PADUA Parallel Architecture to Detect Unexplained Activities

There are numerous applications (e.g., video surveillance, fraud detection, cybersecurity) in which we wish to identify unexplained sets of events. Most related past work has been domain-dependent (e.g., video surveillance, cybersecurity) and has focused on the valuable class of statistical anomalie...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on Internet technology Vol. 14; no. 1; pp. 1 - 28
Main Authors Molinaro, Cristian, Moscato, Vincenzo, Picariello, Antonio, Pugliese, Andrea, Rullo, Antonino, Subrahmanian, V. S.
Format Journal Article
LanguageEnglish
Published 01.07.2014
Subjects
Online AccessGet full text
ISSN1533-5399
1557-6051
DOI10.1145/2633685

Cover

Loading…
Abstract There are numerous applications (e.g., video surveillance, fraud detection, cybersecurity) in which we wish to identify unexplained sets of events. Most related past work has been domain-dependent (e.g., video surveillance, cybersecurity) and has focused on the valuable class of statistical anomalies in which statistically unusual events are considered. In contrast, suppose there is a set A of known activity models (both harmless and harmful) and a log L of time-stamped observations. We define a part L '⊆ L of the log to represent an unexplained situation when none of the known activity models can explain L ' with a score exceeding a user-specified threshold. We represent activities via probabilistic penalty graphs (PPGs) and show how a set of PPGs can be combined into one Super-PPG for which we define an index structure. Given a compute cluster of ( K + 1) nodes (one of which is a master node), we show how to split a Super-PPG into K subgraphs, each of which can be independently processed by a compute node. We provide algorithms for the individual compute nodes to ensure seamless handoffs that maximally leverage parallelism. PADUA is domain-independent and can be applied to many domains (perhaps with some specialization). We conducted detailed experiments with PADUA on two real-world datasets—the ITEA CANDELA video surveillance dataset and a network traffic dataset appropriate for cybersecurity applications. PADUA scales extremely well with the number of processors and significantly outperforms past work both in accuracy and time. Thus, PADUA represents the first parallel architecture and algorithm for identifying unexplained situations in observation data, offering both scalability and accuracy.
AbstractList There are numerous applications (e.g., video surveillance, fraud detection, cybersecurity) in which we wish to identify unexplained sets of events. Most related past work has been domain-dependent (e.g., video surveillance, cybersecurity) and has focused on the valuable class of statistical anomalies in which statistically unusual events are considered. In contrast, suppose there is a set A of known activity models (both harmless and harmful) and a log L of time-stamped observations. We define a part L '⊆ L of the log to represent an unexplained situation when none of the known activity models can explain L ' with a score exceeding a user-specified threshold. We represent activities via probabilistic penalty graphs (PPGs) and show how a set of PPGs can be combined into one Super-PPG for which we define an index structure. Given a compute cluster of ( K + 1) nodes (one of which is a master node), we show how to split a Super-PPG into K subgraphs, each of which can be independently processed by a compute node. We provide algorithms for the individual compute nodes to ensure seamless handoffs that maximally leverage parallelism. PADUA is domain-independent and can be applied to many domains (perhaps with some specialization). We conducted detailed experiments with PADUA on two real-world datasets—the ITEA CANDELA video surveillance dataset and a network traffic dataset appropriate for cybersecurity applications. PADUA scales extremely well with the number of processors and significantly outperforms past work both in accuracy and time. Thus, PADUA represents the first parallel architecture and algorithm for identifying unexplained situations in observation data, offering both scalability and accuracy.
There are numerous applications (e.g., video surveillance, fraud detection, cybersecurity) in which we wish to identify unexplained sets of events. Most related past work has been domain-dependent (e.g., video surveillance, cybersecurity) and has focused on the valuable class of statistical anomalies in which statistically unusual events are considered. In contrast, suppose there is a set A of known activity models (both harmless and harmful) and a log L of time-stamped observations. We define a part L'[subE] L of the log to represent an unexplained situation when none of the known activity models can explain L' with a score exceeding a user-specified threshold. We represent activities via probabilistic penalty graphs (PPGs) and show how a set of PPGs can be combined into one Super-PPG for which we define an index structure. Given a compute cluster of (K 1) nodes (one of which is a master node), we show how to split a Super-PPG into K subgraphs, each of which can be independently processed by a compute node. We provide algorithms for the individual compute nodes to ensure seamless handoffs that maximally leverage parallelism. PADUA is domain-independent and can be applied to many domains (perhaps with some specialization). We conducted detailed experiments with PADUA on two real-world datasets-the ITEA CANDELA video surveillance dataset and a network traffic dataset appropriate for cybersecurity applications. PADUA scales extremely well with the number of processors and significantly outperforms past work both in accuracy and time. Thus, PADUA represents the first parallel architecture and algorithm for identifying unexplained situations in observation data, offering both scalability and accuracy.
Author Pugliese, Andrea
Rullo, Antonino
Subrahmanian, V. S.
Moscato, Vincenzo
Picariello, Antonio
Molinaro, Cristian
Author_xml – sequence: 1
  givenname: Cristian
  surname: Molinaro
  fullname: Molinaro, Cristian
  organization: University of Calabria
– sequence: 2
  givenname: Vincenzo
  surname: Moscato
  fullname: Moscato, Vincenzo
  organization: University of Naples “Federico II”
– sequence: 3
  givenname: Antonio
  surname: Picariello
  fullname: Picariello, Antonio
  organization: University of Naples “Federico II”
– sequence: 4
  givenname: Andrea
  surname: Pugliese
  fullname: Pugliese, Andrea
  organization: University of Calabria
– sequence: 5
  givenname: Antonino
  surname: Rullo
  fullname: Rullo, Antonino
  organization: University of Calabria
– sequence: 6
  givenname: V. S.
  surname: Subrahmanian
  fullname: Subrahmanian, V. S.
  organization: University of Maryland
BookMark eNplz0tLAzEUBeAgLdhW8WfoJprMzb2TLEt9QkEXdh3yGhiZztRkuvDf29KudHXO4uPAmbNJP_SJsRsp7qVU-FARAGm8YDOJWHMSKCfHDsARjLlk81K-hJBIEmZs-rF83Cyv2LRxXUnX51ywzfPT5-qVr99f3lbLNQ8V6pETaS0SUIwxgcfkvEAyKgijdfDOa6cohFoLiNHoqk5URfIiIhrygRpYsLvT7i4P3_tURrttS0hd5_o07IuVtVJkag3qQPmJhjyUklNjQzu6sR36Mbu2s1LY4117vnvwt3_8Lrdbl3_-yV_TTlIk
CitedBy_id crossref_primary_10_1145_3117809
crossref_primary_10_1016_j_eswa_2020_114556
crossref_primary_10_14778_3137765_3137829
crossref_primary_10_1007_s12652_020_02021_y
crossref_primary_10_1016_j_future_2020_06_054
crossref_primary_10_1016_j_jisa_2024_103724
Cites_doi 10.1007/978-3-642-35236-2_57
10.5555/872016.872185
10.1109/ICIP.2005.1530123
10.1016/j.comcom.2006.04.001
10.1214/aoms/1177699147
10.5555/2283516.2283667
10.1007/s10618-007-0076-8
10.1109/CVPR.2005.316
10.1145/586110.586144
10.1109/89.861372
10.1109/TPAMI.2007.70825
10.1007/978-3-642-01307-2_27
10.1109/ICPR.2006.273
10.1016/j.cviu.2004.02.005
10.1109/TNN.2005.845141
10.1007/s11416-008-0103-3
10.1109/TPAMI.2007.70731
10.1016/S0019-9958(63)90290-0
10.1109/TIP.2008.916991
10.5555/1894166.1894191
10.1109/TKDE.2007.1042
10.5555/1625275.1625567
10.5555/2477182.2478043
10.1109/TIP.2005.852197
10.1145/234533.234534
10.1109/AHS.2012.6268645
10.5555/794189.794420
10.1109/CVPRW.2003.10039
10.1016/j.cose.2008.08.003
10.1109/CVPR.2009.5206569
10.5555/844380.844743
10.1109/ICMI.2002.1166960
10.5555/1896300.1896418
ContentType Journal Article
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/2633685
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1557-6051
EndPage 28
ExternalDocumentID 10_1145_2633685
GroupedDBID -DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EDO
EJD
FEDTE
GUFHI
HGAVV
H~9
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TUS
U5U
UPT
ZCA
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c258t-66880e36ddde3b5eab05694c0988cbab8a46cc7803dd9827e62d6b0d5596bc6f3
ISSN 1533-5399
IngestDate Fri Jul 11 00:05:34 EDT 2025
Thu Jul 03 08:25:39 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-66880e36ddde3b5eab05694c0988cbab8a46cc7803dd9827e62d6b0d5596bc6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1744697834
PQPubID 23500
PageCount 28
ParticipantIDs proquest_miscellaneous_1744697834
crossref_citationtrail_10_1145_2633685
crossref_primary_10_1145_2633685
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationTitle ACM transactions on Internet technology
PublicationYear 2014
References Agrawal Rakesh (e_1_2_1_2_1) 1994
Albanese Massimiliano (e_1_2_1_4_1); 6879
Lancaster Peter (e_1_2_1_25_1)
Zhou Yue (e_1_2_1_48_1)
Ghallab Malik (e_1_2_1_16_1) 1996
e_1_2_1_42_1
Qin Xinzhou (e_1_2_1_34_1)
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_44_1
Bordoni Stefano (e_1_2_1_10_1) 2001
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
Gary (e_1_2_1_41_1) 1998
e_1_2_1_47_1
e_1_2_1_29_1
Hu Derek Hao (e_1_2_1_19_1) 2009
Mahajan Dhruv (e_1_2_1_26_1) 2004
Artikis Alexander (e_1_2_1_7_1)
Jiang Fan (e_1_2_1_21_1)
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
Ghahramani Zoubin (e_1_2_1_15_1)
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
Jiang Fan (e_1_2_1_20_1)
e_1_2_1_35_1
e_1_2_1_13_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
References_xml – ident: e_1_2_1_39_1
  doi: 10.1007/978-3-642-35236-2_57
– ident: e_1_2_1_22_1
  doi: 10.5555/872016.872185
– volume-title: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI'09)
  year: 2009
  ident: e_1_2_1_19_1
– ident: e_1_2_1_27_1
  doi: 10.1109/ICIP.2005.1530123
– volume-title: Curve and Surface Fitting: An Introduction
  ident: e_1_2_1_25_1
– volume-title: Weiss and Haym Hirsh
  year: 1998
  ident: e_1_2_1_41_1
– ident: e_1_2_1_40_1
  doi: 10.1016/j.comcom.2006.04.001
– ident: e_1_2_1_9_1
  doi: 10.1214/aoms/1177699147
– ident: e_1_2_1_5_1
  doi: 10.5555/2283516.2283667
– ident: e_1_2_1_32_1
  doi: 10.1007/s10618-007-0076-8
– ident: e_1_2_1_45_1
  doi: 10.1109/CVPR.2005.316
– ident: e_1_2_1_29_1
  doi: 10.1145/586110.586144
– ident: e_1_2_1_36_1
  doi: 10.1109/89.861372
– ident: e_1_2_1_1_1
  doi: 10.1109/TPAMI.2007.70825
– volume-title: Proceedings of the (VLDB). 487--499
  year: 1994
  ident: e_1_2_1_2_1
– ident: e_1_2_1_46_1
  doi: 10.1007/978-3-642-01307-2_27
– ident: e_1_2_1_8_1
  doi: 10.1109/ICPR.2006.273
– volume-title: Proceedings of the 10th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 1491--1494
  year: 2001
  ident: e_1_2_1_10_1
– ident: e_1_2_1_18_1
  doi: 10.1016/j.cviu.2004.02.005
– volume-title: Proceedings of the 4th Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP'04)
  year: 2004
  ident: e_1_2_1_26_1
– ident: e_1_2_1_43_1
  doi: 10.1109/TNN.2005.845141
– ident: e_1_2_1_3_1
  doi: 10.1007/s11416-008-0103-3
– ident: e_1_2_1_42_1
  doi: 10.1109/TPAMI.2007.70731
– volume-title: Adaptive Processing of Sequences and Data Structures
  ident: e_1_2_1_15_1
– volume-title: Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning (KR). 597--606
  year: 1996
  ident: e_1_2_1_16_1
– ident: e_1_2_1_35_1
  doi: 10.1016/S0019-9958(63)90290-0
– ident: e_1_2_1_13_1
  doi: 10.1109/TIP.2008.916991
– ident: e_1_2_1_30_1
  doi: 10.5555/1894166.1894191
– ident: e_1_2_1_44_1
  doi: 10.1109/TKDE.2007.1042
– ident: e_1_2_1_6_1
  doi: 10.5555/1625275.1625567
– volume-title: Behaviour recognition using the event calculus
  ident: e_1_2_1_7_1
– volume-title: Proceedings of the International Conference on Image Processing (ICIP'10)
  ident: e_1_2_1_21_1
– volume-title: Proceedings of the 6th International Symposium on Recent Advances in Intrusion Detection
  ident: e_1_2_1_34_1
– ident: e_1_2_1_12_1
  doi: 10.5555/2477182.2478043
– volume-title: Proceedings of the International Conference on Image Processing (ICIP'09)
  ident: e_1_2_1_20_1
– ident: e_1_2_1_37_1
  doi: 10.1109/TIP.2005.852197
– ident: e_1_2_1_23_1
  doi: 10.1145/234533.234534
– volume: 6879
  volume-title: Proceedings of the 16th European Symposium on Research in Computer Security (ESORICS'11)
  ident: e_1_2_1_4_1
– ident: e_1_2_1_28_1
  doi: 10.1109/AHS.2012.6268645
– ident: e_1_2_1_11_1
  doi: 10.5555/794189.794420
– ident: e_1_2_1_17_1
  doi: 10.1109/CVPRW.2003.10039
– ident: e_1_2_1_14_1
  doi: 10.1016/j.cose.2008.08.003
– ident: e_1_2_1_24_1
  doi: 10.1109/CVPR.2009.5206569
– ident: e_1_2_1_38_1
  doi: 10.5555/844380.844743
– ident: e_1_2_1_31_1
  doi: 10.1109/ICMI.2002.1166960
– ident: e_1_2_1_47_1
  doi: 10.5555/1896300.1896418
– volume-title: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'07)
  ident: e_1_2_1_48_1
SSID ssj0015613
Score 2.0466537
Snippet There are numerous applications (e.g., video surveillance, fraud detection, cybersecurity) in which we wish to identify unexplained sets of events. Most...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Accuracy
Algorithms
Architecture
Clusters
Networks
Processors
Surveillance
Traffic flow
Subtitle Parallel Architecture to Detect Unexplained Activities
Title PADUA
URI https://www.proquest.com/docview/1744697834
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7jzEUP4oo7CuJFom2aZtKLUEZFxBFBR7yVZikI0hHtXPz1vjTpMo7gcgklGyRf-pa8vPcQOgQJXmo_ozhQmcSU0AxzpQmOGIgXgR9K4Rt_5-EtuxrR66fwqdM5a71amhTiRH5861fyH1ShDnA1XrJ_QLaeFCrgG_CFEhCG8lcY38Xno7gtXsaDoUn6UGUAL00B9s5PF8fFzC36sMzYYz1dBu5vb9reZVrmWDp-fIaTkX-MazIKwIKG7aw2sclC_Nw0gkBuIk_UryXT9sWCT-tHqA0tDLAJXGtZhasL-xg0IH-KgNKZg2Kpod9iq9YFfJZgUxPbgrDABMJveFJlh__CquoHhNadOkzcwDnUI6AmkC7qxefDm_vajmTUIxsx1y7Fuk2boadu6LQ8Ms2OSxnjYQktOuVgP7ZIL6OOzlfQQitk5CrqlZivodHlxcPgCrtUFliSkBeYMaCTOmAKuEkgQp0KEDwjKr2IcylSwVPKpOxzL1Aq4qSvGVFMeAr0PSYky4J11M3Hud5A-5KrTLOU-EoJSjSNiJdxT2VRKkMVEb6JjqoFJdLFeTfpRl6SL5u2CXNVHV9taJPZLgfVjiRAdowtKc31ePKegCJLmbk2pFs_T7ON5psDtoO6xdtE74IsV4g9B9gnh45Gmg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PADUA&rft.jtitle=ACM+transactions+on+Internet+technology&rft.au=Molinaro%2C+Cristian&rft.au=Moscato%2C+Vincenzo&rft.au=Picariello%2C+Antonio&rft.au=Pugliese%2C+Andrea&rft.date=2014-07-01&rft.issn=1533-5399&rft.eissn=1557-6051&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1145%2F2633685&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2633685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-5399&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-5399&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-5399&client=summon