; 1 Thiagarajan (10.1016/j.ress.2022.108751_bib0013) 2015; 75 Stewart (10.1016/j.ress.2022.108751_bib0036) 2018; 71 Choe (10.1016/j.ress.2022.108751_bib0062) 2008; 93 Hallquist (10.1016/j.ress.2022.108751_bib0067) 2006 Gangolu (10.1016/j.ress.2022.108751_bib0027) 2022; 164 Gardoni (10.1016/j.ress.2022.108751_bib0060) 2002; 128 Rebentrost (10.1016/j.ress.2022.108751_bib0003) 2008 Zhou (10.1016/j.ress.2022.108751_bib0009) 2008; 35 Netherton (10.1016/j.ress.2022.108751_bib0044) 2010; 1 (10.1016/j.ress.2022.108751_bib0052) 2010 Whittaker (10.1016/j.ress.2022.108751_bib0028) 2003 Alfredo (10.1016/j.ress.2022.108751_bib0061) 1975 Ren (10.1016/j.ress.2022.108751_bib0071) 2017; 8 Holmquist (10.1016/j.ress.2022.108751_bib0069) 1993 Foschi (10.1016/j.ress.2022.108751_bib0023) 2002; 24 Aktan (10.1016/j.ress.2022.108751_bib0047) 2007; 133 Li (10.1016/j.ress.2022.108751_bib0017) 2015; 102 Grant (10.1016/j.ress.2022.108751_bib0077) 2015; 29 10.1016/j.ress.2022.108751_bib0068 10.1016/j.ress.2022.108751_bib0065 Yi (10.1016/j.ress.2022.108751_bib0004) 2012; 28 Lin (10.1016/j.ress.2022.108751_bib0011) 2014; 56 Melchers (10.1016/j.ress.2022.108751_bib0046) 2018 |
References_xml | – volume: 68 start-page: 41 year: 2014 end-page: 55 ident: bib0007 article-title: Numerical study of concrete spall damage to blast loads publication-title: Int J Impact Eng – volume: 43 start-page: 52 year: 2012 end-page: 62 ident: bib0025 article-title: Performance-based response evaluation of reinforced concrete columns subject to vehicle impact publication-title: Int J Impact Eng – volume: 15 start-page: 634 year: 2019 end-page: 646 ident: bib0043 article-title: Reliability-based load factors for airblast and structural reliability of reinforced concrete columns for protective structures publication-title: Struct Infrastruct Eng – volume: 158 start-page: 73 year: 2017 end-page: 84 ident: bib0064 article-title: A framework for the quantitative assessment of performance-based system resilience publication-title: Reliab Eng Syst Saf – year: 1975 ident: bib0061 article-title: Probability concepts in engineering planning and design – volume: 24 start-page: 205 year: 2002 end-page: 218 ident: bib0023 article-title: Reliability and performance-based design: a computational approach and applications publication-title: Struct Saf – volume: 66 start-page: 120 year: 2016 end-page: 129 ident: bib0015 article-title: Experimental and numerical study on the dynamic response of RC slabs under blast loading publication-title: Eng Fail Anal – volume: 88 year: 2021 ident: bib0018 article-title: Risk-based assessment of blast-resistant design of ultra-high performance concrete columns publication-title: Struct Saf – volume: 188 start-page: 195 year: 2019 end-page: 204 ident: bib0055 article-title: Understanding complex blasting operations: a structural equation model combining Bayesian networks and latent class clustering publication-title: Reliab Eng Syst Saf – volume: 128 start-page: 1024 year: 2002 end-page: 1038 ident: bib0060 article-title: Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations publication-title: J Eng Mech – volume: 198 year: 2020 ident: bib0033 article-title: Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks publication-title: Reliab Eng Syst Saf – volume: 94 start-page: 211 year: 2009 end-page: 217 ident: bib0032 article-title: Advanced nuclear power plant regulation using risk-informed and performance-based methods publication-title: Reliab Eng Syst Saf – volume: 19 start-page: 387 year: 2005 end-page: 395 ident: bib0008 article-title: Composite structural panels subjected to explosive loading publication-title: Constr Build Mater – volume: 53 start-page: 13 year: 2015 end-page: 25 ident: bib0035 article-title: Spatial reliability analysis of explosive blast load damage to reinforced concrete columns publication-title: Struct Saf – year: 2010 ident: bib0052 article-title: Task committee on blast-resistant design of the petrochemical committee of the energy division of ASCE publication-title: Design of blast-resistant buildings in petrochemical facilities – year: 1992 ident: bib0074 article-title: Bayesian inference in statistical analysis – volume: 80 start-page: 32 year: 2019 end-page: 45 ident: bib0020 article-title: An augmented step size adjustment method for the performance measure approach: toward general structural reliability-based design optimization publication-title: Struct Saf – volume: 30 year: 2016 ident: bib0040 article-title: Reliability analysis of RC columns and frame with FRP strengthening subjected to explosive loads publication-title: J Perform Constr Facil – volume: 4 start-page: 28 year: 2019 ident: bib0048 article-title: Performance-based analysis in civil engineering: overview of applications publication-title: Infrastructures – volume: 31 start-page: 2060 year: 2009 end-page: 2069 ident: bib0002 article-title: Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs publication-title: Eng Struct – volume: 64 start-page: 91 year: 2014 end-page: 100 ident: bib0012 article-title: Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading publication-title: Int J Impact Eng – volume: 1 start-page: 356 year: 2008 end-page: 371 ident: bib0021 article-title: Fundamentals of performance-based building design publication-title: Build Simul – year: 2022 ident: bib0026 article-title: Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact publication-title: Reliab Eng Syst Saf – volume: 23 start-page: 407 year: 2001 end-page: 428 ident: bib0022 article-title: Reliability and performance-based design publication-title: Struct Saf – volume: 31 start-page: 490 year: 2009 end-page: 499 ident: bib0024 article-title: Structural optimization for performance-based design in earthquake engineering: applications of neural networks publication-title: Struct Saf – start-page: 55 year: 2003 end-page: 66 ident: bib0028 article-title: Performance-based engineering of buildings for extreme events publication-title: Proceedings of the AISC-SINY symposium resistance blast progressive collapse – reference: BSI, BS EN 1991-1-7:2006, Eurocode 1 — Actions on Structures —Part 1-7: General Actions — Accidental Actions, Incorporating Corrigendum February 2010, British Standards Institution, London, 2006. – volume: 29 year: 2015 ident: bib0077 article-title: Probabilistic risk assessment for improvised explosive device attacks that cause significant building damage publication-title: J Perform Constr Facil – volume: 133 start-page: 311 year: 2007 end-page: 323 ident: bib0047 article-title: Performance-based engineering of constructed systems publication-title: J Struct Eng – volume: 209 year: 2021 ident: bib0056 article-title: Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance publication-title: Reliab Eng Syst Saf – volume: 93 start-page: 383 year: 2008 end-page: 393 ident: bib0062 article-title: Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion publication-title: Reliab Eng Syst Saf – volume: 202 year: 2020 ident: bib0063 article-title: Bayesian network modelling for the wind energy industry: an overview publication-title: Reliab Eng Syst Saf – start-page: 735 year: 2008 end-page: 742 ident: bib0003 article-title: Behaviour and resistance of ultra high performance concrete to blast effects publication-title: Proceedings of the 2nd international symposium ultra high performance concrete – volume: 56 start-page: 620 year: 2014 end-page: 628 ident: bib0011 article-title: Modelling the response of reinforced concrete panels under blast loading publication-title: Mater Des – volume: 1 year: 2010 ident: bib0039 article-title: RC column failure probabilities to blast loads publication-title: Int J Prot Struct – year: 1993 ident: bib0070 article-title: CEB-FIP model code 1990: design code – year: 2022 ident: bib0030 article-title: Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading publication-title: Reliab Eng Syst Saf – volume: 81 start-page: 57 year: 2021 end-page: 70 ident: bib0031 article-title: Performance evaluation of two-way RC slab subjected to blast loading using finite element analysis advance structural technolnology publication-title: Lecture notes civil engineering – volume: 11 start-page: 235 year: 2020 end-page: 257 ident: bib0037 article-title: Observed airblast variability and model error from repeatable explosive field trials publication-title: Int J Prot Struct – volume: 82 start-page: 64 year: 2015 end-page: 76 ident: bib0005 article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads publication-title: Mater Des – volume: 1 start-page: 543 year: 2010 end-page: 570 ident: bib0044 article-title: Blast load variability and accuracy of blast load prediction models publication-title: Int J Prot Struct – reference: LSTC LD. Keyword User's Manual. Livermore: Livermore Software Technology Corporation (LSTC). 2007 May. – year: 2010 ident: bib0050 article-title: Handbook for blast resistant design of buildings – year: 2012 ident: bib0053 article-title: Experimental versus analytical response of structures to blast loads publication-title: Advances on Protective Structures – volume: 209 year: 2021 ident: bib0058 article-title: Bayesian network modeling of accident investigation reports for aviation safety assessment publication-title: Reliab Eng Syst Saf – volume: 135 start-page: 269 year: 2019 end-page: 284 ident: bib0006 article-title: Numerical study on dynamic behaviors of NRC slabs in containment dome subjected to close-in blast loading publication-title: Thin Walled Struct – year: 2018 ident: bib0046 article-title: Structural reliability analysis and prediction – reference: ISO 2394 IS. General principles on reliability for structures. Zurich: ISO. 1998 June. – reference: US Department of the Army. Structures to resist the effects of accidental explosions. Technical manual TM5-1300; 1990. – volume: 5 start-page: 75 year: 2012 ident: bib0076 article-title: A systems model for probabilistic risk assessment of improvised explosive device attacks publication-title: Int J Intell Def Support Syst – reference: Hyde DW. – volume: 34 start-page: 407 year: 2012 end-page: 417 ident: bib0041 article-title: Stochastic representation of blast load damage in a reinforced concrete building publication-title: Struct Saf – volume: 204 year: 2020 ident: bib0054 article-title: Railway dangerous goods transportation system risk analysis: an interpretive structural modeling and Bayesian network combining approach publication-title: Reliab Eng Syst Saf – volume: 181 start-page: 142 year: 2019 end-page: 155 ident: bib0057 article-title: Probabilistic models for the erosion rate in embankments and reliability analysis of Earth dams publication-title: Reliab Eng Syst Saf – volume: 57 start-page: 70 year: 2013 end-page: 80 ident: bib0010 article-title: Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading publication-title: Int J Impact Eng – volume: 178 year: 1996 ident: bib0019 publication-title: Structural reliability methods – volume: 36 start-page: 1346 year: 2009 end-page: 1354 ident: bib0042 article-title: The effects of explosive blast load variability on safety hazard and damage risks for monolithic window glazing publication-title: Int J Impact Eng – volume: 35 start-page: 1186 year: 2008 end-page: 1200 ident: bib0009 article-title: Numerical prediction of concrete slab response to blast loading publication-title: Int J Impact Eng – volume: 8 start-page: 352 year: 2017 end-page: 367 ident: bib0071 article-title: Parameters of Holmquist–Johnson–cook model for high-strength concrete-like materials under projectile impact publication-title: Int J Prot Struct – volume: 75 start-page: 162 year: 2015 end-page: 173 ident: bib0013 article-title: Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads publication-title: Int J Impact Eng – volume: 74 start-page: 32 year: 2018 end-page: 48 ident: bib0059 article-title: BEA: an efficient Bayesian emulation-based approach for probabilistic seismic response publication-title: Struct Saf – reference: US Department of Defense. Structures to resist the effects of accidental explosions. US Department of Defense; 2008. UFC 3-340-02. – volume: 7 start-page: 76 year: 2007 end-page: 91 ident: bib0016 article-title: Blast loading and blast effects on structures - an overview publication-title: Electron J Struct Eng – volume: 71 start-page: 13 year: 2018 end-page: 23 ident: bib0036 article-title: Reliability-based load factor design model for explosive blast loading publication-title: Struct Saf – volume: 75 start-page: 45 year: 2018 end-page: 56 ident: bib0034 article-title: Reliability analysis of H-section steel columns under blast loading publication-title: Struct Saf – start-page: 591 year: 1993 end-page: 600 ident: bib0069 article-title: A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures publication-title: Proceedings of the 14th international symposium ballistics – volume: 164 year: 2022 ident: bib0027 article-title: Performance-based probabilistic capacity models for reinforced concrete and prestressed concrete protective structures subjected to missile impact publication-title: Int J Impact Eng – volume: 23 start-page: 157 year: 2001 end-page: 178 ident: bib0038 article-title: Reliability analysis of reinforced concrete slabs under explosive loading publication-title: Struct Saf – year: 1953 ident: bib0073 article-title: The response of simple structures to dynamic loads, Technical report to ONR contract N6ori-071(06), Task Order VI Project NR-064-183 University of Illinois Urbana – reference: Schwer L. An introduction to the Winfrith concrete model. Schwer Engineering & Consulting Services. 2010 Apr:1-28. – volume: 32 start-page: 119 year: 2010 end-page: 127 ident: bib0045 article-title: A first attempt towards reliabilitybased calibration of Brazilian structural design codes publication-title: J Braz Soc Mech Sci Eng – volume: 28 start-page: 694 year: 2012 end-page: 707 ident: bib0004 article-title: Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete publication-title: Constr Build Mater – reference: Army Engineer Waterways Experiment Station Vicksburg MS Structures Lab; 1988 Apr 1. – volume: 38 year: 1996 ident: bib0066 article-title: Response surface methodology: process and product optimization using designed experiments publication-title: Technometrics – volume: 102 start-page: 395 year: 2015 end-page: 408 ident: bib0017 article-title: Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion publication-title: Eng Struct – volume: 78 start-page: 112 year: 2014 end-page: 120 ident: bib0029 article-title: Fragility analysis for the performance-based design of cladding wall panels subjected to blast load publication-title: Eng Struct – year: 2006 ident: bib0067 article-title: LS-DYNA® theory manual publication-title: Livermore software technology corporation – volume: 49 start-page: 611 year: 2016 end-page: 629 ident: bib0014 article-title: Comparative performance of composite sandwich panels and non-composite panels under blast loading publication-title: Mater Struct Constr – volume: 133 start-page: 311 year: 2007 ident: 10.1016/j.ress.2022.108751_bib0047 article-title: Performance-based engineering of constructed systems publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2007)133:3(311) – volume: 209 year: 2021 ident: 10.1016/j.ress.2022.108751_bib0058 article-title: Bayesian network modeling of accident investigation reports for aviation safety assessment publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107371 – ident: 10.1016/j.ress.2022.108751_bib0065 – volume: 1 start-page: 543 year: 2010 ident: 10.1016/j.ress.2022.108751_bib0044 article-title: Blast load variability and accuracy of blast load prediction models publication-title: Int J Prot Struct doi: 10.1260/2041-4196.1.4.543 – volume: 209 year: 2021 ident: 10.1016/j.ress.2022.108751_bib0056 article-title: Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107464 – volume: 75 start-page: 45 year: 2018 ident: 10.1016/j.ress.2022.108751_bib0034 article-title: Reliability analysis of H-section steel columns under blast loading publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.06.001 – volume: 74 start-page: 32 year: 2018 ident: 10.1016/j.ress.2022.108751_bib0059 article-title: BEA: an efficient Bayesian emulation-based approach for probabilistic seismic response publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.04.002 – volume: 128 start-page: 1024 year: 2002 ident: 10.1016/j.ress.2022.108751_bib0060 article-title: Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024) – year: 2006 ident: 10.1016/j.ress.2022.108751_bib0067 article-title: LS-DYNA® theory manual – volume: 164 year: 2022 ident: 10.1016/j.ress.2022.108751_bib0027 article-title: Performance-based probabilistic capacity models for reinforced concrete and prestressed concrete protective structures subjected to missile impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2022.104207 – year: 1953 ident: 10.1016/j.ress.2022.108751_bib0073 – volume: 75 start-page: 162 year: 2015 ident: 10.1016/j.ress.2022.108751_bib0013 article-title: Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.07.018 – volume: 68 start-page: 41 year: 2014 ident: 10.1016/j.ress.2022.108751_bib0007 article-title: Numerical study of concrete spall damage to blast loads publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.02.001 – volume: 93 start-page: 383 year: 2008 ident: 10.1016/j.ress.2022.108751_bib0062 article-title: Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2006.12.015 – volume: 38 year: 1996 ident: 10.1016/j.ress.2022.108751_bib0066 article-title: Response surface methodology: process and product optimization using designed experiments publication-title: Technometrics – year: 2012 ident: 10.1016/j.ress.2022.108751_bib0053 article-title: Experimental versus analytical response of structures to blast loads – volume: 78 start-page: 112 year: 2014 ident: 10.1016/j.ress.2022.108751_bib0029 article-title: Fragility analysis for the performance-based design of cladding wall panels subjected to blast load publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.06.004 – volume: 71 start-page: 13 year: 2018 ident: 10.1016/j.ress.2022.108751_bib0036 article-title: Reliability-based load factor design model for explosive blast loading publication-title: Struct Saf doi: 10.1016/j.strusafe.2017.10.010 – ident: 10.1016/j.ress.2022.108751_bib0049 – volume: 53 start-page: 13 year: 2015 ident: 10.1016/j.ress.2022.108751_bib0035 article-title: Spatial reliability analysis of explosive blast load damage to reinforced concrete columns publication-title: Struct Saf doi: 10.1016/j.strusafe.2014.07.003 – ident: 10.1016/j.ress.2022.108751_bib0075 – volume: 198 year: 2020 ident: 10.1016/j.ress.2022.108751_bib0033 article-title: Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.106813 – start-page: 55 year: 2003 ident: 10.1016/j.ress.2022.108751_bib0028 article-title: Performance-based engineering of buildings for extreme events – year: 1992 ident: 10.1016/j.ress.2022.108751_bib0074 – year: 1993 ident: 10.1016/j.ress.2022.108751_bib0070 – volume: 80 start-page: 32 year: 2019 ident: 10.1016/j.ress.2022.108751_bib0020 article-title: An augmented step size adjustment method for the performance measure approach: toward general structural reliability-based design optimization publication-title: Struct Saf doi: 10.1016/j.strusafe.2019.04.001 – volume: 66 start-page: 120 year: 2016 ident: 10.1016/j.ress.2022.108751_bib0015 article-title: Experimental and numerical study on the dynamic response of RC slabs under blast loading publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2016.04.027 – ident: 10.1016/j.ress.2022.108751_bib0068 – volume: 24 start-page: 205 year: 2002 ident: 10.1016/j.ress.2022.108751_bib0023 article-title: Reliability and performance-based design: a computational approach and applications publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00025-5 – volume: 31 start-page: 490 year: 2009 ident: 10.1016/j.ress.2022.108751_bib0024 article-title: Structural optimization for performance-based design in earthquake engineering: applications of neural networks publication-title: Struct Saf doi: 10.1016/j.strusafe.2009.06.007 – volume: 34 start-page: 407 year: 2012 ident: 10.1016/j.ress.2022.108751_bib0041 article-title: Stochastic representation of blast load damage in a reinforced concrete building publication-title: Struct Saf doi: 10.1016/j.strusafe.2011.08.001 – ident: 10.1016/j.ress.2022.108751_bib0001 – volume: 94 start-page: 211 year: 2009 ident: 10.1016/j.ress.2022.108751_bib0032 article-title: Advanced nuclear power plant regulation using risk-informed and performance-based methods publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2008.02.019 – volume: 49 start-page: 611 year: 2016 ident: 10.1016/j.ress.2022.108751_bib0014 article-title: Comparative performance of composite sandwich panels and non-composite panels under blast loading publication-title: Mater Struct Constr doi: 10.1617/s11527-015-0523-8 – volume: 5 start-page: 75 year: 2012 ident: 10.1016/j.ress.2022.108751_bib0076 article-title: A systems model for probabilistic risk assessment of improvised explosive device attacks publication-title: Int J Intell Def Support Syst – volume: 11 start-page: 235 year: 2020 ident: 10.1016/j.ress.2022.108751_bib0037 article-title: Observed airblast variability and model error from repeatable explosive field trials publication-title: Int J Prot Struct doi: 10.1177/2041419619871305 – volume: 181 start-page: 142 year: 2019 ident: 10.1016/j.ress.2022.108751_bib0057 article-title: Probabilistic models for the erosion rate in embankments and reliability analysis of Earth dams publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.09.023 – volume: 1 year: 2010 ident: 10.1016/j.ress.2022.108751_bib0039 article-title: RC column failure probabilities to blast loads publication-title: Int J Prot Struct doi: 10.1260/2041-4196.1.4.571 – year: 2018 ident: 10.1016/j.ress.2022.108751_bib0046 – start-page: 591 year: 1993 ident: 10.1016/j.ress.2022.108751_bib0069 article-title: A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures – volume: 31 start-page: 2060 year: 2009 ident: 10.1016/j.ress.2022.108751_bib0002 article-title: Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.03.020 – volume: 178 year: 1996 ident: 10.1016/j.ress.2022.108751_bib0019 – volume: 28 start-page: 694 year: 2012 ident: 10.1016/j.ress.2022.108751_bib0004 article-title: Blast-resistant characteristics of ultra-high strength concrete and reactive powder concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2011.09.014 – volume: 135 start-page: 269 year: 2019 ident: 10.1016/j.ress.2022.108751_bib0006 article-title: Numerical study on dynamic behaviors of NRC slabs in containment dome subjected to close-in blast loading publication-title: Thin Walled Struct doi: 10.1016/j.tws.2018.11.013 – year: 1975 ident: 10.1016/j.ress.2022.108751_bib0061 – year: 2022 ident: 10.1016/j.ress.2022.108751_bib0026 article-title: Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108497 – year: 2022 ident: 10.1016/j.ress.2022.108751_bib0030 article-title: Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108729 – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108751_bib0063 article-title: Bayesian network modelling for the wind energy industry: an overview publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107053 – volume: 23 start-page: 157 year: 2001 ident: 10.1016/j.ress.2022.108751_bib0038 article-title: Reliability analysis of reinforced concrete slabs under explosive loading publication-title: Struct Saf doi: 10.1016/S0167-4730(01)00011-X – volume: 7 start-page: 76 year: 2007 ident: 10.1016/j.ress.2022.108751_bib0016 article-title: Blast loading and blast effects on structures - an overview publication-title: Electron J Struct Eng doi: 10.56748/ejse.671 – volume: 57 start-page: 70 year: 2013 ident: 10.1016/j.ress.2022.108751_bib0010 article-title: Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.01.006 – volume: 30 year: 2016 ident: 10.1016/j.ress.2022.108751_bib0040 article-title: Reliability analysis of RC columns and frame with FRP strengthening subjected to explosive loads publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000748 – year: 2010 ident: 10.1016/j.ress.2022.108751_bib0050 – volume: 102 start-page: 395 year: 2015 ident: 10.1016/j.ress.2022.108751_bib0017 article-title: Investigation of ultra-high performance concrete slab and normal strength concrete slab under contact explosion publication-title: Eng Struct doi: 10.1016/j.engstruct.2015.08.032 – volume: 1 start-page: 356 year: 2008 ident: 10.1016/j.ress.2022.108751_bib0021 article-title: Fundamentals of performance-based building design publication-title: Build Simul doi: 10.1007/s12273-008-8527-8 – volume: 4 start-page: 28 year: 2019 ident: 10.1016/j.ress.2022.108751_bib0048 article-title: Performance-based analysis in civil engineering: overview of applications publication-title: Infrastructures doi: 10.3390/infrastructures4020028 – volume: 32 start-page: 119 year: 2010 ident: 10.1016/j.ress.2022.108751_bib0045 article-title: A first attempt towards reliabilitybased calibration of Brazilian structural design codes publication-title: J Braz Soc Mech Sci Eng doi: 10.1590/S1678-58782010000200004 – start-page: 735 year: 2008 ident: 10.1016/j.ress.2022.108751_bib0003 article-title: Behaviour and resistance of ultra high performance concrete to blast effects – volume: 29 year: 2015 ident: 10.1016/j.ress.2022.108751_bib0077 article-title: Probabilistic risk assessment for improvised explosive device attacks that cause significant building damage publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000694 – volume: 188 start-page: 195 year: 2019 ident: 10.1016/j.ress.2022.108751_bib0055 article-title: Understanding complex blasting operations: a structural equation model combining Bayesian networks and latent class clustering publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.03.032 – volume: 8 start-page: 352 year: 2017 ident: 10.1016/j.ress.2022.108751_bib0071 article-title: Parameters of Holmquist–Johnson–cook model for high-strength concrete-like materials under projectile impact publication-title: Int J Prot Struct doi: 10.1177/2041419617721552 – volume: 88 year: 2021 ident: 10.1016/j.ress.2022.108751_bib0018 article-title: Risk-based assessment of blast-resistant design of ultra-high performance concrete columns publication-title: Struct Saf doi: 10.1016/j.strusafe.2020.102030 – volume: 82 start-page: 64 year: 2015 ident: 10.1016/j.ress.2022.108751_bib0005 article-title: An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads publication-title: Mater Des doi: 10.1016/j.matdes.2015.05.045 – volume: 204 year: 2020 ident: 10.1016/j.ress.2022.108751_bib0054 article-title: Railway dangerous goods transportation system risk analysis: an interpretive structural modeling and Bayesian network combining approach publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107220 – volume: 19 start-page: 387 year: 2005 ident: 10.1016/j.ress.2022.108751_bib0008 article-title: Composite structural panels subjected to explosive loading publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2004.07.021 – volume: 43 start-page: 52 year: 2012 ident: 10.1016/j.ress.2022.108751_bib0025 article-title: Performance-based response evaluation of reinforced concrete columns subject to vehicle impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.11.007 – ident: 10.1016/j.ress.2022.108751_bib0051 – volume: 56 start-page: 620 year: 2014 ident: 10.1016/j.ress.2022.108751_bib0011 article-title: Modelling the response of reinforced concrete panels under blast loading publication-title: Mater Des doi: 10.1016/j.matdes.2013.11.069 – ident: 10.1016/j.ress.2022.108751_bib0072 – volume: 64 start-page: 91 year: 2014 ident: 10.1016/j.ress.2022.108751_bib0012 article-title: Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.10.003 – volume: 35 start-page: 1186 year: 2008 ident: 10.1016/j.ress.2022.108751_bib0009 article-title: Numerical prediction of concrete slab response to blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.01.004 – volume: 23 start-page: 407 year: 2001 ident: 10.1016/j.ress.2022.108751_bib0022 article-title: Reliability and performance-based design publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00011-5 – volume: 15 start-page: 634 year: 2019 ident: 10.1016/j.ress.2022.108751_bib0043 article-title: Reliability-based load factors for airblast and structural reliability of reinforced concrete columns for protective structures publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2019.1566389 – volume: 158 start-page: 73 year: 2017 ident: 10.1016/j.ress.2022.108751_bib0064 article-title: A framework for the quantitative assessment of performance-based system resilience publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.10.014 – volume: 81 start-page: 57 year: 2021 ident: 10.1016/j.ress.2022.108751_bib0031 article-title: Performance evaluation of two-way RC slab subjected to blast loading using finite element analysis advance structural technolnology – volume: 36 start-page: 1346 year: 2009 ident: 10.1016/j.ress.2022.108751_bib0042 article-title: The effects of explosive blast load variability on safety hazard and damage risks for monolithic window glazing publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.02.009 – year: 2010 ident: 10.1016/j.ress.2022.108751_bib0052 article-title: Task committee on blast-resistant design of the petrochemical committee of the energy division of ASCE |
SSID | ssj0004957 |
Score | 2.4342802 |
Snippet | •A performance-based design (PBD) framework for Normal Strength Concrete (NRC) & Ultra-High Strength Concrete (UHSC) panel subjected to air blast loading is... A multilevel performance-based design (PBD) framework is developed for panels of Protective structures subjected to air blast. These provisions improve the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108751 |
SubjectTerms | Bayesian analysis Blast loads Blast resistance Code calibration Design factors Design of experiments Experimental design Fragility Fragility estimates High strength concretes Limit states Load and resistance factors Load resistance Mathematical analysis Mathematical models Numerical models Panels Performance levels Performance-based analysis and design Probabilistic capacity and demand models Probabilistic models Protective structure Protective structures Reliability analysis Reliability aspects Reliability engineering Resistance factors Slabs Statistical analysis Statistical inference |
Title | Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading |
URI | https://dx.doi.org/10.1016/j.ress.2022.108751 https://www.proquest.com/docview/2756216532 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IwokjkYL6ZAd7tdeiREgxq5KAm3ZtvuJhgCRCDGi_51Z9qtqIkcvDTd7iPtftN5tPNg7EKiiZGhUe0FUYoHbpWXYNuzfttoy1OV5cVgHgZhfxjcjeSownplLAy5VTreX_D0nFu7Ky23m635eNx6JOWgQ-W_eZ5EZUQR7IEiKm--r9080ABQZTl5Gu0CZwofL7Jom7QCudop6f8lnH6x6Vz23OyxXac0Qre4r31WMdMDtvMtleAh-yDf4iLn9htol2kELmG-DgzwSGJlQEHsgMiQnUyoAPYDEkayaL3qyWQBMwsuewNyQigSzK7wGWCxSuirDSxnoMcvkKDivYTJLPfCP2LDm-unXt9zxRW8lMvO0jORVib1UbkWwqrIaL-jkQkLwxOuU8NNhmeqkyFyMgiNCG3GjdAyQz2X_v6JY1adzqbmhIFVHBWNwCpjbGBDP5EiMsLKRKSmjavWmF_uapy6zONUAGMSly5mzzEhERMScYFEjV19zZkXeTc2jpYlWPEP6olRMGycVy-Rjd27i_0KdUI_lIKf_nPZM7ZNrcLrpc6qCJQ5R91lmTRy4mywre7tfX_wCQ2k8Rs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSPAjcgFhRK7DhuR1SByqsLRepmOYktFVVtRYsQC_x17hKHAhIdWKIkfijxZ999l5zvGDuWaGJkaFQHUTPFA3cqSPA6cOG5NY6nKsuTwdx34vZjdNOTvQprlXthyK3Sy_5CpufS2t-p-9Gsj_v9-gORgwal_-Z5EJXeAluMcPlSGoOz95mfB1oAqswnT9X9zpnCyYtM2jPqgnztlAz_0k6_5HSufK7W2KpnjXBRPNg6q9jhBlv5Fktwk32Qc3ERdPsNjA81Aicwnu0MCEhlZUC72AGhIUOZYAEsB5wZyaT-agaDCYwc-PANKAqhiDD7gu8Ak5eEPtvAdASm_wwJMu8pDEa5G_4We7y67Lbagc-uEKRcNqaBbRpl0xDZtRBONa0JGwalsLA84Sa13GZ4phoZQiej2IrYZdwKIzMkuvT7T2yz6nA0tDsMnOLINCKnrHWRi8NEiqYVTiYitefY6y4Ly1HVqQ89ThkwBrr0MXvShIQmJHSBxC47_WozLgJvzK0tS7D0j-mjUTPMbVcrkdV-8WK5QlIYxlLwvX92e8SW2t37O3133bndZ8tUUrjA1FgVQbMHSGSmyWE-UT8BkijyqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+analysis+%26+performance-based+code+calibration+for+slabs%2Fwalls+of+protective+structures+subject+to+air+blast+loading&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Bhuyan%2C+Kasturi&rft.au=Sharma%2C+Hrishikesh&rft.date=2022-12-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=228&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108751&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |