Properties of generalized polyhedral convex multifunctions
This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the dir...
Saved in:
Published in | Optimization Vol. 74; no. 8; pp. 1763 - 1791 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
11.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the direct and inverse images of sets under such mappings. Then we explore the class of optimal value functions defined by a generalized polyhedral convex objective function and a generalized polyhedral convex constrained mapping. The new results provide a framework for representing the relative interior of the graph of a generalized polyhedral convex multifunction in terms of the relative interiors of its domain and mapping values in locally convex topological vector spaces. Among the new results in this paper is a significant extension of a result by Bonnans and Shapiro on the domain of generalized polyhedral convex multifunctions from Banach spaces to locally convex topological vector spaces. |
---|---|
AbstractList | This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of generalized polyhedral convex multifunctions, and the direct and inverse images of sets under such mappings. Then we explore the class of optimal value functions defined by a generalized polyhedral convex objective function and a generalized polyhedral convex constrained mapping. The new results provide a framework for representing the relative interior of the graph of a generalized polyhedral convex multifunction in terms of the relative interiors of its domain and mapping values in locally convex topological vector spaces. Among the new results in this paper is a significant extension of a result by Bonnans and Shapiro on the domain of generalized polyhedral convex multifunctions from Banach spaces to locally convex topological vector spaces. |
Author | Luan, Nguyen Ngoc Nam, Nguyen Mau Yen, Nguyen Dong |
Author_xml | – sequence: 1 givenname: Nguyen Ngoc surname: Luan fullname: Luan, Nguyen Ngoc organization: Vietnam Academy of Science and Technology – sequence: 2 givenname: Nguyen Mau surname: Nam fullname: Nam, Nguyen Mau email: mnn3@pdx.edu organization: Portland State University – sequence: 3 givenname: Nguyen Dong surname: Yen fullname: Yen, Nguyen Dong organization: Vietnam Academy of Science and Technology |
BookMark | eNp9kM1KAzEcxINUsK0-grAvsDWf28STUrQKBT3oOWSTfzSyTUqyVevT26X16mWGgZk5_CZoFFMEhC4JnhEs8RWmjBHF-IxiuhdOcTNXJ2hMMFU1V1yM0Hjo1EPpDE1K-cCYkobyMbp-zmkDuQ9QquSrN4iQTRd-wFWb1O3ewe1jZVP8hO9qve364LfR9iHFco5OvekKXBx9il7v714WD_Xqafm4uF3VlgrZ1wxAGOkYZqa1imClvFXOsbYhklkr5gp8K4SVLSdgWm89cy2TkgvOG-4UmyJx-LU5lZLB600Oa5N3mmA9ANB_APQAQB8B7Hc3h12IPuW1-Uq5c7o3uy5ln020oWj2_8UvXOhlcw |
Cites_doi | 10.1007/s10957-018-1296-3 10.1007/s11425-008-0021-3 10.1080/01630563.2023.2297426 10.1007/s10957-023-02318-w 10.1007/s10957-023-02269-2 10.1080/01630563.2017.1387863 10.1016/j.na.2010.09.001 10.1007/s10898-023-01331-7 10.1007/978-3-030-94785-9 10.1080/00036811.2018.1441992 10.1007/978-1-4612-1394-9 10.1137/120891216 10.1080/02331934.2014.979819 10.1007/s10898-019-00763-4 10.1137/120889502 10.1515/9781400873173 10.1080/02331934.2019.1614179 10.1007/s11590-019-01447-4 10.1007/s11228-009-0120-5 10.1007/s10957-021-01889-w 10.1007/s11228-013-0266-z |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 |
DBID | AAYXX CITATION |
DOI | 10.1080/02331934.2024.2420679 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4945 |
EndPage | 1791 |
ExternalDocumentID | 10_1080_02331934_2024_2420679 2420679 |
Genre | Research Article |
GrantInformation_xml | – fundername: USA National Science Foundation grantid: DMS-2136228 – fundername: Postdoctoral Scholarship Programme of Vingroup Innovation Foundation (VINIF) grantid: VINIF.2022.STS.41 |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX CITATION |
ID | FETCH-LOGICAL-c258t-3ee5a8d303abc91099fc9dd3b6183cc579efb55c8b41eabfcf3db388454464d93 |
ISSN | 0233-1934 |
IngestDate | Tue Jul 01 04:56:52 EDT 2025 Thu May 15 23:48:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c258t-3ee5a8d303abc91099fc9dd3b6183cc579efb55c8b41eabfcf3db388454464d93 |
PageCount | 29 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02331934_2024_2420679 crossref_primary_10_1080_02331934_2024_2420679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-11 |
PublicationDateYYYYMMDD | 2025-06-11 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Optimization |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Lee GM (e_1_3_3_2_1) 2005 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 Robertson AP (e_1_3_3_24_1) 1964 e_1_3_3_14_1 e_1_3_3_13_1 Qui NT (e_1_3_3_4_1) 2011; 12 e_1_3_3_16_1 e_1_3_3_10_1 e_1_3_3_12_1 e_1_3_3_11_1 Rudin R. (e_1_3_3_22_1) 1991 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_25_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_20_1 e_1_3_3_5_1 e_1_3_3_23_1 Luan NN. (e_1_3_3_15_1) 2018; 43 |
References_xml | – ident: e_1_3_3_17_1 doi: 10.1007/s10957-018-1296-3 – volume: 12 start-page: 483 year: 2011 ident: e_1_3_3_4_1 article-title: Some properties of polyhedral multifunctions publication-title: J Nonlinear Convex Anal – ident: e_1_3_3_6_1 doi: 10.1007/s11425-008-0021-3 – ident: e_1_3_3_13_1 doi: 10.1080/01630563.2023.2297426 – ident: e_1_3_3_25_1 doi: 10.1007/s10957-023-02318-w – ident: e_1_3_3_16_1 doi: 10.1007/s10957-023-02269-2 – ident: e_1_3_3_21_1 doi: 10.1080/01630563.2017.1387863 – ident: e_1_3_3_9_1 doi: 10.1016/j.na.2010.09.001 – ident: e_1_3_3_14_1 doi: 10.1007/s10898-023-01331-7 – ident: e_1_3_3_3_1 doi: 10.1007/978-3-030-94785-9 – ident: e_1_3_3_23_1 doi: 10.1080/00036811.2018.1441992 – ident: e_1_3_3_7_1 doi: 10.1007/978-1-4612-1394-9 – volume-title: Topological vector spaces year: 1964 ident: e_1_3_3_24_1 – volume-title: Functional analysis year: 1991 ident: e_1_3_3_22_1 – ident: e_1_3_3_11_1 doi: 10.1137/120891216 – ident: e_1_3_3_10_1 doi: 10.1080/02331934.2014.979819 – ident: e_1_3_3_26_1 doi: 10.1007/s10898-019-00763-4 – ident: e_1_3_3_19_1 doi: 10.1137/120889502 – ident: e_1_3_3_5_1 doi: 10.1515/9781400873173 – ident: e_1_3_3_8_1 doi: 10.1080/02331934.2019.1614179 – ident: e_1_3_3_27_1 doi: 10.1007/s11590-019-01447-4 – ident: e_1_3_3_18_1 doi: 10.1007/s11228-009-0120-5 – volume: 43 start-page: 289 year: 2018 ident: e_1_3_3_15_1 article-title: Piecewise linear vector optimization problems on locally convex Hausdorff topological vector spaces publication-title: Acta Math Vietnam – ident: e_1_3_3_20_1 doi: 10.1007/s10957-021-01889-w – ident: e_1_3_3_12_1 doi: 10.1007/s11228-013-0266-z – volume-title: Quadratic programming and affine variational inequalities: a qualitative study year: 2005 ident: e_1_3_3_2_1 |
SSID | ssj0021624 |
Score | 2.370269 |
Snippet | This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral... |
SourceID | crossref informaworld |
SourceType | Index Database Publisher |
StartPage | 1763 |
SubjectTerms | generalized interior generalized polyhedral convex multifunction generalized polyhedral convex set Locally convex Hausdorff topological vector space optimal value function |
Title | Properties of generalized polyhedral convex multifunctions |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2024.2420679 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46X_RBvOKdPvhaaZqkS30bThmCl4eJ4ktp0kQFbWV0ov56T5b0MhTx8rBsa0kzcj5OvnN2LgjtAwnWOCAaJCACn2ZR5qdMG09coKjqAiOnJhv57DwaXNHTG3bTNOOcZJeU4kC-f5lX8hepwjWQq8mS_YVk64fCBfgM8oURJAzjj2R8aTzpI1MS1XC-O1tB-uEdOORz8fh2r7LRpPpH_qJebeSgOcUaD53jpBegNZ5cOmYdnzO2jtHzu_GbyuGtkLXb2EHI3jlLx43btT2lX7gz0bkUQmZCn3DjUhh-6u7RUkohIT6QPusEUFZpmhAaGtuykJVWtb13HHp4S0XiSqMp99V26_qkyl3sI6xnlgNLPoSBmmrzcXN21RGF7s4smgvBXgg7aK436N9e17Y3jib9jeufXyVzmTLrXy0xRVOmiti26MdwCS06u8HrWRAsoxmVr6CFVjXJVXTYwMErtNeCg9fAwbNw8KbhsIauTo6HRwPftcbwZch46ROlWMoz4B-pkLH5d1PLOMuIiEBFS8m6sdKCMckFxSoVWmqSCcI5ZWD-0ywm66iTF7naQB5XmGB4BVwElIZpinmguwp3NZw9ccQ20UG1E8mzrYCS4KqwrNu6xGxd4rZuE8Xt_UrKCZy0RVJCvp279Y-522i-AfMO6pSjsdoFxliKPYeGD2cUZcw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeGVhT4thObDaEQAXaiqGVukXxCxCorapUgv56fHmgFAmWDomU4aLkfLk7X-6-D6FLlwRbHBDrVkAGPtWR9lNmoRIXGGpil5FTmEbu9qL2gD4O2bA2CwNtlbCHtgVQRO6r4eOGYnTVEnfl4oyzHAIlkdCdKECQi1W0xkQUA4sBCXo_my4c5cS2IOKDTDXF89dtFuLTAnppLe7cbyNVPXHRbvLemmWypea_wByXe6UdtFWmpd5NYUe7aMWM9tBmDaxwH10_Q91-CgCs3th6LwVe9dvcaG8y_vh6NdpdenkX-6eX9ylCzMzN-gAN7u_6t22_ZF7wVch45hNjWMq1C2-pVAJ-nlkltCYych5AKRYLYyVjikuKTSqtskRLwjllbndJtSCHqDEaj8wR8rjBBLsj4DKgNExTzAMbGxxb59pExJqoVek7mRQAGwmucEtLpSSglKRUShOJ-qokWV7ZsAUNSUL-lT1eQvYCrbf73U7Seeg9naCNEHiAgcMIn6JGNp2ZM5ecZPI8t75vNkLWTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgSAgOvBHj2QPXjqZJupQbAqbxmnZgEreqeQECbdPoJNivJ-4DbUhw2aGVenDVOk7sOJ8_A5y6INiSgFo3AjLwmY60n3KLmbjAMNN0ETnDauSHTtTusdsnXqEJP0pYJe6hbUEUka_VOLmH2laIuDPnZpzhUMyIhO7GkIE8XoSlCMnDsYoj6PzsuUiU97VFER9lqiKev14z455myEun3E5rHWT1wQXa5K0xzmRDTX5xOc71RxuwVgal3kVhRZuwYPpbsDpFVbgN513M2o-QftUbWO-5YKt-nRjtDQfvXy9Gu0cvx7B_ejlKET1mbtQ70GtdP162_bLvgq9CLjKfGsNToZ1zS6WK8ejMqlhrKiM3_5XizdhYybkSkhGTSqss1ZIKwbjbWzId012o9Qd9sweeMIQSdwVCBoyFaUpEYJuGNK1b2OKI16FRqTsZFvQaCalYS0ulJKiUpFRKHeLpQUmyPK9hiyYkCf1Xdn8O2RNY7l61kvubzt0BrITYBBgbGJFDqGWjsTlykUkmj3Pb-watYNTy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+generalized+polyhedral+convex+multifunctions&rft.jtitle=Optimization&rft.au=Luan%2C+Nguyen+Ngoc&rft.au=Nam%2C+Nguyen+Mau&rft.au=Yen%2C+Nguyen+Dong&rft.date=2025-06-11&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=74&rft.issue=8&rft.spage=1763&rft.epage=1791&rft_id=info:doi/10.1080%2F02331934.2024.2420679&rft.externalDocID=2420679 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |