Properties of generalized polyhedral convex multifunctions

This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the dir...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 74; no. 8; pp. 1763 - 1791
Main Authors Luan, Nguyen Ngoc, Nam, Nguyen Mau, Yen, Nguyen Dong
Format Journal Article
LanguageEnglish
Published Taylor & Francis 11.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the direct and inverse images of sets under such mappings. Then we explore the class of optimal value functions defined by a generalized polyhedral convex objective function and a generalized polyhedral convex constrained mapping. The new results provide a framework for representing the relative interior of the graph of a generalized polyhedral convex multifunction in terms of the relative interiors of its domain and mapping values in locally convex topological vector spaces. Among the new results in this paper is a significant extension of a result by Bonnans and Shapiro on the domain of generalized polyhedral convex multifunctions from Banach spaces to locally convex topological vector spaces.
AbstractList This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the direct and inverse images of sets under such mappings. Then we explore the class of optimal value functions defined by a generalized polyhedral convex objective function and a generalized polyhedral convex constrained mapping. The new results provide a framework for representing the relative interior of the graph of a generalized polyhedral convex multifunction in terms of the relative interiors of its domain and mapping values in locally convex topological vector spaces. Among the new results in this paper is a significant extension of a result by Bonnans and Shapiro on the domain of generalized polyhedral convex multifunctions from Banach spaces to locally convex topological vector spaces.
Author Luan, Nguyen Ngoc
Nam, Nguyen Mau
Yen, Nguyen Dong
Author_xml – sequence: 1
  givenname: Nguyen Ngoc
  surname: Luan
  fullname: Luan, Nguyen Ngoc
  organization: Vietnam Academy of Science and Technology
– sequence: 2
  givenname: Nguyen Mau
  surname: Nam
  fullname: Nam, Nguyen Mau
  email: mnn3@pdx.edu
  organization: Portland State University
– sequence: 3
  givenname: Nguyen Dong
  surname: Yen
  fullname: Yen, Nguyen Dong
  organization: Vietnam Academy of Science and Technology
BookMark eNp9kM1KAzEcxINUsK0-grAvsDWf28STUrQKBT3oOWSTfzSyTUqyVevT26X16mWGgZk5_CZoFFMEhC4JnhEs8RWmjBHF-IxiuhdOcTNXJ2hMMFU1V1yM0Hjo1EPpDE1K-cCYkobyMbp-zmkDuQ9QquSrN4iQTRd-wFWb1O3ewe1jZVP8hO9qve364LfR9iHFco5OvekKXBx9il7v714WD_Xqafm4uF3VlgrZ1wxAGOkYZqa1imClvFXOsbYhklkr5gp8K4SVLSdgWm89cy2TkgvOG-4UmyJx-LU5lZLB600Oa5N3mmA9ANB_APQAQB8B7Hc3h12IPuW1-Uq5c7o3uy5ln020oWj2_8UvXOhlcw
Cites_doi 10.1007/s10957-018-1296-3
10.1007/s11425-008-0021-3
10.1080/01630563.2023.2297426
10.1007/s10957-023-02318-w
10.1007/s10957-023-02269-2
10.1080/01630563.2017.1387863
10.1016/j.na.2010.09.001
10.1007/s10898-023-01331-7
10.1007/978-3-030-94785-9
10.1080/00036811.2018.1441992
10.1007/978-1-4612-1394-9
10.1137/120891216
10.1080/02331934.2014.979819
10.1007/s10898-019-00763-4
10.1137/120889502
10.1515/9781400873173
10.1080/02331934.2019.1614179
10.1007/s11590-019-01447-4
10.1007/s11228-009-0120-5
10.1007/s10957-021-01889-w
10.1007/s11228-013-0266-z
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
DBID AAYXX
CITATION
DOI 10.1080/02331934.2024.2420679
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1791
ExternalDocumentID 10_1080_02331934_2024_2420679
2420679
Genre Research Article
GrantInformation_xml – fundername: USA National Science Foundation
  grantid: DMS-2136228
– fundername: Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF)
  grantid: VINIF.2022.STS.41
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-3ee5a8d303abc91099fc9dd3b6183cc579efb55c8b41eabfcf3db388454464d93
ISSN 0233-1934
IngestDate Tue Jul 01 04:56:52 EDT 2025
Thu May 15 23:48:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-3ee5a8d303abc91099fc9dd3b6183cc579efb55c8b41eabfcf3db388454464d93
PageCount 29
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2024_2420679
crossref_primary_10_1080_02331934_2024_2420679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-11
PublicationDateYYYYMMDD 2025-06-11
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-11
  day: 11
PublicationDecade 2020
PublicationTitle Optimization
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Lee GM (e_1_3_3_2_1) 2005
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
Robertson AP (e_1_3_3_24_1) 1964
e_1_3_3_14_1
e_1_3_3_13_1
Qui NT (e_1_3_3_4_1) 2011; 12
e_1_3_3_16_1
e_1_3_3_10_1
e_1_3_3_12_1
e_1_3_3_11_1
Rudin R. (e_1_3_3_22_1) 1991
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_25_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
Luan NN. (e_1_3_3_15_1) 2018; 43
References_xml – ident: e_1_3_3_17_1
  doi: 10.1007/s10957-018-1296-3
– volume: 12
  start-page: 483
  year: 2011
  ident: e_1_3_3_4_1
  article-title: Some properties of polyhedral multifunctions
  publication-title: J Nonlinear Convex Anal
– ident: e_1_3_3_6_1
  doi: 10.1007/s11425-008-0021-3
– ident: e_1_3_3_13_1
  doi: 10.1080/01630563.2023.2297426
– ident: e_1_3_3_25_1
  doi: 10.1007/s10957-023-02318-w
– ident: e_1_3_3_16_1
  doi: 10.1007/s10957-023-02269-2
– ident: e_1_3_3_21_1
  doi: 10.1080/01630563.2017.1387863
– ident: e_1_3_3_9_1
  doi: 10.1016/j.na.2010.09.001
– ident: e_1_3_3_14_1
  doi: 10.1007/s10898-023-01331-7
– ident: e_1_3_3_3_1
  doi: 10.1007/978-3-030-94785-9
– ident: e_1_3_3_23_1
  doi: 10.1080/00036811.2018.1441992
– ident: e_1_3_3_7_1
  doi: 10.1007/978-1-4612-1394-9
– volume-title: Topological vector spaces
  year: 1964
  ident: e_1_3_3_24_1
– volume-title: Functional analysis
  year: 1991
  ident: e_1_3_3_22_1
– ident: e_1_3_3_11_1
  doi: 10.1137/120891216
– ident: e_1_3_3_10_1
  doi: 10.1080/02331934.2014.979819
– ident: e_1_3_3_26_1
  doi: 10.1007/s10898-019-00763-4
– ident: e_1_3_3_19_1
  doi: 10.1137/120889502
– ident: e_1_3_3_5_1
  doi: 10.1515/9781400873173
– ident: e_1_3_3_8_1
  doi: 10.1080/02331934.2019.1614179
– ident: e_1_3_3_27_1
  doi: 10.1007/s11590-019-01447-4
– ident: e_1_3_3_18_1
  doi: 10.1007/s11228-009-0120-5
– volume: 43
  start-page: 289
  year: 2018
  ident: e_1_3_3_15_1
  article-title: Piecewise linear vector optimization problems on locally convex Hausdorff topological vector spaces
  publication-title: Acta Math Vietnam
– ident: e_1_3_3_20_1
  doi: 10.1007/s10957-021-01889-w
– ident: e_1_3_3_12_1
  doi: 10.1007/s11228-013-0266-z
– volume-title: Quadratic programming and affine variational inequalities: a qualitative study
  year: 2005
  ident: e_1_3_3_2_1
SSID ssj0021624
Score 2.370269
Snippet This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 1763
SubjectTerms generalized interior
generalized polyhedral convex multifunction
generalized polyhedral convex set
Locally convex Hausdorff topological vector space
optimal value function
Title Properties of generalized polyhedral convex multifunctions
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2024.2420679
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46X_RBvOKdPvhaaZqkS30bThmCl4eJ4ktp0kQFbWV0ov56T5b0MhTx8rBsa0kzcj5OvnN2LgjtAwnWOCAaJCACn2ZR5qdMG09coKjqAiOnJhv57DwaXNHTG3bTNOOcZJeU4kC-f5lX8hepwjWQq8mS_YVk64fCBfgM8oURJAzjj2R8aTzpI1MS1XC-O1tB-uEdOORz8fh2r7LRpPpH_qJebeSgOcUaD53jpBegNZ5cOmYdnzO2jtHzu_GbyuGtkLXb2EHI3jlLx43btT2lX7gz0bkUQmZCn3DjUhh-6u7RUkohIT6QPusEUFZpmhAaGtuykJVWtb13HHp4S0XiSqMp99V26_qkyl3sI6xnlgNLPoSBmmrzcXN21RGF7s4smgvBXgg7aK436N9e17Y3jib9jeufXyVzmTLrXy0xRVOmiti26MdwCS06u8HrWRAsoxmVr6CFVjXJVXTYwMErtNeCg9fAwbNw8KbhsIauTo6HRwPftcbwZch46ROlWMoz4B-pkLH5d1PLOMuIiEBFS8m6sdKCMckFxSoVWmqSCcI5ZWD-0ywm66iTF7naQB5XmGB4BVwElIZpinmguwp3NZw9ccQ20UG1E8mzrYCS4KqwrNu6xGxd4rZuE8Xt_UrKCZy0RVJCvp279Y-522i-AfMO6pSjsdoFxliKPYeGD2cUZcw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeGVhT4thObDaEQAXaiqGVukXxCxCorapUgv56fHmgFAmWDomU4aLkfLk7X-6-D6FLlwRbHBDrVkAGPtWR9lNmoRIXGGpil5FTmEbu9qL2gD4O2bA2CwNtlbCHtgVQRO6r4eOGYnTVEnfl4oyzHAIlkdCdKECQi1W0xkQUA4sBCXo_my4c5cS2IOKDTDXF89dtFuLTAnppLe7cbyNVPXHRbvLemmWypea_wByXe6UdtFWmpd5NYUe7aMWM9tBmDaxwH10_Q91-CgCs3th6LwVe9dvcaG8y_vh6NdpdenkX-6eX9ylCzMzN-gAN7u_6t22_ZF7wVch45hNjWMq1C2-pVAJ-nlkltCYych5AKRYLYyVjikuKTSqtskRLwjllbndJtSCHqDEaj8wR8rjBBLsj4DKgNExTzAMbGxxb59pExJqoVek7mRQAGwmucEtLpSSglKRUShOJ-qokWV7ZsAUNSUL-lT1eQvYCrbf73U7Seeg9naCNEHiAgcMIn6JGNp2ZM5ecZPI8t75vNkLWTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBHj2QPXjqZJupQbAqbxmnZgEreqeQECbdPoJNivJ-4DbUhw2aGVenDVOk7sOJ8_A5y6INiSgFo3AjLwmY60n3KLmbjAMNN0ETnDauSHTtTusdsnXqEJP0pYJe6hbUEUka_VOLmH2laIuDPnZpzhUMyIhO7GkIE8XoSlCMnDsYoj6PzsuUiU97VFER9lqiKev14z455myEun3E5rHWT1wQXa5K0xzmRDTX5xOc71RxuwVgal3kVhRZuwYPpbsDpFVbgN513M2o-QftUbWO-5YKt-nRjtDQfvXy9Gu0cvx7B_ejlKET1mbtQ70GtdP162_bLvgq9CLjKfGsNToZ1zS6WK8ejMqlhrKiM3_5XizdhYybkSkhGTSqss1ZIKwbjbWzId012o9Qd9sweeMIQSdwVCBoyFaUpEYJuGNK1b2OKI16FRqTsZFvQaCalYS0ulJKiUpFRKHeLpQUmyPK9hiyYkCf1Xdn8O2RNY7l61kvubzt0BrITYBBgbGJFDqGWjsTlykUkmj3Pb-watYNTy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+generalized+polyhedral+convex+multifunctions&rft.jtitle=Optimization&rft.au=Luan%2C+Nguyen+Ngoc&rft.au=Nam%2C+Nguyen+Mau&rft.au=Yen%2C+Nguyen+Dong&rft.date=2025-06-11&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=74&rft.issue=8&rft.spage=1763&rft.epage=1791&rft_id=info:doi/10.1080%2F02331934.2024.2420679&rft.externalDocID=2420679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon