Overcoming Security Vulnerabilities in Deep Learning--based Indoor Localization Frameworks on Mobile Devices

Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions. Further, the rapid growth in mobile hardware capability now allows high-accuracy deep le...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on embedded computing systems Vol. 18; no. 6; pp. 1 - 24
Main Authors Tiku, Saideep, Pasricha, Sudeep
Format Journal Article
LanguageEnglish
Published 01.01.2020
Online AccessGet full text
ISSN1539-9087
1558-3465
DOI10.1145/3362036

Cover

Loading…
Abstract Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions. Further, the rapid growth in mobile hardware capability now allows high-accuracy deep learning--based frameworks to be executed locally on mobile devices in an energy-efficient manner. However, existing deep learning--based indoor localization solutions are vulnerable to access point (AP) attacks. This article presents an analysis into the vulnerability of a convolutional neural network--based indoor localization solution to AP security compromises. Based on this analysis, we propose a novel methodology to maintain indoor localization accuracy, even in the presence of AP attacks. The proposed secured neural network framework (S-CNNLOC) is validated across a benchmark suite of paths and is found to deliver up to 10× more resiliency to malicious AP attacks compared to its unsecured counterpart.
AbstractList Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions. Further, the rapid growth in mobile hardware capability now allows high-accuracy deep learning--based frameworks to be executed locally on mobile devices in an energy-efficient manner. However, existing deep learning--based indoor localization solutions are vulnerable to access point (AP) attacks. This article presents an analysis into the vulnerability of a convolutional neural network--based indoor localization solution to AP security compromises. Based on this analysis, we propose a novel methodology to maintain indoor localization accuracy, even in the presence of AP attacks. The proposed secured neural network framework (S-CNNLOC) is validated across a benchmark suite of paths and is found to deliver up to 10× more resiliency to malicious AP attacks compared to its unsecured counterpart.
Author Tiku, Saideep
Pasricha, Sudeep
Author_xml – sequence: 1
  givenname: Saideep
  orcidid: 0000-0003-4017-1392
  surname: Tiku
  fullname: Tiku, Saideep
  organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, USA
– sequence: 2
  givenname: Sudeep
  surname: Pasricha
  fullname: Pasricha, Sudeep
  organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, USA
BookMark eNplkMtOwzAURC1UJNqC-AXvWBn8iF1niQoFpKAueGwjx75BhtSu7LSofD0pdAWrO1c6M9LMBI1CDIDQOaOXjBXySgjFqVBHaMyk1EQUSo72WpSkpHp2giY5v1PKZryQY9Qtt5BsXPnwhp_AbpLvd_h10wVIpvGd7z1k7AO-AVjjCkwKA0lIYzI4_BBcjAlX0ZrOf5nex4AXyazgM6aPjIfvMQ4hMLi33kI-Rcet6TKcHe4UvSxun-f3pFrePcyvK2K51D0pSwEKFIfGtVxZywWTymhJZ650pbKttpoaqjRz1OqGc1dwoVRruLBt0VAxRRe_uTbFnBO09Tr5lUm7mtF6P1J9GGkgyR_S-v6nSJ-M7_7x37yUayE
CitedBy_id crossref_primary_10_3390_machines13010037
crossref_primary_10_1016_j_asoc_2021_107237
crossref_primary_10_1109_TNSE_2022_3174674
crossref_primary_10_1007_s12083_022_01301_y
crossref_primary_10_1109_JIOT_2022_3164545
crossref_primary_10_1016_j_cose_2023_103293
crossref_primary_10_1109_JIOT_2021_3101368
crossref_primary_10_3390_s21093228
crossref_primary_10_1109_JIOT_2020_3030174
crossref_primary_10_32604_cmes_2023_024901
Cites_doi 10.1049/iet-ipr.2017.0389
10.1109/TWC.2015.2487963
10.1109/MCE.2017.2714719
10.1109/TMC.2016.2616465
10.1109/MSP.2014.40
10.1109/TMC.2014.2320254
10.1016/0734-189X(83)90047-6
10.1109/MNET.2011.5687950
10.3390/s18030878
10.1016/j.neucom.2016.02.055
10.1109/TMC.2013.146
10.1016/j.robot.2017.10.006
10.1109/MDAT.2019.2906105
10.1109/TIE.2015.2509917
10.1109/5.726791
10.1016/j.cose.2017.06.013
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1145/3362036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3465
EndPage 24
ExternalDocumentID 10_1145_3362036
GroupedDBID -DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TUS
UPT
ZCA
ID FETCH-LOGICAL-c258t-993e6e62ebdf26cc23156a8507d9d96cf8c80a0681d0c8b22d42366fa23cf4b03
ISSN 1539-9087
IngestDate Thu Jul 03 08:29:37 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-993e6e62ebdf26cc23156a8507d9d96cf8c80a0681d0c8b22d42366fa23cf4b03
ORCID 0000-0003-4017-1392
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3362036
PageCount 24
ParticipantIDs crossref_primary_10_1145_3362036
crossref_citationtrail_10_1145_3362036
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle ACM transactions on embedded computing systems
PublicationYear 2020
References Pasricha S. (e_1_2_1_14_1)
Cheng Y. K. (e_1_2_1_18_1)
Bahl P. (e_1_2_1_19_1)
e_1_2_1_20_1
Meng W. (e_1_2_1_16_1)
e_1_2_1_43_1
(e_1_2_1_4_1) 2019
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_47_1
Tiku S. (e_1_2_1_51_1)
e_1_2_1_31_1
e_1_2_1_8_1
Xu W. (e_1_2_1_30_1)
e_1_2_1_6_1
Spasova V. (e_1_2_1_46_1) 2014; 4
Chen Y. (e_1_2_1_7_1)
e_1_2_1_12_1
e_1_2_1_50_1
e_1_2_1_33_1
e_1_2_1_2_1
Chang L. (e_1_2_1_24_1)
e_1_2_1_39_1
Schmitz J. (e_1_2_1_9_1)
Chen Z. (e_1_2_1_11_1)
e_1_2_1_37_1
e_1_2_1_40_1
e_1_2_1_23_1
Jansen K. (e_1_2_1_44_1)
al X. (e_1_2_1_35_1) 2015
e_1_2_1_27_1
Larcom J. A. (e_1_2_1_42_1)
e_1_2_1_48_1
e_1_2_1_29_1
Corina K. (e_1_2_1_45_1) 2011
Machaj J. (e_1_2_1_36_1)
A. A. (e_1_2_1_32_1)
Vasisht D. (e_1_2_1_10_1)
e_1_2_1_5_1
Ou L. (e_1_2_1_26_1)
e_1_2_1_3_1
Dickinson P. (e_1_2_1_21_1)
e_1_2_1_34_1
e_1_2_1_1_1
e_1_2_1_17_1
Barbará D. (e_1_2_1_25_1)
e_1_2_1_38_1
Soltanaghaei E. (e_1_2_1_13_1)
Mittal A. (e_1_2_1_15_1)
Lau S. (e_1_2_1_22_1)
Mohammadi M. (e_1_2_1_41_1) 2018; 5
References_xml – volume-title: Proceedings of the Conference on Emerging Networking Experiments and Technologies (CoNEXT’17)
  ident: e_1_2_1_11_1
– volume-title: Proceedings of the IEEE International Conference on Embedded Software and Systems (ICESS’19)
  ident: e_1_2_1_51_1
– ident: e_1_2_1_38_1
  doi: 10.1049/iet-ipr.2017.0389
– volume-title: Proceedings of the Conference on the Great Lakes Symposium on VLSI (GLSVLSI’18)
  ident: e_1_2_1_15_1
– volume-title: Proceedings of the Symposium on Security and Privacy (SP’18)
  ident: e_1_2_1_44_1
– volume-title: Proceedings of the Indoor Positioning and Indoor Navigation (IPIN’11)
  ident: e_1_2_1_36_1
– ident: e_1_2_1_23_1
  doi: 10.1109/TWC.2015.2487963
– ident: e_1_2_1_20_1
– volume-title: Proceedings of the Conference on Information Processing in Sensor Networks (IPSN’16)
  ident: e_1_2_1_9_1
– volume-title: Proceedings of the Conference on Technologies for Homeland Security (HST’13)
  ident: e_1_2_1_42_1
– volume-title: Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS’16)
  ident: e_1_2_1_26_1
– ident: e_1_2_1_49_1
  doi: 10.1109/MCE.2017.2714719
– ident: e_1_2_1_8_1
  doi: 10.1109/TMC.2016.2616465
– volume-title: Proceedings of the Conference on Mobile Systems, Applications, and Services (MobiSys’18)
  ident: e_1_2_1_13_1
– ident: e_1_2_1_43_1
  doi: 10.1109/MSP.2014.40
– volume: 4
  start-page: 94
  year: 2014
  ident: e_1_2_1_46_1
  article-title: A survey on automatic fall detection in the context of ambient assisted living systems
  publication-title: Int. J. Adv. Comput. Res.
– volume-title: What really happened?
  year: 2019
  ident: e_1_2_1_4_1
– ident: e_1_2_1_2_1
– ident: e_1_2_1_27_1
  doi: 10.1109/TMC.2014.2320254
– ident: e_1_2_1_5_1
– volume-title: Proceedings of the International Conference on Extending Database Technology.
  ident: e_1_2_1_25_1
– volume-title: Proceedings of the Wireless Communications and Networking Conference (WCNC’15)
  year: 2015
  ident: e_1_2_1_35_1
– ident: e_1_2_1_34_1
  doi: 10.1016/0734-189X(83)90047-6
– volume-title: Proceedings of the Symposium on Computers and Communication (ISCC’15)
  ident: e_1_2_1_32_1
– ident: e_1_2_1_28_1
  doi: 10.1109/MNET.2011.5687950
– ident: e_1_2_1_31_1
  doi: 10.3390/s18030878
– ident: e_1_2_1_17_1
  doi: 10.1016/j.neucom.2016.02.055
– ident: e_1_2_1_12_1
  doi: 10.1109/TMC.2013.146
– ident: e_1_2_1_40_1
– volume-title: Proceedings of the Conference on Indoor Positioning and Indoor Navigation (IPIN’11)
  ident: e_1_2_1_16_1
– ident: e_1_2_1_48_1
  doi: 10.1016/j.robot.2017.10.006
– volume-title: Proceedings of the Special Interest Group on Data Communication Conference (SIGCOMM’15)
  ident: e_1_2_1_10_1
– volume-title: Proceedings of the Workshop on Experimental Evaluation and Characterization (WIN-TECH’09)
  ident: e_1_2_1_22_1
– ident: e_1_2_1_1_1
– volume-title: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’00)
  ident: e_1_2_1_19_1
– volume-title: Proceedings of the Conference on Mobile ad hoc Networking and Computing (MobiHoc’05)
  ident: e_1_2_1_30_1
– volume-title: Proceedings of the MobiCom Workshop on Challenged Networks (CHANTS’15)
  ident: e_1_2_1_24_1
– ident: e_1_2_1_50_1
  doi: 10.1109/MDAT.2019.2906105
– ident: e_1_2_1_6_1
– ident: e_1_2_1_37_1
  doi: 10.1109/TIE.2015.2509917
– ident: e_1_2_1_3_1
– volume-title: Proceedings of the Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’15)
  ident: e_1_2_1_14_1
– ident: e_1_2_1_33_1
  doi: 10.1109/5.726791
– volume-title: Proceedings of the Indoor Positioning and Indoor Navigation (IPIN’16)
  ident: e_1_2_1_21_1
– ident: e_1_2_1_47_1
  doi: 10.1016/j.cose.2017.06.013
– volume-title: Proceedings of the Vehicular Technology Conference (VTC’16)
  ident: e_1_2_1_18_1
– volume: 5
  start-page: 624
  year: 2018
  ident: e_1_2_1_41_1
  article-title: Semisupervised deep reinforcement learning in support of iot and smart city ser-vices
  publication-title: IoT J.
– volume-title: Proceedings of the International Conference on Structural Integrity and Exhibition (SICE’10)
  ident: e_1_2_1_7_1
– ident: e_1_2_1_39_1
– ident: e_1_2_1_29_1
  doi: 10.1109/TMC.2013.146
– volume-title: Ambient Assisted Living
  year: 2011
  ident: e_1_2_1_45_1
SSID ssj0017245
Score 2.3021777
Snippet Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1
Title Overcoming Security Vulnerabilities in Deep Learning--based Indoor Localization Frameworks on Mobile Devices
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYgXMqhKrSo9IF8QL0gg9frdXaPES1CiNBDAXGL1i8UEZIoJBd-PePHPrQgQbmsEq_X2mQ-zcP-ZgahfWl1ligjSMKtIZwzTaTgCdHWJlb0eaEKl-88vBCnV_zsJrtpqEM-u2QpD9Xji3kl75EqjIFcXZbsf0i2XhQG4DPIF64gYbi-ScZ_4Y1hXV9UO_ahO7heTVwhac95HXu2FegUM68Kqd4S4gyX4wDr2WxxcO5sWczFdF5sYGr5M4ThDBbxtCKnTNpe7OB46HpLVI3G_WxzLw0oMZ8kN195MvVDqxq6Z_rercIm9FjDGzWHVw8Lx90PHKH6TtyJYLS1E1Epz4IUNBpQE8eynKQ89IN4rnE76jNp2eGQWv1cw3NXDCMFu0vTF2pod2xbzTgM-dfZKD64jjYYxBW0hzYGv4fn_-qDpz7zfa3rnxLyrN2jR_HRlgPT8kQuP6GPMYTAg4CHLbRmpttos1VY8jOaNMjAFTJwBxl4PMUOGbiDDByQgdvIwA0yMHwLyMARGV_Q1cmfy-NTEvtqEMWyfEnAJTXCCGaktszx5lMI4sscIgNd6EIom6ucllRAKENVLhnT4HMLYUuWKsslTXdQbzqbmq8I98t-qjNhbUkV1zJ3_ruECJ4by-CG3kW_qj9rpGLRedf7ZDLqCGQX4XriPNRZ6U759vqU7-hDA8wfqLdcrMxPcBqXci8K-gnf63IS
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Security+Vulnerabilities+in+Deep+Learning--based+Indoor+Localization+Frameworks+on+Mobile+Devices&rft.jtitle=ACM+transactions+on+embedded+computing+systems&rft.au=Tiku%2C+Saideep&rft.au=Pasricha%2C+Sudeep&rft.date=2020-01-01&rft.issn=1539-9087&rft.eissn=1558-3465&rft.volume=18&rft.issue=6&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1145%2F3362036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3362036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-9087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-9087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-9087&client=summon