A multiple Lyapunov function-based switching anti-windup design for linear systems under asymmetric input constraints and its application to aero-engines

This paper proposes a switching anti-windup design for linear, time-invariant (LTI) systems with asymmetric input constraint. Firstly, the input space of the LTI plant is divided into several regions based on the sign of each control input. In each of these regions, the original asymmetric saturatio...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of systems science Vol. 56; no. 12; pp. 2927 - 2944
Main Authors Wang, Ke, Wu, Fen, Wu, Di, Li, Pengyuan
Format Journal Article
LanguageEnglish
Published Taylor & Francis 10.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a switching anti-windup design for linear, time-invariant (LTI) systems with asymmetric input constraint. Firstly, the input space of the LTI plant is divided into several regions based on the sign of each control input. In each of these regions, the original asymmetric saturation function can be equivalently written as a symmetric one. Then, we design a separate anti-windup gain for each region and implement it when the value of the input signal falls into this region. The online switching between different anti-windup gains enables the full utilisation of the available range of control action on both sides of the saturation limits, which is something that the classical single gain anti-windup design cannot achieve. By incorporating the special properties of asymmetric saturation constraints, a multiple Lyapunov function is constructed for closed-loop stability and performance analysis. This can significantly reduce the conservatism of the resulting stability and performance synthesis conditions. Finally, numerical simulation and aero-engine hardware-in-loop testing demonstrate that, the proposed design has the ability to obtain a significantly larger domain of attraction and an improved control performance than the existing methods.
AbstractList This paper proposes a switching anti-windup design for linear, time-invariant (LTI) systems with asymmetric input constraint. Firstly, the input space of the LTI plant is divided into several regions based on the sign of each control input. In each of these regions, the original asymmetric saturation function can be equivalently written as a symmetric one. Then, we design a separate anti-windup gain for each region and implement it when the value of the input signal falls into this region. The online switching between different anti-windup gains enables the full utilisation of the available range of control action on both sides of the saturation limits, which is something that the classical single gain anti-windup design cannot achieve. By incorporating the special properties of asymmetric saturation constraints, a multiple Lyapunov function is constructed for closed-loop stability and performance analysis. This can significantly reduce the conservatism of the resulting stability and performance synthesis conditions. Finally, numerical simulation and aero-engine hardware-in-loop testing demonstrate that, the proposed design has the ability to obtain a significantly larger domain of attraction and an improved control performance than the existing methods.
Author Li, Pengyuan
Wu, Fen
Wu, Di
Wang, Ke
Author_xml – sequence: 1
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Dalian Maritime University
– sequence: 2
  givenname: Fen
  surname: Wu
  fullname: Wu, Fen
  organization: North Carolina State University
– sequence: 3
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: Dalian University of Technology
– sequence: 4
  givenname: Pengyuan
  surname: Li
  fullname: Li, Pengyuan
  email: pyli@dlmu.edu.cn
  organization: Dalian Maritime University
BookMark eNp9kE1qwzAQhUVJoUnaIxR0AaeSLNnOriH0DwLdtGszluVUxR4ZSW7wUXrb2qTddvWG4b03zLciC3RoCLnlbMNZwe4YEyzPBd8IJtRGyEwyXlyQJZ-mRKV8uyDL2ZPMpiuyCuGTMaaUYEvyvaPd0Ebbt4YeRugHdF-0GVBH6zCpIJiahpON-sPikQJGm5ws1kNPaxPsEWnjPG0tGvA0jCGaLtABa-MphLHrTPRWU4v9EKl2GKIHizFMRTW1s_Z9azXMx2h0FIx3icHj1BeuyWUDbTA3v7om748Pb_vn5PD69LLfHRItVBETqYstr4tUVUWV6enNrdRNnmZZo1WuC-AAeWEgryqhUil5JUXGG6OkZDLn025N1LlXexeCN03Ze9uBH0vOyplv-ce3nPmWv3yn3P05Z3Fi0MHJ-bYuI4yt840H1DaU6f8VP39Zh4k
Cites_doi 10.1109/TAC.2004.841128
10.1007/s00034-014-9786-5
10.1109/TAC.2008.921036
10.1109/TCST.2015.2483562
10.1007/978-1-4612-0017-8
10.1109/CDC40024.2019.9030005
10.1080/00207721.2023.2276095
10.1007/s11071-018-4666-3
10.1080/00207179.2017.1313451
10.1016/j.automatica.2024.111830
10.1109/TTE.2023.3304173
10.1016/j.isatra.2023.01.001
10.1115/1.4028810
10.1109/TAC.2008.921021
10.1080/00207721.2015.1117157
10.1016/j.ifacol.2020.12.1874
10.1007/978-0-85729-941-3
10.1016/S0005-1098(01)00209-6
10.1109/TAES.2021.3135484
10.1080/00207721.2024.2304132
10.1109/TMECH.2022.3186390
10.1109/TIE.41
10.1109/TASE.2022.3192840
10.1007/s11071-024-09761-y
10.1109/TVT.2024.3380913
10.1016/j.automatica.2012.11.018
10.1109/TAC.2012.2231532
10.1515/9781400839025
10.1016/j.automatica.2010.02.021
10.1109/TCSI.2011.2143170
10.1080/00207179.2014.942884
10.1109/TII.2020.3038939
10.1109/TAC.2006.884942
10.1080/00207721.2021.1943562
10.1002/rnc.v28.5
10.1016/j.isatra.2019.02.008
10.1109/LCSYS.7782633
10.1016/j.jfranklin.2019.01.053
10.1109/TPWRS.2016.2521325
10.1016/0005-1098(94)90048-5
10.1016/j.automatica.2007.06.003
10.1109/TCSII.2022.3162410
10.1016/j.conengprac.2008.11.002
10.1007/978-1-4612-0205-9
10.1109/TAC.2024.3436728
10.1016/j.conengprac.2006.08.001
10.1016/j.energy.2023.129934
10.1109/TMECH.2017.2746142
10.1016/j.sysconle.2013.06.012
10.2514/6.1996-3814
10.1109/LCSYS.2021.3086216
10.1109/TEC.2022.3208060
10.1109/TAC.2003.816965
10.1007/978-3-319-64246-8
ContentType Journal Article
Copyright 2025 Informa UK Limited, trading as Taylor & Francis Group 2025
Copyright_xml – notice: 2025 Informa UK Limited, trading as Taylor & Francis Group 2025
DBID AAYXX
CITATION
DOI 10.1080/00207721.2025.2464018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1464-5319
EndPage 2944
ExternalDocumentID 10_1080_00207721_2025_2464018
2464018
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62473071; 62303086
– fundername: Liaoning Province Science and Technology Plan Joint Plan
  grantid: 2023JH2/101800024
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132024223
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~02
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-4c891d835b8b6c00294cf7366fc57c8a1aa78ea7bb253441b4261fe5440471253
ISSN 0020-7721
IngestDate Thu Aug 14 00:12:22 EDT 2025
Thu Aug 07 06:57:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-4c891d835b8b6c00294cf7366fc57c8a1aa78ea7bb253441b4261fe5440471253
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_00207721_2025_2464018
crossref_primary_10_1080_00207721_2025_2464018
PublicationCentury 2000
PublicationDate 2025-09-10
PublicationDateYYYYMMDD 2025-09-10
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-10
  day: 10
PublicationDecade 2020
PublicationTitle International journal of systems science
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_4_3_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
Lin Z. (e_1_3_4_28_1) 1999
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_50_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_8_1
  doi: 10.1109/TAC.2004.841128
– ident: e_1_3_4_2_1
  doi: 10.1007/s00034-014-9786-5
– ident: e_1_3_4_54_1
  doi: 10.1109/TAC.2008.921036
– ident: e_1_3_4_35_1
  doi: 10.1109/TCST.2015.2483562
– ident: e_1_3_4_27_1
  doi: 10.1007/978-1-4612-0017-8
– ident: e_1_3_4_11_1
  doi: 10.1109/CDC40024.2019.9030005
– ident: e_1_3_4_31_1
  doi: 10.1080/00207721.2023.2276095
– ident: e_1_3_4_17_1
  doi: 10.1007/s11071-018-4666-3
– ident: e_1_3_4_38_1
  doi: 10.1080/00207179.2017.1313451
– ident: e_1_3_4_4_1
  doi: 10.1016/j.automatica.2024.111830
– ident: e_1_3_4_52_1
  doi: 10.1109/TTE.2023.3304173
– ident: e_1_3_4_12_1
  doi: 10.1016/j.isatra.2023.01.001
– ident: e_1_3_4_39_1
  doi: 10.1115/1.4028810
– ident: e_1_3_4_30_1
  doi: 10.1109/TAC.2008.921021
– ident: e_1_3_4_41_1
  doi: 10.1080/00207721.2015.1117157
– ident: e_1_3_4_9_1
  doi: 10.1016/j.ifacol.2020.12.1874
– ident: e_1_3_4_34_1
  doi: 10.1007/978-0-85729-941-3
– ident: e_1_3_4_14_1
  doi: 10.1016/S0005-1098(01)00209-6
– ident: e_1_3_4_45_1
  doi: 10.1109/TAES.2021.3135484
– ident: e_1_3_4_21_1
  doi: 10.1080/00207721.2024.2304132
– ident: e_1_3_4_44_1
  doi: 10.1109/TMECH.2022.3186390
– ident: e_1_3_4_26_1
  doi: 10.1109/TIE.41
– ident: e_1_3_4_7_1
  doi: 10.1109/TASE.2022.3192840
– ident: e_1_3_4_18_1
  doi: 10.1007/s11071-024-09761-y
– ident: e_1_3_4_20_1
  doi: 10.1109/TVT.2024.3380913
– ident: e_1_3_4_33_1
  doi: 10.1016/j.automatica.2012.11.018
– ident: e_1_3_4_22_1
  doi: 10.1109/TAC.2012.2231532
– ident: e_1_3_4_50_1
  doi: 10.1515/9781400839025
– ident: e_1_3_4_51_1
  doi: 10.1016/j.automatica.2010.02.021
– ident: e_1_3_4_55_1
  doi: 10.1109/TCSI.2011.2143170
– ident: e_1_3_4_48_1
  doi: 10.1080/00207179.2014.942884
– volume-title: Low gain feedback
  year: 1999
  ident: e_1_3_4_28_1
– ident: e_1_3_4_47_1
  doi: 10.1109/TII.2020.3038939
– ident: e_1_3_4_15_1
  doi: 10.1109/TAC.2006.884942
– ident: e_1_3_4_25_1
  doi: 10.1080/00207721.2021.1943562
– ident: e_1_3_4_23_1
  doi: 10.1002/rnc.v28.5
– ident: e_1_3_4_42_1
  doi: 10.1016/j.isatra.2019.02.008
– ident: e_1_3_4_32_1
  doi: 10.1109/LCSYS.7782633
– ident: e_1_3_4_36_1
  doi: 10.1016/j.jfranklin.2019.01.053
– ident: e_1_3_4_43_1
  doi: 10.1109/TPWRS.2016.2521325
– ident: e_1_3_4_19_1
  doi: 10.1016/0005-1098(94)90048-5
– ident: e_1_3_4_16_1
  doi: 10.1016/j.automatica.2007.06.003
– ident: e_1_3_4_37_1
  doi: 10.1109/TCSII.2022.3162410
– ident: e_1_3_4_3_1
  doi: 10.1016/j.conengprac.2008.11.002
– ident: e_1_3_4_13_1
  doi: 10.1007/978-1-4612-0205-9
– ident: e_1_3_4_5_1
  doi: 10.1109/TAC.2024.3436728
– ident: e_1_3_4_49_1
  doi: 10.1016/j.conengprac.2006.08.001
– ident: e_1_3_4_29_1
  doi: 10.1016/j.energy.2023.129934
– ident: e_1_3_4_46_1
  doi: 10.1109/TMECH.2017.2746142
– ident: e_1_3_4_53_1
  doi: 10.1016/j.sysconle.2013.06.012
– ident: e_1_3_4_40_1
  doi: 10.2514/6.1996-3814
– ident: e_1_3_4_6_1
  doi: 10.1109/LCSYS.2021.3086216
– ident: e_1_3_4_56_1
  doi: 10.1109/TEC.2022.3208060
– ident: e_1_3_4_10_1
  doi: 10.1109/TAC.2003.816965
– ident: e_1_3_4_24_1
  doi: 10.1007/978-3-319-64246-8
SSID ssj0005520
Score 2.4093678
Snippet This paper proposes a switching anti-windup design for linear, time-invariant (LTI) systems with asymmetric input constraint. Firstly, the input space of the...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 2927
SubjectTerms aero-engine
anti-windup compensation
Asymmetric saturation
hardware-in-loop testing
multiple Lyapunov functions
switched system
Title A multiple Lyapunov function-based switching anti-windup design for linear systems under asymmetric input constraints and its application to aero-engines
URI https://www.tandfonline.com/doi/abs/10.1080/00207721.2025.2464018
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXc5NIeiq5ouoGH3gQZNrUfjaaFUaQ9JWjQi0BSVKFDZMOSErh_0r_KJ2WGpCSqDYKmF9kmYI6seeYMycc3hHzAOJDEXPgFY8oP0yX3sxgSuZTxcKlg1pzoOmRfv8Xrs_DLeXQ-m107rKWuFXP569ZzJf_jVWgDv-Ip2Xt4dugUGuA9-Beu4GG4_pOPVyMf8GTPt129ufQwUKFFH-NT4TVXVWvokvAIK_8KpuDd1is0b0NTDDHN5L2ic6PL4u483uwvLrDWlvSqetu1SE5vdDWJthm2G5y9b8xgudptfKXlDRs35Z2uOTpKFb1JG4THpX07_IwtnU6xx0NrpuG46j-fVIZqXP_cdxbtdiGDRci6sJTW_mDBApN9AzVlxuMwDn0cJtwB2yiR98Bk7vCbGaEBG8pZZrQl_woTPa-SLdDeHO9mzsDUwsaCiSz3H-FyIDEuB3VV002O3eS2mwfkkEEjjLyHq_Xxj-8j7SiyUqH2x_anylDv_bb7meRLEzVdJw86fUIe2wkMXRk0PiUzVT8jjxxZy-fk94r2uKQ9LukUl3TAJXVwSQ0uKVinBpfUgoRqXNIRl1Tjkjq4hI4KWuHriEvabqiLyxfk7POn049r35YA8SWL0tYPZZotC5gliFTEEreQQ1kmQRyXMkpkypecJ6niiRAsCiCzF7giUKoIVS8TyN2Dl-Sg3tTqFaE8EBmTXLJSYcmBlCfxIslEGIlIZmUQHJF5_6DzrVF6ye908RHJXHfkrV5iK009nDy487uv72vsDXk4_mfekoN216l3kA634r1F2A2Z_rOv
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZYOLAceCy74s0c9uqqceJHjgiBCpSeQOIW2Y4jVYi0apxF8E_4t3iSBgoSe-GUQ2TL9jiZb-xvviHkL_oBKbShOWOOJirSNBUByCmmk8iFqFk2dciuR2Jwm1ze8buFXBikVWIMXbRCEc2_Gj9uPIzuKHGYwt0PqBDDO8Z7LBEhSFA_yApPhcS9HvdH7zQPPpdmDGEStumyeL7q5oN_-qBeuuB3zjeI7Ubc0k3ue7U3Pfv8Sczxe1PaJOtzWAon7T7aIkuu_EXWFsQKt8nLCXTsQxg-6WldTv4BukU0LUVvmEP1OPYNOROCwcb0MQT89RTyhiUCYY6AQ9MzaPWjK8AMthno6unhASt7WRiX09qDRdCKtSt8FTrKYYzP95t28BPQbjahrhlf9Zvcnp_dnA7ovLADtYwrTxOr0igP2M8oIyxeDCa2kLEQheXSKh1pLZXT0hjG44DXDMZ5heOoZSgDIov_kOVyUrodAjo2KbPassKhkLzSUvRlahJuuE2LON4lvc6c2bTV78iiN1nUds0zXPNsvua7JF00euabg5OirXKSxf9tu_eNtsdkdXBzPcyGF6OrffITXyEtJeofkGU_q91hwD7eHDWb-xU6NviD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSFV7APpA5dk59OrVxokfOSJgxXPVQ5F6i2zHkVYV2WjjgOCf8G_x5FGWSvTCKYfIlu2xM9_E33xDyA_0A1JoQ3PGHE1UpGkqApBTTCeRC1GzbOuQXU3F6XVy_psPbMK6p1ViDF10QhHttxoPd5UXAyMOM7jHARRidMf4iCUixAjqHVkTmGiJWRzj6TPLg_fKjCFKwjZDEs9r3bxwTy_ES5fczmSDmGHAHdvkz6jxZmQf_tFyfNOMNsl6D0rhsNtFn8iKKz-Tj0tShV_I4yEM3EO4vNdVU85vAZ0iGpaiL8yhvpv5lpoJwVwzehfC_aaCvOWIQJgi4Mj0Ajr16Bowf20Bur6_ucG6XhZmZdV4sAhZsXKFr0NHOczw-XzPDn4O2i3m1LXjq7-S68nJr6NT2pd1oJZx5WliVRrlAfkZZYTFa8HEFjIWorBcWqUjraVyWhrDeBzQmsEor3AclQxlwGPxFlkt56X7RkDHJmVWW1Y4lJFXWoqxTE3CDbdpEcfbZDRYM6s69Y4s-iuK2q15hmue9Wu-TdJlm2e-_W1SdDVOsvi_bXfe0PY7ef_zeJJdnk0vdskHfIOclGi8R1b9onH7Afh4c9Bu7ScxWfcn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiple+Lyapunov+function-based+switching+anti-windup+design+for+linear+systems+under+asymmetric+input+constraints+and+its+application+to+aero-engines&rft.jtitle=International+journal+of+systems+science&rft.au=Wang%2C+Ke&rft.au=Wu%2C+Fen&rft.au=Wu%2C+Di&rft.au=Li%2C+Pengyuan&rft.date=2025-09-10&rft.issn=0020-7721&rft.eissn=1464-5319&rft.volume=56&rft.issue=12&rft.spage=2927&rft.epage=2944&rft_id=info:doi/10.1080%2F00207721.2025.2464018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207721_2025_2464018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7721&client=summon