Semi-supervised learning from coarse histopathology labels
Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological analysis and coarse labelling of sampled tissue. Ideally, the procedure should be improved by developing machine learning solutions that can id...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering. Vol. 11; no. 4; pp. 1143 - 1150 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
04.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological analysis and coarse labelling of sampled tissue. Ideally, the procedure should be improved by developing machine learning solutions that can identify the presence of cancer in ultrasound images to guide the biopsy procedure. Training a fully supervised learning model using coarse histopathology labels suffers from weakly annotated data which introduce label noise for each image pixel. To address this challenge, we propose a semi-supervised framework for learning with noisy labels. We leverage a two-component mixture model to cluster the training data into clean and noisy label samples based on their loss values. Then, during the semi-supervised training phase, we utilise the well-known MixMatch algorithm which incorporates consistency regularisation, entropy minimisation, and the Mixup regularisation as well as the cross-entropy loss function for noisy and clean sets, respectively. We evaluate the proposed framework with prostate ultrasound data obtained from 71 subjects, while sampling 264 biopsy cores. We achieve balanced accuracy, sensitivity, and specificity of 78.6%, 80.0%, and 77.1%, respectively. In a detailed comparison study, we demonstrate that our proposed framework outperforms the fully supervised method with state-of-the-art robust loss functions. |
---|---|
AbstractList | Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological analysis and coarse labelling of sampled tissue. Ideally, the procedure should be improved by developing machine learning solutions that can identify the presence of cancer in ultrasound images to guide the biopsy procedure. Training a fully supervised learning model using coarse histopathology labels suffers from weakly annotated data which introduce label noise for each image pixel. To address this challenge, we propose a semi-supervised framework for learning with noisy labels. We leverage a two-component mixture model to cluster the training data into clean and noisy label samples based on their loss values. Then, during the semi-supervised training phase, we utilise the well-known MixMatch algorithm which incorporates consistency regularisation, entropy minimisation, and the Mixup regularisation as well as the cross-entropy loss function for noisy and clean sets, respectively. We evaluate the proposed framework with prostate ultrasound data obtained from 71 subjects, while sampling 264 biopsy cores. We achieve balanced accuracy, sensitivity, and specificity of 78.6%, 80.0%, and 77.1%, respectively. In a detailed comparison study, we demonstrate that our proposed framework outperforms the fully supervised method with state-of-the-art robust loss functions. |
Author | Sojoudi, Samira Nguyen Nhat to, Minh Eshumani, Walid Abolmaesumi, Purang Mousavi, Parvin Fooladgar, Fahimeh Javadi, Golara Chang, Silvia Black, Peter |
Author_xml | – sequence: 1 givenname: Fahimeh surname: Fooladgar fullname: Fooladgar, Fahimeh email: fahimeh.fooladgar@ubc.ca organization: University of British Columbia – sequence: 2 givenname: Minh surname: Nguyen Nhat to fullname: Nguyen Nhat to, Minh organization: University of British Columbia – sequence: 3 givenname: Golara surname: Javadi fullname: Javadi, Golara organization: University of British Columbia – sequence: 4 givenname: Samira surname: Sojoudi fullname: Sojoudi, Samira organization: University of British Columbia – sequence: 5 givenname: Walid surname: Eshumani fullname: Eshumani, Walid organization: Vancouver General Hospital – sequence: 6 givenname: Silvia surname: Chang fullname: Chang, Silvia organization: Vancouver General Hospital – sequence: 7 givenname: Peter surname: Black fullname: Black, Peter organization: Vancouver General Hospital – sequence: 8 givenname: Parvin surname: Mousavi fullname: Mousavi, Parvin organization: Queen's University – sequence: 9 givenname: Purang surname: Abolmaesumi fullname: Abolmaesumi, Purang organization: University of British Columbia |
BookMark | eNp9kMFKAzEYhINUsNY-grAvsDV_skkTT0rRKhQ8qOfwbzZpI7ubkqxK396WVo_OZYaBmcN3SUZ97B0h10BnQBW9YSAVgOQzRhmbMRAVm4szMj70JcAcRn9Z8gsyzfmD7qWk5FKMye2r60KZP7cufYXsmqJ1mPrQrwufYlfYiCm7YhPyELc4bGIb17uixdq1-Yqce2yzm558Qt4fH94WT-XqZfm8uF-Vlgk1lBqxskp5zTSg8FyD1ZWWlW6AS1VVCtA3AmsUtqkpWinnUiJ6ZJpi7R2fEHH8tSnmnJw32xQ6TDsD1BwYmF8G5sDAnBjsd3fHXeh9TB1-x9Q2ZsBdG5NP2NuQDf__4geffmV1 |
Cites_doi | 10.1109/TUFFC.2017.2785230 10.1109/ISBI52829.2022.9761553 10.1007/s11548-022-02606-2 10.5489/cuaj.1248 10.1007/978-981-15-1967-3 10.1007/s11548-022-02707-y 10.1109/ICCV.2019.00041 10.1007/s11548-021-02485-z 10.1007/978-3-030-87237-3_65 10.21037/tau.2019.09.37 10.14740/wjon1191 10.1118/1.3457710 10.1016/j.eururo.2018.11.031 10.1007/s11548-020-02168-1 10.1109/TMI.2015.2427739 10.1007/s11548-020-02172-5 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
DBID | AAYXX CITATION |
DOI | 10.1080/21681163.2022.2154275 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-1171 |
EndPage | 1150 |
ExternalDocumentID | 10_1080_21681163_2022_2154275 2154275 |
Genre | Research Article |
GroupedDBID | 0BK 30N 4.4 AAJMT AALDU AAMIU AAPUL AAQRR ABLIJ ABPAQ ABXUL ABXYU ACGFS ADCVX ADGTB AEISY AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ARCSS BLEHA CCCUG EBS EUPTU GTTXZ H13 HZ~ KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RTWRZ SNACF SOJIQ TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ AAGDL AAYXX ADMLS ADYSH AFRVT AIYEW CITATION |
ID | FETCH-LOGICAL-c258t-9aa4c88f9291a5f391c949649d13684481afd5aba5cdb0ac66766aafa290abfe3 |
ISSN | 2168-1163 |
IngestDate | Tue Jul 01 04:23:38 EDT 2025 Wed Dec 25 09:03:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c258t-9aa4c88f9291a5f391c949649d13684481afd5aba5cdb0ac66766aafa290abfe3 |
PageCount | 8 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_21681163_2022_2154275 crossref_primary_10_1080_21681163_2022_2154275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-04 |
PublicationDateYYYYMMDD | 2023-07-04 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Computer methods in biomechanics and biomedical engineering. |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 Ma X (cit0015) 2020 cit0010 Berthelot D (cit0003) 2019; 32 Han B (cit0005) 2018; 31 cit0019 Zhang Z (cit0026) 2018 cit0017 cit0018 cit0016 Zhang H (cit0025) 2018 Sohn K (cit0022) 2020; 33 cit0020 cit0021 Li J (cit0013) 2020 Liu S (cit0014) 2020; 33 Lee DH (cit0012) 2013; 3 Arazo E (cit0001) 2019 cit0008 cit0009 cit0006 cit0007 cit0004 cit0002 cit0024 Tarvainen A (cit0023) 2017; 30 Zhou X (cit0027) 2021 |
References_xml | – ident: cit0002 doi: 10.1109/TUFFC.2017.2785230 – ident: cit0004 doi: 10.1109/ISBI52829.2022.9761553 – ident: cit0016 doi: 10.1007/s11548-022-02606-2 – ident: cit0021 doi: 10.5489/cuaj.1248 – start-page: 12846 volume-title: International Conference on Machine Learning. PMLR year: 2021 ident: cit0027 doi: 10.1007/978-981-15-1967-3 – ident: cit0010 doi: 10.1007/s11548-022-02707-y – ident: cit0024 doi: 10.1109/ICCV.2019.00041 – ident: cit0007 doi: 10.1007/s11548-021-02485-z – volume: 33 start-page: 596 year: 2020 ident: cit0022 publication-title: Adv Neural Inf Process Syst – volume: 30 start-page: 1195 year: 2017 ident: cit0023 publication-title: Adv Neural Inf Process Syst – start-page: 312 volume-title: International Conference on Machine Learning. PMLR year: 2019 ident: cit0001 – ident: cit0009 doi: 10.1007/978-3-030-87237-3_65 – volume: 32 start-page: 5049 year: 2019 ident: cit0003 publication-title: Adv Neural Inf Process Syst – start-page: 6543 volume-title: International Conference on Machine Learning. PMLR year: 2020 ident: cit0015 – volume: 3 start-page: 896 volume-title: Workshop on challenges in representation learning , ICML year: 2013 ident: cit0012 – ident: cit0017 doi: 10.21037/tau.2019.09.37 – ident: cit0019 doi: 10.14740/wjon1191 – volume: 33 start-page: 20331 year: 2020 ident: cit0014 publication-title: Adv Neural Inf Process Syst – ident: cit0018 doi: 10.1118/1.3457710 – volume-title: International Conference on Learning Representations year: 2018 ident: cit0025 – volume-title: International Conference on Learning Representations year: 2020 ident: cit0013 – volume: 31 start-page: 8536 year: 2018 ident: cit0005 publication-title: Adv Neural Inf Process Syst – ident: cit0011 doi: 10.1016/j.eururo.2018.11.031 – ident: cit0008 doi: 10.1007/s11548-020-02168-1 – ident: cit0006 doi: 10.1109/TMI.2015.2427739 – ident: cit0020 doi: 10.1007/s11548-020-02172-5 – volume-title: 32nd Conference on Neural Information Processing Systems (NeurIPS) year: 2018 ident: cit0026 |
SSID | ssj0000866365 |
Score | 2.2419746 |
Snippet | Ultrasound imaging is commonly used to guide sampling the prostate tissue in transrectal biopsies, followed by detection of cancer through histopathological... |
SourceID | crossref informaworld |
SourceType | Index Database Publisher |
StartPage | 1143 |
SubjectTerms | Noisy labels prostate cancer detection semi-supervised learning |
Title | Semi-supervised learning from coarse histopathology labels |
URI | https://www.tandfonline.com/doi/abs/10.1080/21681163.2022.2154275 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcoED4inKSzlwQwmx4zzMDSFKVYm97FbqLRo7drsSm63aLBL8Dn4w40ceW1aIxyVa2cpDM9-OZ0Yz3xDyWkrBFCgdUy7LmKs0j8GINNYCVFXqklJt8x2f58XxKT85y89msx-TqqVtJxP1fW9fyb9oFddQr7ZL9i80OzwUF_A36hevqGG8_pGOF3q9iq-3l_b_fo2e45c-z-GaRtQGg9bAKGwHD3u2JdS6Z1AeCQrCYIcwTdoVyLqufNsU3JM4-zZ9p1E9Uhgm4yGGIXJz7qu1j-BitdZjnvl8-023b-YXtm9y42v122H3BL5C40oKPtkoezglFhsUgd9YwHoVNkJ-gmWulnXMTy5_GRUyWjhGCwxhabBwerrm57IMJppOoMgn9hajuWxydlv3du-54Asp7bPt6xL8Tpags8OZH9tyg3I77NwitxkGH9Z6Zul8yNxhEFhkbkbp8P19a1iVvt37jh2nZ4cSd-LMLO-TeyEKid57SD0gM90-JHcn3JSPyLsb4Ip6cEUWXJEHV7QLrsiD6zE5Pfq4_HAch0EbsWJ51cUCgKuqMugqU8hNJqgSXBRcNDQrKgzgKZgmBwm5amQKytZFFwAGmEhBGp09IQftptVPSYTuDp4BlcmLquGmpAKKkklOLQdSlitxSJJeEvWl51OpaaCp7UVXW9HVQXSHREzlVXcOT8ZDqc5-e--z_7j3ObkzovkFOeiutvol-p-dfOXg8BOAV4EZ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50PagH3-LbHvSYtUmTtBE8iA_W115U8FaTNBERV3G7iP4s_4p_yKQP2RX0Ih48l5Qh857MfAOwoZQgWmqDMFUxojpkSFoRIiOkTmITY2x8veOszVuX9PiKXQ3BWz0L49sqfQ5tS6CIwlZ75fbF6LolbotgnmAXSLj0jpCmc1qUxHVj5Yl5eXZpW3fnaN_xeJOQw4OLvRaqNgsgTViSIyEl1UliXWyAJbORwFpQwanIcMQTl7FgaTMmlWQ6U6HUvhGUS2klEaFU1kTuv8MwwgSPvW5FYfuzruNSBB4VGyw9lciTWQ8OfUf5gEscAEztc3WHk_BeX1LZ4XLX7OWqqV-_4Ef-r1ucgokq8g52S1WZhiHTmYHxPjzGWdg-N_e3qNt79Aa0a7Kg2qlxE_gpnEA_yKeuCQqIZr_JuXiRCJwaufhiDi7_hPh5aHQeOmYBAufind1LLONJRm2MheQxURR73J-IabEIzZq_6WOJIZLiCpq1ZkLqmZBWTFgE0S8FaV4Ub2y5aSWNfjy79Iuz6zDaujg7TU-P2ifLMOY-RUVnMl2BRv7UM6su_srVWiHwAVz_tWx8AGaDMto |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5WBdGDb_FtD3rM2qRp2ggeRF18LoIueKtJmoiI6-J2Ef1X_hV_kUkfsivoRfbguaQMmfdk5huALSk5UUJphKmMEFV-iIThPtJcqDjSEcba1Tsumuy4RU9vwpsavFezMK6t0uXQpgCKyG21U-5OaqqOuB2CWYxtHGGzO0Lq1mdRElV9lWf69cVmbd29k0PL4m1CGkfXB8eoXCyAFAnjDHEhqIpjY0MDLEITcKw45YzyFAcstgkLFiYNhRShSqUvlOsDZUIYQbgvpNGB_e8IjDE32OmmRvzmV1nHZggsyBdYOiqRI7OaG_qJ8gGPOICX2ufpGtPwUd1R0eDyUO9lsq7evsFH_qtLnIGpMu729gtFmYWabs_BZB8a4zzsXunHe9TtdZz57OrUKzdq3HluBsdTT-K5q70coNntcc7fIzyrRDa6WIDWUIhfhNH2U1svgWcdvLV6sQlZnFITYS5YRCTFDvUnCBVfhnrF3qRTIIgkuARmrZiQOCYkJROWgfcLQZLlpRtT7FlJgl_Prvzh7CaMXx42kvOT5tkqTNgvQd6WTNdgNHvu6XUbfGVyIxd3D26HLRqfSegxfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+learning+from+coarse+histopathology+labels&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Fooladgar%2C+Fahimeh&rft.au=Nguyen+Nhat+to%2C+Minh&rft.au=Javadi%2C+Golara&rft.au=Sojoudi%2C+Samira&rft.date=2023-07-04&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=11&rft.issue=4&rft.spage=1143&rft.epage=1150&rft_id=info:doi/10.1080%2F21681163.2022.2154275&rft.externalDocID=2154275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon |