Hypothesis testing in outcome-dependent sampling design under generalized linear models

In many large cohort studies, the major budge and cost typically arise from the assembling of primary covariates. Outcome-dependent sampling (ODS) designs are cost-effective sampling schemes which enrich the observed sample by selectively including certain subjects. We study the inference methods of...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 51; no. 4; pp. 1721 - 1745
Main Authors Zhang, Haodong, Ding, Jieli
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many large cohort studies, the major budge and cost typically arise from the assembling of primary covariates. Outcome-dependent sampling (ODS) designs are cost-effective sampling schemes which enrich the observed sample by selectively including certain subjects. We study the inference methods of hypothesis testing for a general ODS design under the generalized linear models. We develop a profile-likelihood-based family of tests and propose likelihood-ratio, Wald and score test statistics. Asymptotic properties of the proposed tests are established and the null limiting distributions are derived. The finite-sample behavior of the proposed methods is evaluated through simulation studies, and an application to a Wilms tumor data are illustrated.
AbstractList In many large cohort studies, the major budge and cost typically arise from the assembling of primary covariates. Outcome-dependent sampling (ODS) designs are cost-effective sampling schemes which enrich the observed sample by selectively including certain subjects. We study the inference methods of hypothesis testing for a general ODS design under the generalized linear models. We develop a profile-likelihood-based family of tests and propose likelihood-ratio, Wald and score test statistics. Asymptotic properties of the proposed tests are established and the null limiting distributions are derived. The finite-sample behavior of the proposed methods is evaluated through simulation studies, and an application to a Wilms tumor data are illustrated.
Author Ding, Jieli
Zhang, Haodong
Author_xml – sequence: 1
  givenname: Haodong
  surname: Zhang
  fullname: Zhang, Haodong
  organization: School of Mathematics and Statistics, Wuhan University
– sequence: 2
  givenname: Jieli
  surname: Ding
  fullname: Ding, Jieli
  organization: School of Mathematics and Statistics, Wuhan University
BookMark eNp9kN1KwzAUx4NMcJs-gpAXaM1J1i67U4Y6YeCN4mXIkpNZaZOSZMh8els2b7068P_i8JuRiQ8eCbkFVgKT7I6JGtgKZMkZrEqoJYequiBTqAQvFrCACZmOmWIMXZFZSl-MMSEXcko-Nsc-5E9MTaIZU278njaehkM2ocPCYo_eos806a5vR9cO2b2nh0GOdI8eo26bH7R0cFFH2gWLbboml063CW_Od07enx7f1pti-_r8sn7YFoZXMheVBGPcsqoZ7KTQXDCHw2tLLoRDa8GBsLVgWEuNBgx3Vhpw3CDWmuudFXNSnXZNDClFdKqPTafjUQFTIx31R0eNdNSZztC7P_Ua70Ls9HeIrVVZH9sQXdTeNEmJ_yd-AYI8cCU
Cites_doi 10.1214/aos/1176346597
10.1198/016214503388619184
10.1200/JCO.1998.16.1.237
10.1002/1097-0142(19890715)64:2<349::AID-CNCR2820640202>3.0.CO;2-Q
10.1111/j.1541-0420.2010.01446.x
10.1111/j.0006-341X.2002.00413.x
10.1093/oxfordjournals.aje.a113266
10.1080/01621459.1993.10476416
10.1093/biomet/86.4.755
10.1093/biostatistics/kxq070
10.2307/2532141
10.1093/biomet/75.1.11
10.1198/016214504000001853
10.1093/biomet/73.1.1
10.1093/biomet/asn073
10.1093/biomet/asp059
10.1093/biostatistics/kxu016
10.1002/cjs.11257
10.1007/978-1-4899-3242-6
10.1198/016214504000000584
10.1111/1467-9876.00165
10.1002/cjs.11131
10.1007/s10985-015-9355-7
10.1007/s11425-016-0152-4
10.1214/aos/1059655907
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
DBID AAYXX
CITATION
DOI 10.1080/03610918.2019.1682155
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1745
ExternalDocumentID 10_1080_03610918_2019_1682155
1682155
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
ID FETCH-LOGICAL-c258t-581ccf75601b83a230fe0037233fedd1f13d630e68aec1c2fd8c1f2cee6a2abd3
ISSN 0361-0918
IngestDate Tue Jul 01 03:10:00 EDT 2025
Wed Dec 25 09:06:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-581ccf75601b83a230fe0037233fedd1f13d630e68aec1c2fd8c1f2cee6a2abd3
PageCount 25
ParticipantIDs informaworld_taylorfrancis_310_1080_03610918_2019_1682155
crossref_primary_10_1080_03610918_2019_1682155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-03
PublicationDateYYYYMMDD 2022-04-03
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-03
  day: 03
PublicationDecade 2020
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Zorich V. A. (CIT0027) 2015
CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
Weinberg C. R. (CIT0021) 1993; 80
CIT0019
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0010
  doi: 10.1214/aos/1176346597
– ident: CIT0004
  doi: 10.1198/016214503388619184
– ident: CIT0011
  doi: 10.1200/JCO.1998.16.1.237
– ident: CIT0006
  doi: 10.1002/1097-0142(19890715)64:2<349::AID-CNCR2820640202>3.0.CO;2-Q
– ident: CIT0025
  doi: 10.1111/j.1541-0420.2010.01446.x
– volume-title: Mathematical analysis
  year: 2015
  ident: CIT0027
– ident: CIT0026
  doi: 10.1111/j.0006-341X.2002.00413.x
– ident: CIT0022
  doi: 10.1093/oxfordjournals.aje.a113266
– ident: CIT0014
  doi: 10.1080/01621459.1993.10476416
– ident: CIT0005
  doi: 10.1093/biomet/86.4.755
– ident: CIT0017
  doi: 10.1093/biostatistics/kxq070
– ident: CIT0018
  doi: 10.2307/2532141
– ident: CIT0001
  doi: 10.1093/biomet/75.1.11
– ident: CIT0020
  doi: 10.1198/016214504000001853
– ident: CIT0016
  doi: 10.1093/biomet/73.1.1
– ident: CIT0019
  doi: 10.1093/biomet/asn073
– ident: CIT0012
  doi: 10.1093/biomet/asp059
– volume: 80
  start-page: 461
  issue: 2
  year: 1993
  ident: CIT0021
  publication-title: Biometrika
– ident: CIT0009
  doi: 10.1093/biostatistics/kxu016
– ident: CIT0024
  doi: 10.1002/cjs.11257
– ident: CIT0015
  doi: 10.1007/978-1-4899-3242-6
– ident: CIT0013
  doi: 10.1198/016214504000000584
– ident: CIT0002
  doi: 10.1111/1467-9876.00165
– ident: CIT0007
  doi: 10.1002/cjs.11131
– ident: CIT0008
  doi: 10.1007/s10985-015-9355-7
– ident: CIT0023
  doi: 10.1007/s11425-016-0152-4
– ident: CIT0003
  doi: 10.1214/aos/1059655907
SSID ssj0003848
Score 2.2642
Snippet In many large cohort studies, the major budge and cost typically arise from the assembling of primary covariates. Outcome-dependent sampling (ODS) designs are...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 1721
SubjectTerms Biased sampling
Likelihood ratio test
Score test
Semiparametric empirical likelihood
Wald test
Title Hypothesis testing in outcome-dependent sampling design under generalized linear models
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2019.1682155
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEF0VeoEDLWlRaSnaQ2_IkXfXXtbHqiqKkOBCULlZa3tXstSGKHEO5dczsx-OI6KqwMWKbDmOZl5m36xn3hDyLVM1kP7iPOHaVtiSoxNYhiBrTaUyTVHxQmKD89W1nNxml3f53bp0yHWXdNW4ftjaV_ISr8I58Ct2yT7Ds_2Xwgn4DP6FI3gYjv_l48nfOTZQoaZIh2oZvj3lftXBw0wS59t2Z0uNdeNwtXH1Gm727QKHJ-OGVPsAnBPJpl74uTjLIWHdaCBxtbPYguTVncdnN-2fMP4r9sfNV5vv9vsN6YmGBDgsk0icwyyVy9b8bodbD5C1YsWK6MEyfTIFZBC8hASHFyG2mhhceZIxL3QVo2-Qm22HWwsulGJuOliWIXPKt4b8UCMpUDeeuWK9YsykAiqTr9e4vvIwXNkhbznkFRgYRXrdL91CuXFr_Y-PLV8oxr7tARtkZkPqdkBSpu_JQcgu6HcPlUPyxsxG5F2c3EFDIB-R_aterXc5Ins3vUs_kF9rUNEAKtrO6BNQ0Qgq6kFFHajoAFTUg4p6UH0ktxc_pz8mSZi-kdQ8V12SK1bX9hwz9koJDamqNahWxIWwpmmYZaKRIjVSaVOzmttG1cxyIF1Sc1014ojszu5n5hOhKq1yfMFumTKZNVxZ2Vigjkymhaqy9JiMoxnLuRdZKVnUrg12L9HuZbD7MSmGxi47h0TrQViKf977-RX3fiF76__BCdntFivzFUhpV506ID0CuNqKGw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CMgADhQKinB5YU2K7cZ0RIapwtBMVbFHiA1VIKWrSAX49fjmqggQLc_QiX3mH833fA7jsS-WS_nDgscSmSMlJPBeGXNXqC2l0mLJQIMF5NBbRpH__EryscGEQVok1tK2EIkpfjR83XkY3kLgr53VRz7JEZoU9KqSLW8E6bAShGOBZ5_546Y25LDtooYmHNg2L57fXfItP39RLV-LOsA2qGXEFN3nrLYq0pz5_iDn-b0q7sFOnpeS6Okd7sGayDrSblg-k9gAd2B4tZV7zDmxhqlopPe_Dc_TxjnSufJqTArU7slcyzchsUbihGK_ptluQPEEUu3uqS_QIQRrbnLxW-tfTT6MJTiCZk7JLT34Ak-Ht003k1W0bPMUCWXiBpErZAZZ6qeSJq3GsQZkbxrk1WlNLuRbcN0ImRlHFrJaKWuaitUhYkmp-CK1slpkjINJPA_wza6k0fWuYtEJbl3NQ4Ycy7ftd6DWbFb9X6hwxbURP6xWNcUXjekW7EK5uaVyU1yK26mES8z9tj_9hewGb0dPoMX68Gz-cwBZDDgXCf_gptIr5wpy5zKZIz8uj-wVkv-vM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSKgcKBQQZfWBa0psN65zREBVllYcqOAWxbGNKqRQNekBvh5PlgqQ4NJzNNF4nZnkvTcA512ZuKQ_7HkstgopObHnwpCrWn0hjQ4VCwUSnIcjMRh3716CGk2YVbBKrKFtKRRR3NV4uKfa1oi4C3fpopxlAcwKO1RIF7aCVVgXSLREFoc_WlzGXBYNtNDEQ5uaxPPXa36Epx_ipd_CTr8Jqna4RJu8dea56iSfv7QclxrRNmxVSSm5LHfRDqyYtAXNuuEDqc5_CzaHC5HXrAUNTFRLneddeB58TJHMlU0ykqNyR_pKJil5n-fOE-PVvXZzksWIYXdPdYEdIUhim5HXUv168mk0Qf_jGSl69GR7MO7fPF0NvKppg5ewQOZeIGmS2B4Wekry2FU41qDIDePcGq2ppVwL7hshY5PQhFktE2qZi9UiZrHSfB_W0vfUHACRvgrwv6yl0nStYdIKbV3GQYUfStX129Cp1yqaltocEa0lT6sZjXBGo2pG2xB-X9EoLz6K2LKDScT_tT1cwvYMNh6v-9HD7ej-CBoMCRSI_eHHsJbP5ubEpTW5Oi027heJhepw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypothesis+testing+in+outcome-dependent+sampling+design+under+generalized+linear+models&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Zhang%2C+Haodong&rft.au=Ding%2C+Jieli&rft.date=2022-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=51&rft.issue=4&rft.spage=1721&rft.epage=1745&rft_id=info:doi/10.1080%2F03610918.2019.1682155&rft.externalDocID=1682155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon