Semi-supervised learning from coarse histopathology labels

Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological analysis and coarse labelling of sampled tissue. Ideally, the procedure should be improved by developing machine learning solutions that can id...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering. Vol. 11; no. 4; pp. 1143 - 1150
Main Authors Fooladgar, Fahimeh, Nguyen Nhat to, Minh, Javadi, Golara, Sojoudi, Samira, Eshumani, Walid, Chang, Silvia, Black, Peter, Mousavi, Parvin, Abolmaesumi, Purang
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological analysis and coarse labelling of sampled tissue. Ideally, the procedure should be improved by developing machine learning solutions that can identify the presence of cancer in ultrasound images to guide the biopsy procedure. Training a fully supervised learning model using coarse histopathology labels suffers from weakly annotated data which introduce label noise for each image pixel. To address this challenge, we propose a semi-supervised framework for learning with noisy labels. We leverage a two-component mixture model to cluster the training data into clean and noisy label samples based on their loss values. Then, during the semi-supervised training phase, we utilise the well-known MixMatch algorithm which incorporates consistency regularisation, entropy minimisation, and the Mixup regularisation as well as the cross-entropy loss function for noisy and clean sets, respectively. We evaluate the proposed framework with prostate ultrasound data obtained from 71 subjects, while sampling 264 biopsy cores. We achieve balanced accuracy, sensitivity, and specificity of 78.6%, 80.0%, and 77.1%, respectively. In a detailed comparison study, we demonstrate that our proposed framework outperforms the fully supervised method with state-of-the-art robust loss functions.
AbstractList Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological analysis and coarse labelling of sampled tissue. Ideally, the procedure should be improved by developing machine learning solutions that can identify the presence of cancer in ultrasound images to guide the biopsy procedure. Training a fully supervised learning model using coarse histopathology labels suffers from weakly annotated data which introduce label noise for each image pixel. To address this challenge, we propose a semi-supervised framework for learning with noisy labels. We leverage a two-component mixture model to cluster the training data into clean and noisy label samples based on their loss values. Then, during the semi-supervised training phase, we utilise the well-known MixMatch algorithm which incorporates consistency regularisation, entropy minimisation, and the Mixup regularisation as well as the cross-entropy loss function for noisy and clean sets, respectively. We evaluate the proposed framework with prostate ultrasound data obtained from 71 subjects, while sampling 264 biopsy cores. We achieve balanced accuracy, sensitivity, and specificity of 78.6%, 80.0%, and 77.1%, respectively. In a detailed comparison study, we demonstrate that our proposed framework outperforms the fully supervised method with state-of-the-art robust loss functions.
Author Sojoudi, Samira
Nguyen Nhat to, Minh
Eshumani, Walid
Abolmaesumi, Purang
Mousavi, Parvin
Fooladgar, Fahimeh
Javadi, Golara
Chang, Silvia
Black, Peter
Author_xml – sequence: 1
  givenname: Fahimeh
  surname: Fooladgar
  fullname: Fooladgar, Fahimeh
  email: fahimeh.fooladgar@ubc.ca
  organization: University of British Columbia
– sequence: 2
  givenname: Minh
  surname: Nguyen Nhat to
  fullname: Nguyen Nhat to, Minh
  organization: University of British Columbia
– sequence: 3
  givenname: Golara
  surname: Javadi
  fullname: Javadi, Golara
  organization: University of British Columbia
– sequence: 4
  givenname: Samira
  surname: Sojoudi
  fullname: Sojoudi, Samira
  organization: University of British Columbia
– sequence: 5
  givenname: Walid
  surname: Eshumani
  fullname: Eshumani, Walid
  organization: Vancouver General Hospital
– sequence: 6
  givenname: Silvia
  surname: Chang
  fullname: Chang, Silvia
  organization: Vancouver General Hospital
– sequence: 7
  givenname: Peter
  surname: Black
  fullname: Black, Peter
  organization: Vancouver General Hospital
– sequence: 8
  givenname: Parvin
  surname: Mousavi
  fullname: Mousavi, Parvin
  organization: Queen's University
– sequence: 9
  givenname: Purang
  surname: Abolmaesumi
  fullname: Abolmaesumi, Purang
  organization: University of British Columbia
BookMark eNp9kMFKAzEYhINUsNY-grAvsDV_skkTT0rRKhQ8qOfwbzZpI7ubkqxK396WVo_OZYaBmcN3SUZ97B0h10BnQBW9YSAVgOQzRhmbMRAVm4szMj70JcAcRn9Z8gsyzfmD7qWk5FKMye2r60KZP7cufYXsmqJ1mPrQrwufYlfYiCm7YhPyELc4bGIb17uixdq1-Yqce2yzm558Qt4fH94WT-XqZfm8uF-Vlgk1lBqxskp5zTSg8FyD1ZWWlW6AS1VVCtA3AmsUtqkpWinnUiJ6ZJpi7R2fEHH8tSnmnJw32xQ6TDsD1BwYmF8G5sDAnBjsd3fHXeh9TB1-x9Q2ZsBdG5NP2NuQDf__4geffmV1
Cites_doi 10.1109/TUFFC.2017.2785230
10.1109/ISBI52829.2022.9761553
10.1007/s11548-022-02606-2
10.5489/cuaj.1248
10.1007/978-981-15-1967-3
10.1007/s11548-022-02707-y
10.1109/ICCV.2019.00041
10.1007/s11548-021-02485-z
10.1007/978-3-030-87237-3_65
10.21037/tau.2019.09.37
10.14740/wjon1191
10.1118/1.3457710
10.1016/j.eururo.2018.11.031
10.1007/s11548-020-02168-1
10.1109/TMI.2015.2427739
10.1007/s11548-020-02172-5
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
DBID AAYXX
CITATION
DOI 10.1080/21681163.2022.2154275
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1171
EndPage 1150
ExternalDocumentID 10_1080_21681163_2022_2154275
2154275
Genre Research Article
GroupedDBID 0BK
30N
4.4
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ADCVX
ADGTB
AEISY
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ARCSS
BLEHA
CCCUG
EBS
EUPTU
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
AAGDL
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
CITATION
ID FETCH-LOGICAL-c258t-9aa4c88f9291a5f391c949649d13684481afd5aba5cdb0ac66766aafa290abfe3
ISSN 2168-1163
IngestDate Tue Jul 01 04:23:38 EDT 2025
Wed Dec 25 09:03:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-9aa4c88f9291a5f391c949649d13684481afd5aba5cdb0ac66766aafa290abfe3
PageCount 8
ParticipantIDs informaworld_taylorfrancis_310_1080_21681163_2022_2154275
crossref_primary_10_1080_21681163_2022_2154275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-04
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-04
  day: 04
PublicationDecade 2020
PublicationTitle Computer methods in biomechanics and biomedical engineering.
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
Ma X (cit0015) 2020
cit0010
Berthelot D (cit0003) 2019; 32
Han B (cit0005) 2018; 31
cit0019
Zhang Z (cit0026) 2018
cit0017
cit0018
cit0016
Zhang H (cit0025) 2018
Sohn K (cit0022) 2020; 33
cit0020
cit0021
Li J (cit0013) 2020
Liu S (cit0014) 2020; 33
Lee DH (cit0012) 2013; 3
Arazo E (cit0001) 2019
cit0008
cit0009
cit0006
cit0007
cit0004
cit0002
cit0024
Tarvainen A (cit0023) 2017; 30
Zhou X (cit0027) 2021
References_xml – ident: cit0002
  doi: 10.1109/TUFFC.2017.2785230
– ident: cit0004
  doi: 10.1109/ISBI52829.2022.9761553
– ident: cit0016
  doi: 10.1007/s11548-022-02606-2
– ident: cit0021
  doi: 10.5489/cuaj.1248
– start-page: 12846
  volume-title: International Conference on Machine Learning. PMLR
  year: 2021
  ident: cit0027
  doi: 10.1007/978-981-15-1967-3
– ident: cit0010
  doi: 10.1007/s11548-022-02707-y
– ident: cit0024
  doi: 10.1109/ICCV.2019.00041
– ident: cit0007
  doi: 10.1007/s11548-021-02485-z
– volume: 33
  start-page: 596
  year: 2020
  ident: cit0022
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 1195
  year: 2017
  ident: cit0023
  publication-title: Adv Neural Inf Process Syst
– start-page: 312
  volume-title: International Conference on Machine Learning. PMLR
  year: 2019
  ident: cit0001
– ident: cit0009
  doi: 10.1007/978-3-030-87237-3_65
– volume: 32
  start-page: 5049
  year: 2019
  ident: cit0003
  publication-title: Adv Neural Inf Process Syst
– start-page: 6543
  volume-title: International Conference on Machine Learning. PMLR
  year: 2020
  ident: cit0015
– volume: 3
  start-page: 896
  volume-title: Workshop on challenges in representation learning , ICML
  year: 2013
  ident: cit0012
– ident: cit0017
  doi: 10.21037/tau.2019.09.37
– ident: cit0019
  doi: 10.14740/wjon1191
– volume: 33
  start-page: 20331
  year: 2020
  ident: cit0014
  publication-title: Adv Neural Inf Process Syst
– ident: cit0018
  doi: 10.1118/1.3457710
– volume-title: International Conference on Learning Representations
  year: 2018
  ident: cit0025
– volume-title: International Conference on Learning Representations
  year: 2020
  ident: cit0013
– volume: 31
  start-page: 8536
  year: 2018
  ident: cit0005
  publication-title: Adv Neural Inf Process Syst
– ident: cit0011
  doi: 10.1016/j.eururo.2018.11.031
– ident: cit0008
  doi: 10.1007/s11548-020-02168-1
– ident: cit0006
  doi: 10.1109/TMI.2015.2427739
– ident: cit0020
  doi: 10.1007/s11548-020-02172-5
– volume-title: 32nd Conference on Neural Information Processing Systems (NeurIPS)
  year: 2018
  ident: cit0026
SSID ssj0000866365
Score 2.2419746
Snippet Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 1143
SubjectTerms Noisy labels
prostate cancer detection
semi-supervised learning
Title Semi-supervised learning from coarse histopathology labels
URI https://www.tandfonline.com/doi/abs/10.1080/21681163.2022.2154275
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcoED4inKSzlwQwmx4zzMDSFKVYm97FbqLRo7drsSm63aLBL8Dn4w40ceW1aIxyVa2cpDM9-OZ0Yz3xDyWkrBFCgdUy7LmKs0j8GINNYCVFXqklJt8x2f58XxKT85y89msx-TqqVtJxP1fW9fyb9oFddQr7ZL9i80OzwUF_A36hevqGG8_pGOF3q9iq-3l_b_fo2e45c-z-GaRtQGg9bAKGwHD3u2JdS6Z1AeCQrCYIcwTdoVyLqufNsU3JM4-zZ9p1E9Uhgm4yGGIXJz7qu1j-BitdZjnvl8-023b-YXtm9y42v122H3BL5C40oKPtkoezglFhsUgd9YwHoVNkJ-gmWulnXMTy5_GRUyWjhGCwxhabBwerrm57IMJppOoMgn9hajuWxydlv3du-54Asp7bPt6xL8Tpags8OZH9tyg3I77NwitxkGH9Z6Zul8yNxhEFhkbkbp8P19a1iVvt37jh2nZ4cSd-LMLO-TeyEKid57SD0gM90-JHcn3JSPyLsb4Ip6cEUWXJEHV7QLrsiD6zE5Pfq4_HAch0EbsWJ51cUCgKuqMugqU8hNJqgSXBRcNDQrKgzgKZgmBwm5amQKytZFFwAGmEhBGp09IQftptVPSYTuDp4BlcmLquGmpAKKkklOLQdSlitxSJJeEvWl51OpaaCp7UVXW9HVQXSHREzlVXcOT8ZDqc5-e--z_7j3ObkzovkFOeiutvol-p-dfOXg8BOAV4EZ
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50PagH3-LbHvSYtUmTtBE8iA_W115U8FaTNBERV3G7iP4s_4p_yKQP2RX0Ih48l5Qh857MfAOwoZQgWmqDMFUxojpkSFoRIiOkTmITY2x8veOszVuX9PiKXQ3BWz0L49sqfQ5tS6CIwlZ75fbF6LolbotgnmAXSLj0jpCmc1qUxHVj5Yl5eXZpW3fnaN_xeJOQw4OLvRaqNgsgTViSIyEl1UliXWyAJbORwFpQwanIcMQTl7FgaTMmlWQ6U6HUvhGUS2klEaFU1kTuv8MwwgSPvW5FYfuzruNSBB4VGyw9lciTWQ8OfUf5gEscAEztc3WHk_BeX1LZ4XLX7OWqqV-_4Ef-r1ucgokq8g52S1WZhiHTmYHxPjzGWdg-N_e3qNt79Aa0a7Kg2qlxE_gpnEA_yKeuCQqIZr_JuXiRCJwaufhiDi7_hPh5aHQeOmYBAufind1LLONJRm2MheQxURR73J-IabEIzZq_6WOJIZLiCpq1ZkLqmZBWTFgE0S8FaV4Ub2y5aSWNfjy79Iuz6zDaujg7TU-P2ifLMOY-RUVnMl2BRv7UM6su_srVWiHwAVz_tWx8AGaDMto
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5WBdGDb_FtD3rM2qRp2ggeRF18LoIueKtJmoiI6-J2Ef1X_hV_kUkfsivoRfbguaQMmfdk5huALSk5UUJphKmMEFV-iIThPtJcqDjSEcba1Tsumuy4RU9vwpsavFezMK6t0uXQpgCKyG21U-5OaqqOuB2CWYxtHGGzO0Lq1mdRElV9lWf69cVmbd29k0PL4m1CGkfXB8eoXCyAFAnjDHEhqIpjY0MDLEITcKw45YzyFAcstgkLFiYNhRShSqUvlOsDZUIYQbgvpNGB_e8IjDE32OmmRvzmV1nHZggsyBdYOiqRI7OaG_qJ8gGPOICX2ufpGtPwUd1R0eDyUO9lsq7evsFH_qtLnIGpMu729gtFmYWabs_BZB8a4zzsXunHe9TtdZz57OrUKzdq3HluBsdTT-K5q70coNntcc7fIzyrRDa6WIDWUIhfhNH2U1svgWcdvLV6sQlZnFITYS5YRCTFDvUnCBVfhnrF3qRTIIgkuARmrZiQOCYkJROWgfcLQZLlpRtT7FlJgl_Prvzh7CaMXx42kvOT5tkqTNgvQd6WTNdgNHvu6XUbfGVyIxd3D26HLRqfSegxfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+learning+from+coarse+histopathology+labels&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Fooladgar%2C+Fahimeh&rft.au=Nguyen+Nhat+to%2C+Minh&rft.au=Javadi%2C+Golara&rft.au=Sojoudi%2C+Samira&rft.date=2023-07-04&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=11&rft.issue=4&rft.spage=1143&rft.epage=1150&rft_id=info:doi/10.1080%2F21681163.2022.2154275&rft.externalDocID=2154275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon