Overcoming Security Vulnerabilities in Deep Learning--based Indoor Localization Frameworks on Mobile Devices
Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions. Further, the rapid growth in mobile hardware capability now allows high-accuracy deep le...
Saved in:
Published in | ACM transactions on embedded computing systems Vol. 18; no. 6; pp. 1 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.01.2020
|
Online Access | Get full text |
ISSN | 1539-9087 1558-3465 |
DOI | 10.1145/3362036 |
Cover
Loading…
Abstract | Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions. Further, the rapid growth in mobile hardware capability now allows high-accuracy deep learning--based frameworks to be executed locally on mobile devices in an energy-efficient manner. However, existing deep learning--based indoor localization solutions are vulnerable to access point (AP) attacks. This article presents an analysis into the vulnerability of a convolutional neural network--based indoor localization solution to AP security compromises. Based on this analysis, we propose a novel methodology to maintain indoor localization accuracy, even in the presence of AP attacks. The proposed secured neural network framework (S-CNNLOC) is validated across a benchmark suite of paths and is found to deliver up to 10× more resiliency to malicious AP attacks compared to its unsecured counterpart. |
---|---|
AbstractList | Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled low-cost fingerprinting-based localization solutions. Further, the rapid growth in mobile hardware capability now allows high-accuracy deep learning--based frameworks to be executed locally on mobile devices in an energy-efficient manner. However, existing deep learning--based indoor localization solutions are vulnerable to access point (AP) attacks. This article presents an analysis into the vulnerability of a convolutional neural network--based indoor localization solution to AP security compromises. Based on this analysis, we propose a novel methodology to maintain indoor localization accuracy, even in the presence of AP attacks. The proposed secured neural network framework (S-CNNLOC) is validated across a benchmark suite of paths and is found to deliver up to 10× more resiliency to malicious AP attacks compared to its unsecured counterpart. |
Author | Tiku, Saideep Pasricha, Sudeep |
Author_xml | – sequence: 1 givenname: Saideep orcidid: 0000-0003-4017-1392 surname: Tiku fullname: Tiku, Saideep organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, USA – sequence: 2 givenname: Sudeep surname: Pasricha fullname: Pasricha, Sudeep organization: Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, USA |
BookMark | eNplkMtOwzAURC1UJNqC-AXvWBn8iF1niQoFpKAueGwjx75BhtSu7LSofD0pdAWrO1c6M9LMBI1CDIDQOaOXjBXySgjFqVBHaMyk1EQUSo72WpSkpHp2giY5v1PKZryQY9Qtt5BsXPnwhp_AbpLvd_h10wVIpvGd7z1k7AO-AVjjCkwKA0lIYzI4_BBcjAlX0ZrOf5nex4AXyazgM6aPjIfvMQ4hMLi33kI-Rcet6TKcHe4UvSxun-f3pFrePcyvK2K51D0pSwEKFIfGtVxZywWTymhJZ650pbKttpoaqjRz1OqGc1dwoVRruLBt0VAxRRe_uTbFnBO09Tr5lUm7mtF6P1J9GGkgyR_S-v6nSJ-M7_7x37yUayE |
CitedBy_id | crossref_primary_10_3390_machines13010037 crossref_primary_10_1016_j_asoc_2021_107237 crossref_primary_10_1109_TNSE_2022_3174674 crossref_primary_10_1007_s12083_022_01301_y crossref_primary_10_1109_JIOT_2022_3164545 crossref_primary_10_1016_j_cose_2023_103293 crossref_primary_10_1109_JIOT_2021_3101368 crossref_primary_10_3390_s21093228 crossref_primary_10_1109_JIOT_2020_3030174 crossref_primary_10_32604_cmes_2023_024901 |
Cites_doi | 10.1049/iet-ipr.2017.0389 10.1109/TWC.2015.2487963 10.1109/MCE.2017.2714719 10.1109/TMC.2016.2616465 10.1109/MSP.2014.40 10.1109/TMC.2014.2320254 10.1016/0734-189X(83)90047-6 10.1109/MNET.2011.5687950 10.3390/s18030878 10.1016/j.neucom.2016.02.055 10.1109/TMC.2013.146 10.1016/j.robot.2017.10.006 10.1109/MDAT.2019.2906105 10.1109/TIE.2015.2509917 10.1109/5.726791 10.1016/j.cose.2017.06.013 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1145/3362036 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3465 |
EndPage | 24 |
ExternalDocumentID | 10_1145_3362036 |
GroupedDBID | -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 8US AAKMM AALFJ AAYFX AAYXX ABPPZ ACGFO ACM ADBCU ADL ADMLS AEBYY AEFXT AEGXH AEJOY AENEX AENSD AFWIH AFWXC AIAGR AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CITATION CS3 D0L EBS EDO FEDTE GUFHI HGAVV H~9 I07 LHSKQ P1C P2P PQQKQ RNS ROL TUS UPT ZCA |
ID | FETCH-LOGICAL-c258t-993e6e62ebdf26cc23156a8507d9d96cf8c80a0681d0c8b22d42366fa23cf4b03 |
ISSN | 1539-9087 |
IngestDate | Thu Jul 03 08:29:37 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c258t-993e6e62ebdf26cc23156a8507d9d96cf8c80a0681d0c8b22d42366fa23cf4b03 |
ORCID | 0000-0003-4017-1392 |
OpenAccessLink | https://dl.acm.org/doi/pdf/10.1145/3362036 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1145_3362036 crossref_citationtrail_10_1145_3362036 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | ACM transactions on embedded computing systems |
PublicationYear | 2020 |
References | Pasricha S. (e_1_2_1_14_1) Cheng Y. K. (e_1_2_1_18_1) Bahl P. (e_1_2_1_19_1) e_1_2_1_20_1 Meng W. (e_1_2_1_16_1) e_1_2_1_43_1 (e_1_2_1_4_1) 2019 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_47_1 Tiku S. (e_1_2_1_51_1) e_1_2_1_31_1 e_1_2_1_8_1 Xu W. (e_1_2_1_30_1) e_1_2_1_6_1 Spasova V. (e_1_2_1_46_1) 2014; 4 Chen Y. (e_1_2_1_7_1) e_1_2_1_12_1 e_1_2_1_50_1 e_1_2_1_33_1 e_1_2_1_2_1 Chang L. (e_1_2_1_24_1) e_1_2_1_39_1 Schmitz J. (e_1_2_1_9_1) Chen Z. (e_1_2_1_11_1) e_1_2_1_37_1 e_1_2_1_40_1 e_1_2_1_23_1 Jansen K. (e_1_2_1_44_1) al X. (e_1_2_1_35_1) 2015 e_1_2_1_27_1 Larcom J. A. (e_1_2_1_42_1) e_1_2_1_48_1 e_1_2_1_29_1 Corina K. (e_1_2_1_45_1) 2011 Machaj J. (e_1_2_1_36_1) A. A. (e_1_2_1_32_1) Vasisht D. (e_1_2_1_10_1) e_1_2_1_5_1 Ou L. (e_1_2_1_26_1) e_1_2_1_3_1 Dickinson P. (e_1_2_1_21_1) e_1_2_1_34_1 e_1_2_1_1_1 e_1_2_1_17_1 Barbará D. (e_1_2_1_25_1) e_1_2_1_38_1 Soltanaghaei E. (e_1_2_1_13_1) Mittal A. (e_1_2_1_15_1) Lau S. (e_1_2_1_22_1) Mohammadi M. (e_1_2_1_41_1) 2018; 5 |
References_xml | – volume-title: Proceedings of the Conference on Emerging Networking Experiments and Technologies (CoNEXT’17) ident: e_1_2_1_11_1 – volume-title: Proceedings of the IEEE International Conference on Embedded Software and Systems (ICESS’19) ident: e_1_2_1_51_1 – ident: e_1_2_1_38_1 doi: 10.1049/iet-ipr.2017.0389 – volume-title: Proceedings of the Conference on the Great Lakes Symposium on VLSI (GLSVLSI’18) ident: e_1_2_1_15_1 – volume-title: Proceedings of the Symposium on Security and Privacy (SP’18) ident: e_1_2_1_44_1 – volume-title: Proceedings of the Indoor Positioning and Indoor Navigation (IPIN’11) ident: e_1_2_1_36_1 – ident: e_1_2_1_23_1 doi: 10.1109/TWC.2015.2487963 – ident: e_1_2_1_20_1 – volume-title: Proceedings of the Conference on Information Processing in Sensor Networks (IPSN’16) ident: e_1_2_1_9_1 – volume-title: Proceedings of the Conference on Technologies for Homeland Security (HST’13) ident: e_1_2_1_42_1 – volume-title: Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS’16) ident: e_1_2_1_26_1 – ident: e_1_2_1_49_1 doi: 10.1109/MCE.2017.2714719 – ident: e_1_2_1_8_1 doi: 10.1109/TMC.2016.2616465 – volume-title: Proceedings of the Conference on Mobile Systems, Applications, and Services (MobiSys’18) ident: e_1_2_1_13_1 – ident: e_1_2_1_43_1 doi: 10.1109/MSP.2014.40 – volume: 4 start-page: 94 year: 2014 ident: e_1_2_1_46_1 article-title: A survey on automatic fall detection in the context of ambient assisted living systems publication-title: Int. J. Adv. Comput. Res. – volume-title: What really happened? year: 2019 ident: e_1_2_1_4_1 – ident: e_1_2_1_2_1 – ident: e_1_2_1_27_1 doi: 10.1109/TMC.2014.2320254 – ident: e_1_2_1_5_1 – volume-title: Proceedings of the International Conference on Extending Database Technology. ident: e_1_2_1_25_1 – volume-title: Proceedings of the Wireless Communications and Networking Conference (WCNC’15) year: 2015 ident: e_1_2_1_35_1 – ident: e_1_2_1_34_1 doi: 10.1016/0734-189X(83)90047-6 – volume-title: Proceedings of the Symposium on Computers and Communication (ISCC’15) ident: e_1_2_1_32_1 – ident: e_1_2_1_28_1 doi: 10.1109/MNET.2011.5687950 – ident: e_1_2_1_31_1 doi: 10.3390/s18030878 – ident: e_1_2_1_17_1 doi: 10.1016/j.neucom.2016.02.055 – ident: e_1_2_1_12_1 doi: 10.1109/TMC.2013.146 – ident: e_1_2_1_40_1 – volume-title: Proceedings of the Conference on Indoor Positioning and Indoor Navigation (IPIN’11) ident: e_1_2_1_16_1 – ident: e_1_2_1_48_1 doi: 10.1016/j.robot.2017.10.006 – volume-title: Proceedings of the Special Interest Group on Data Communication Conference (SIGCOMM’15) ident: e_1_2_1_10_1 – volume-title: Proceedings of the Workshop on Experimental Evaluation and Characterization (WIN-TECH’09) ident: e_1_2_1_22_1 – ident: e_1_2_1_1_1 – volume-title: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’00) ident: e_1_2_1_19_1 – volume-title: Proceedings of the Conference on Mobile ad hoc Networking and Computing (MobiHoc’05) ident: e_1_2_1_30_1 – volume-title: Proceedings of the MobiCom Workshop on Challenged Networks (CHANTS’15) ident: e_1_2_1_24_1 – ident: e_1_2_1_50_1 doi: 10.1109/MDAT.2019.2906105 – ident: e_1_2_1_6_1 – ident: e_1_2_1_37_1 doi: 10.1109/TIE.2015.2509917 – ident: e_1_2_1_3_1 – volume-title: Proceedings of the Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS’15) ident: e_1_2_1_14_1 – ident: e_1_2_1_33_1 doi: 10.1109/5.726791 – volume-title: Proceedings of the Indoor Positioning and Indoor Navigation (IPIN’16) ident: e_1_2_1_21_1 – ident: e_1_2_1_47_1 doi: 10.1016/j.cose.2017.06.013 – volume-title: Proceedings of the Vehicular Technology Conference (VTC’16) ident: e_1_2_1_18_1 – volume: 5 start-page: 624 year: 2018 ident: e_1_2_1_41_1 article-title: Semisupervised deep reinforcement learning in support of iot and smart city ser-vices publication-title: IoT J. – volume-title: Proceedings of the International Conference on Structural Integrity and Exhibition (SICE’10) ident: e_1_2_1_7_1 – ident: e_1_2_1_39_1 – ident: e_1_2_1_29_1 doi: 10.1109/TMC.2013.146 – volume-title: Ambient Assisted Living year: 2011 ident: e_1_2_1_45_1 |
SSID | ssj0017245 |
Score | 2.3021777 |
Snippet | Indoor localization is an emerging application domain for the navigation and tracking of people and assets. Ubiquitously available Wi-Fi signals have enabled... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 1 |
Title | Overcoming Security Vulnerabilities in Deep Learning--based Indoor Localization Frameworks on Mobile Devices |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYgXMqhKrSo9IF8QL0gg9frdXaPES1CiNBDAXGL1i8UEZIoJBd-PePHPrQgQbmsEq_X2mQ-zcP-ZgahfWl1ligjSMKtIZwzTaTgCdHWJlb0eaEKl-88vBCnV_zsJrtpqEM-u2QpD9Xji3kl75EqjIFcXZbsf0i2XhQG4DPIF64gYbi-ScZ_4Y1hXV9UO_ahO7heTVwhac95HXu2FegUM68Kqd4S4gyX4wDr2WxxcO5sWczFdF5sYGr5M4ThDBbxtCKnTNpe7OB46HpLVI3G_WxzLw0oMZ8kN195MvVDqxq6Z_rercIm9FjDGzWHVw8Lx90PHKH6TtyJYLS1E1Epz4IUNBpQE8eynKQ89IN4rnE76jNp2eGQWv1cw3NXDCMFu0vTF2pod2xbzTgM-dfZKD64jjYYxBW0hzYGv4fn_-qDpz7zfa3rnxLyrN2jR_HRlgPT8kQuP6GPMYTAg4CHLbRmpttos1VY8jOaNMjAFTJwBxl4PMUOGbiDDByQgdvIwA0yMHwLyMARGV_Q1cmfy-NTEvtqEMWyfEnAJTXCCGaktszx5lMI4sscIgNd6EIom6ucllRAKENVLhnT4HMLYUuWKsslTXdQbzqbmq8I98t-qjNhbUkV1zJ3_ruECJ4by-CG3kW_qj9rpGLRedf7ZDLqCGQX4XriPNRZ6U759vqU7-hDA8wfqLdcrMxPcBqXci8K-gnf63IS |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+Security+Vulnerabilities+in+Deep+Learning--based+Indoor+Localization+Frameworks+on+Mobile+Devices&rft.jtitle=ACM+transactions+on+embedded+computing+systems&rft.au=Tiku%2C+Saideep&rft.au=Pasricha%2C+Sudeep&rft.date=2020-01-01&rft.issn=1539-9087&rft.eissn=1558-3465&rft.volume=18&rft.issue=6&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1145%2F3362036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3362036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-9087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-9087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-9087&client=summon |