ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation

Large-scale data is of crucial importance for learning semantic segmentation models, but annotating per-pixel masks is a tedious and inefficient procedure. We note that for the topic of interactive image segmentation, scribbles are very widely used in academic research and commercial software, and a...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3159 - 3167
Main Authors Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, Jian Sun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large-scale data is of crucial importance for learning semantic segmentation models, but annotating per-pixel masks is a tedious and inefficient procedure. We note that for the topic of interactive image segmentation, scribbles are very widely used in academic research and commercial software, and are recognized as one of the most userfriendly ways of interacting. In this paper, we propose to use scribbles to annotate images, and develop an algorithm to train convolutional networks for semantic segmentation supervised by scribbles. Our algorithm is based on a graphical model that jointly propagates information from scribbles to unmarked pixels and learns network parameters. We present competitive object semantic segmentation results on the PASCAL VOC dataset by using scribbles as annotations. Scribbles are also favored for annotating stuff (e.g., water, sky, grass) that has no well-defined shape, and our method shows excellent results on the PASCALCONTEXT dataset thanks to extra inexpensive scribble annotations. Our scribble annotations on PASCAL VOC are available at http://research.microsoft.com/en-us/um/ people/jifdai/downloads/scribble_sup.
AbstractList Large-scale data is of crucial importance for learning semantic segmentation models, but annotating per-pixel masks is a tedious and inefficient procedure. We note that for the topic of interactive image segmentation, scribbles are very widely used in academic research and commercial software, and are recognized as one of the most userfriendly ways of interacting. In this paper, we propose to use scribbles to annotate images, and develop an algorithm to train convolutional networks for semantic segmentation supervised by scribbles. Our algorithm is based on a graphical model that jointly propagates information from scribbles to unmarked pixels and learns network parameters. We present competitive object semantic segmentation results on the PASCAL VOC dataset by using scribbles as annotations. Scribbles are also favored for annotating stuff (e.g., water, sky, grass) that has no well-defined shape, and our method shows excellent results on the PASCALCONTEXT dataset thanks to extra inexpensive scribble annotations. Our scribble annotations on PASCAL VOC are available at http://research.microsoft.com/en-us/um/ people/jifdai/downloads/scribble_sup.
Author Jian Sun
Jifeng Dai
Kaiming He
Jiaya Jia
Di Lin
Author_xml – sequence: 1
  surname: Di Lin
  fullname: Di Lin
– sequence: 2
  surname: Jifeng Dai
  fullname: Jifeng Dai
– sequence: 3
  surname: Jiaya Jia
  fullname: Jiaya Jia
– sequence: 4
  surname: Kaiming He
  fullname: Kaiming He
– sequence: 5
  surname: Jian Sun
  fullname: Jian Sun
BookMark eNo1jFtLw0AUhFdRsNY8-uRL_kDiObvZm28SvEHxluJr2U1OJJpmS5JW_PemqAzDzAfDnLKjLnTE2DlCigj2Mn97fk05oEpFlh2wyGqDmdLCGIl4yGYISiTKoj1h0TB8AABaZdDYGXspyr7xvqViu7mK_yGZiPpdM1AV56HbhXY7NqFzbfxI41foP4e4Dn1c0Np1Y1NO5X1N3ej2ozN2XLt2oOgv52x5e7PM75PF091Dfr1ISi7NmIhS-ApAIzk0niudVWUFGlRW7S2l9NaB9vUkLqlCAaAcr0vNPUgu5uzi97YhotWmb9au_15pbaZLIX4A1YtR0w
CODEN IEEPAD
CitedBy_id crossref_primary_10_1016_j_ipm_2021_102680
crossref_primary_10_1016_j_media_2023_102937
crossref_primary_10_1007_s11042_024_18133_y
crossref_primary_10_1007_s11263_023_01862_2
crossref_primary_10_1016_j_inffus_2024_102355
crossref_primary_10_1016_j_media_2023_102934
crossref_primary_10_1109_TGRS_2021_3059088
crossref_primary_10_3390_electronics12122730
crossref_primary_10_1007_s11432_020_3065_4
crossref_primary_10_1109_TNNLS_2022_3144194
crossref_primary_10_1109_TCSVT_2021_3096814
crossref_primary_10_1016_j_media_2024_103183
crossref_primary_10_1109_TIP_2021_3132834
crossref_primary_10_1109_TMI_2021_3069634
crossref_primary_10_1109_TMM_2022_3152388
crossref_primary_10_1109_TPAMI_2022_3174529
crossref_primary_10_1007_s11263_020_01293_3
crossref_primary_10_1109_TIP_2023_3301342
crossref_primary_10_1109_ACCESS_2020_3041416
crossref_primary_10_1007_s00521_023_08816_2
crossref_primary_10_1016_j_patrec_2024_04_006
crossref_primary_10_1109_TIP_2019_2930874
crossref_primary_10_1109_JBHI_2020_3024262
crossref_primary_10_1109_TPAMI_2019_2958083
crossref_primary_10_1049_cje_2021_08_007
crossref_primary_10_1109_TPAMI_2021_3100536
crossref_primary_10_1002_lom3_10483
crossref_primary_10_1007_s11063_023_11408_9
crossref_primary_10_1007_s11548_019_02003_2
crossref_primary_10_1109_ACCESS_2023_3344098
crossref_primary_10_1007_s10489_023_04937_2
crossref_primary_10_1109_ACCESS_2022_3149587
crossref_primary_10_1016_j_neucom_2023_03_031
crossref_primary_10_1109_ACCESS_2022_3220679
crossref_primary_10_1109_TNNLS_2022_3145962
crossref_primary_10_3390_rs12193169
crossref_primary_10_1109_TIP_2021_3054464
crossref_primary_10_3390_rs15040986
crossref_primary_10_1109_TIM_2024_3400353
crossref_primary_10_1007_s11548_022_02730_z
crossref_primary_10_1109_TMM_2021_3139459
crossref_primary_10_1109_TIP_2022_3148814
crossref_primary_10_1049_ipr2_13049
crossref_primary_10_1109_TMI_2022_3149168
crossref_primary_10_1109_TBME_2022_3232102
crossref_primary_10_1109_TITS_2019_2919741
crossref_primary_10_5194_essd_13_1829_2021
crossref_primary_10_1016_j_neucom_2023_126821
crossref_primary_10_1109_TPAMI_2022_3168530
crossref_primary_10_1007_s00521_022_07654_y
crossref_primary_10_1109_TIP_2017_2695883
crossref_primary_10_1007_s00521_020_05669_x
crossref_primary_10_1016_j_engappai_2024_108059
crossref_primary_10_1109_TIP_2021_3062726
crossref_primary_10_1007_s41064_022_00194_z
crossref_primary_10_1109_TGRS_2021_3095832
crossref_primary_10_1109_TMI_2023_3312988
crossref_primary_10_1109_TGRS_2019_2926434
crossref_primary_10_1109_TPAMI_2023_3301302
crossref_primary_10_1109_TCSVT_2019_2962073
crossref_primary_10_1109_TPAMI_2023_3265865
crossref_primary_10_1109_TPAMI_2024_3350450
crossref_primary_10_1007_s12559_024_10277_1
crossref_primary_10_1088_1361_6560_abde98
crossref_primary_10_1016_j_neucom_2020_09_045
crossref_primary_10_1109_JBHI_2022_3186882
crossref_primary_10_1007_s00521_023_08250_4
crossref_primary_10_1109_TCYB_2020_2992433
crossref_primary_10_1109_TMI_2022_3233405
crossref_primary_10_1016_j_rse_2024_114101
crossref_primary_10_23919_cje_2021_00_230
crossref_primary_10_1016_j_eswa_2023_122110
crossref_primary_10_1109_TMM_2020_2991592
crossref_primary_10_1016_j_cviu_2023_103810
crossref_primary_10_1109_TPAMI_2022_3200416
crossref_primary_10_1109_ACCESS_2021_3076074
crossref_primary_10_1631_FITEE_2200299
crossref_primary_10_1007_s00521_023_08826_0
crossref_primary_10_3390_app10051679
crossref_primary_10_1109_TMM_2022_3157481
crossref_primary_10_1016_j_conbuildmat_2020_120291
crossref_primary_10_1109_TMM_2022_3162951
crossref_primary_10_1109_ACCESS_2021_3077847
crossref_primary_10_1007_s00521_022_07915_w
crossref_primary_10_1109_JSTARS_2021_3137450
crossref_primary_10_3390_rs15204987
crossref_primary_10_1007_s11063_022_10902_w
crossref_primary_10_1109_TPAMI_2021_3133954
crossref_primary_10_1109_TMI_2024_3363190
crossref_primary_10_1109_ACCESS_2018_2842202
crossref_primary_10_1007_s11063_021_10733_1
crossref_primary_10_1007_s00371_022_02569_0
crossref_primary_10_3390_asi6050088
crossref_primary_10_1016_j_jvcir_2024_104168
crossref_primary_10_3390_electronics11244068
crossref_primary_10_1109_TMM_2018_2890360
crossref_primary_10_1002_mp_15923
crossref_primary_10_1109_TGRS_2024_3390756
crossref_primary_10_1109_TNNLS_2021_3066850
crossref_primary_10_1109_ACCESS_2019_2899109
crossref_primary_10_1109_TPAMI_2021_3132058
crossref_primary_10_1109_TIP_2020_2995056
crossref_primary_10_3390_electronics12173732
crossref_primary_10_1007_s00170_022_08929_3
crossref_primary_10_1049_ipr2_12898
crossref_primary_10_1109_TIM_2020_3001796
crossref_primary_10_1109_JSTARS_2021_3070368
crossref_primary_10_1109_LGRS_2022_3153607
crossref_primary_10_1016_j_compmedimag_2022_102091
crossref_primary_10_1186_s10033_021_00602_2
crossref_primary_10_1109_TNNLS_2021_3081693
crossref_primary_10_1109_TPAMI_2023_3326693
crossref_primary_10_1016_j_jvcir_2023_103800
crossref_primary_10_1109_TMI_2023_3245068
crossref_primary_10_1007_s11263_022_01590_z
crossref_primary_10_1109_TGRS_2023_3323926
crossref_primary_10_1109_TIP_2024_3359041
crossref_primary_10_1016_j_jksuci_2024_102012
crossref_primary_10_1109_TPAMI_2022_3193587
crossref_primary_10_1109_TNNLS_2022_3174031
crossref_primary_10_1016_j_eswa_2023_122024
crossref_primary_10_1109_JBHI_2023_3268157
crossref_primary_10_1109_ACCESS_2019_2917152
crossref_primary_10_1109_TIM_2023_3244236
crossref_primary_10_1109_TPAMI_2019_2923513
crossref_primary_10_1109_ACCESS_2020_2966647
crossref_primary_10_1109_TMI_2021_3123461
crossref_primary_10_1016_j_neucom_2021_02_093
crossref_primary_10_1109_ACCESS_2019_2953465
crossref_primary_10_1016_j_cviu_2020_103040
crossref_primary_10_1117_1_JEI_26_6_061606
crossref_primary_10_3390_rs13030394
crossref_primary_10_1109_ACCESS_2020_2969480
crossref_primary_10_1007_s11263_022_01586_9
crossref_primary_10_1109_TMM_2023_3267891
crossref_primary_10_1109_TIP_2019_2901393
crossref_primary_10_1109_TPAMI_2019_2960224
crossref_primary_10_3390_electronics12224682
crossref_primary_10_1016_j_cviu_2023_103815
crossref_primary_10_1109_ACCESS_2019_2908216
crossref_primary_10_1109_TGRS_2023_3321637
crossref_primary_10_1109_TMI_2020_3002244
crossref_primary_10_1007_s13349_024_00778_w
crossref_primary_10_1080_08839514_2022_2032924
crossref_primary_10_1016_j_imavis_2023_104738
crossref_primary_10_1109_TGRS_2018_2871504
crossref_primary_10_1021_acs_analchem_2c01456
crossref_primary_10_1109_ACCESS_2020_2989331
crossref_primary_10_1109_TCSVT_2023_3336323
crossref_primary_10_1145_3589343
crossref_primary_10_12677_csa_2024_145126
crossref_primary_10_1109_ACCESS_2021_3062380
crossref_primary_10_1109_LRA_2023_3234799
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_1109_TIP_2020_3011269
crossref_primary_10_1016_j_cviu_2021_103209
crossref_primary_10_1007_s10462_019_09792_7
crossref_primary_10_1109_TIP_2023_3275913
crossref_primary_10_1007_s10278_023_00931_9
crossref_primary_10_1109_JBHI_2020_3008759
crossref_primary_10_1002_cav_2023
crossref_primary_10_1109_TGRS_2020_2964675
crossref_primary_10_1109_TIP_2021_3087401
crossref_primary_10_1109_TCSVT_2023_3241641
crossref_primary_10_1109_JAS_2021_1004210
crossref_primary_10_3390_electronics13010142
crossref_primary_10_1109_TNNLS_2022_3155486
crossref_primary_10_1109_TPAMI_2023_3246102
crossref_primary_10_1007_s11042_020_08925_3
crossref_primary_10_1109_TMI_2023_3294824
crossref_primary_10_1109_TPAMI_2021_3092573
crossref_primary_10_1109_TIP_2020_3018221
crossref_primary_10_1016_j_isprsjprs_2022_07_014
crossref_primary_10_1109_TMM_2021_3061816
crossref_primary_10_11834_jig_230605
crossref_primary_10_1016_j_compmedimag_2022_102174
crossref_primary_10_1109_TMI_2018_2791721
crossref_primary_10_1007_s41745_019_0099_3
crossref_primary_10_1109_TIP_2022_3190709
crossref_primary_10_1007_s11042_023_17888_0
crossref_primary_10_1109_JSTSP_2021_3049634
crossref_primary_10_1145_3237188
crossref_primary_10_1109_TGRS_2023_3314465
crossref_primary_10_1109_TMM_2020_3021979
crossref_primary_10_1007_s10044_024_01251_6
crossref_primary_10_1109_ACCESS_2020_2975022
crossref_primary_10_1016_j_jag_2023_103499
crossref_primary_10_1109_TIV_2019_2955851
crossref_primary_10_1109_TMI_2023_3235757
crossref_primary_10_1007_s10489_022_04085_z
crossref_primary_10_1016_j_knosys_2021_107033
crossref_primary_10_1016_j_cag_2023_05_009
crossref_primary_10_1109_TMI_2020_3046292
crossref_primary_10_1007_s00138_024_01562_y
crossref_primary_10_1016_j_compbiomed_2023_107913
crossref_primary_10_1109_TGRS_2021_3061213
crossref_primary_10_1016_j_neunet_2020_07_011
crossref_primary_10_1109_TIP_2021_3134142
crossref_primary_10_1109_LSP_2023_3343945
crossref_primary_10_1109_MSP_2017_2742558
crossref_primary_10_1109_TGRS_2022_3224477
crossref_primary_10_1016_j_patcog_2023_109861
crossref_primary_10_1109_TPAMI_2018_2840695
crossref_primary_10_1016_j_engappai_2023_106961
crossref_primary_10_1016_j_inffus_2024_102311
crossref_primary_10_11834_jig_230628
crossref_primary_10_3390_rs10121970
crossref_primary_10_1109_TCSVT_2023_3263468
crossref_primary_10_1109_TIP_2019_2926748
crossref_primary_10_1109_ACCESS_2018_2874544
crossref_primary_10_1109_TCSVT_2020_3040343
crossref_primary_10_3233_JIFS_210569
crossref_primary_10_1007_s00138_023_01407_0
crossref_primary_10_3390_bioengineering10010116
crossref_primary_10_1109_TIP_2022_3141878
crossref_primary_10_1109_TPAMI_2022_3169881
crossref_primary_10_1109_TGRS_2020_3011913
crossref_primary_10_1007_s11042_023_15305_0
crossref_primary_10_1109_JSTARS_2023_3279863
crossref_primary_10_1109_TMM_2023_3270637
crossref_primary_10_1002_rob_22049
crossref_primary_10_1109_TPAMI_2021_3131120
crossref_primary_10_1016_j_engappai_2023_106299
crossref_primary_10_1016_j_bspc_2023_105158
crossref_primary_10_1109_TITS_2022_3141107
crossref_primary_10_1109_TPAMI_2020_3023152
crossref_primary_10_11834_jig_221121
crossref_primary_10_1016_j_jvcir_2023_103856
crossref_primary_10_1109_TCYB_2018_2885062
crossref_primary_10_1007_s11042_017_5546_4
crossref_primary_10_1007_s11432_021_3429_1
crossref_primary_10_1109_TMI_2023_3269523
crossref_primary_10_1007_s11263_020_01373_4
crossref_primary_10_1061_JCCEE5_CPENG_5065
crossref_primary_10_1007_s11263_023_01796_9
crossref_primary_10_3390_ijgi8110478
crossref_primary_10_1007_s11263_023_01807_9
crossref_primary_10_1109_TMM_2021_3126430
crossref_primary_10_1007_s11042_023_16597_y
crossref_primary_10_1109_TPAMI_2020_2964205
crossref_primary_10_1016_j_jag_2023_103345
crossref_primary_10_1109_TMM_2019_2914870
crossref_primary_10_1109_TPAMI_2021_3083269
crossref_primary_10_1142_S0218001421540264
crossref_primary_10_1109_TIP_2022_3158064
crossref_primary_10_1109_TII_2020_2982995
crossref_primary_10_1109_TMI_2023_3269798
crossref_primary_10_1016_j_neucom_2024_127834
crossref_primary_10_1109_TITS_2021_3076844
crossref_primary_10_1007_s00607_021_00907_z
crossref_primary_10_1016_j_isprsjprs_2023_01_021
crossref_primary_10_1109_TPAMI_2022_3227116
crossref_primary_10_1134_S105466181901005X
crossref_primary_10_1016_j_engappai_2021_104172
crossref_primary_10_1109_TIP_2022_3215905
crossref_primary_10_3390_s23249846
crossref_primary_10_1109_TIP_2017_2740620
crossref_primary_10_1109_ACCESS_2024_3350176
crossref_primary_10_1016_j_isprsjprs_2022_04_012
crossref_primary_10_1109_TMM_2023_3321393
crossref_primary_10_1016_j_neunet_2023_10_009
crossref_primary_10_1109_LRA_2024_3396095
crossref_primary_10_1007_s11704_022_2468_8
crossref_primary_10_1109_TR_2022_3162346
crossref_primary_10_1109_JSTARS_2022_3144176
crossref_primary_10_1109_TIP_2022_3160399
crossref_primary_10_1007_s00521_023_09073_z
crossref_primary_10_3390_sym14112396
crossref_primary_10_3390_rs12061049
crossref_primary_10_3390_rs11171986
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.344
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 3167
ExternalDocumentID 7780713
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
G8K
IPLJI
JC5
M43
RIE
RIG
RIO
RNS
ID FETCH-LOGICAL-c258t-3c3bd0071ea18b2674dcd07064d064d555b9a07bfbfb25ed13006a2fc72b0523
IEDL.DBID RIE
IngestDate Wed Jun 26 19:26:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c258t-3c3bd0071ea18b2674dcd07064d064d555b9a07bfbfb25ed13006a2fc72b0523
OpenAccessLink http://arxiv.org/pdf/1604.05144
PageCount 9
ParticipantIDs ieee_primary_7780713
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
Score 2.621568
Snippet Large-scale data is of crucial importance for learning semantic segmentation models, but annotating per-pixel masks is a tedious and inefficient procedure. We...
SourceID ieee
SourceType Publisher
StartPage 3159
SubjectTerms Cows
Graphical models
Histograms
Image segmentation
Labeling
Semantics
Training
Title ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation
URI https://ieeexplore.ieee.org/document/7780713
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0-oYHynB4-2QLuP1iuREBMIChpuZF81RihEWg_-enf6gGg8mKbJ7iSbbna6M7Oz38wA3PSojkkshSuo0C4RxriSYNJPwpTuaU6ERIf-aMyGz-RhTuc1uN3FwhhjcvCZ8bCZ3-XrtcrQVdbhPMRDVR3qPGJFrNbenxIxq3ui3WELq6_sc2p2-i-TJwRyMS8g5EcllVyRDJowqqZQ4EfevSyVnvr6lZ3xv3M8hPY-ZM-Z7JTREdRMcgzN0sZ0yh28taSqjENFa8Hj1EoOKZdmmm3unKrj2h7Kka0dbr_xWf6iYumMC-T41rH2rjM1K8ubN2Ubr6syjilpw2xwP-sP3bLSgqt8GqZuoAKp0dowohdKn3GilbbCgBGNL6VURqLLZWwfnxqNd2BM-LHivkS_8gk0knViTsFhLNJEdIOYCEGUtb0CgTBaKn2OkSjxGbRwzRabIpfGolyu87_JF3CAPCugWZfQSD8yc2WNgFRe59z_Bs8usno
link.rule.ids 309,310,780,784,789,790,796,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOgJFYzf7uDRDdjajnklElQgKGi4kX7NGGEQ2Tz419u3D4jGg1matC9Z1rTd66-vv_cewFWTqpCEgtuccmUTrrUtCAb9JEyqpvIJF2jQ7w9Y95ncT-ikBNdrXxitdUo-0w5W07t8tZAJmsrqvt_CQ9UWbFNicG7mrbWxqATM7D7B-riF-Vc2UTXr7ZfhE1K5mOMR8iOXSrqVdCrQLzqRMUjenSQWjvz6FZ_xv73cg9rGac8arrejfSjp6AAqOcq08n94ZURFIodCVoXHkdEdQsz0KFneWEXDNi3UJCvzuvnGZ75I-cwaZNzxlWUQrzXSczM7b9JUXue5J1NUg3Hndtzu2nmuBVu6tBXbnvSEQryhebMlXOYTJZVRB4woLJRSEfCGL0LzuFQrvAVj3A2l7wq0LB9COVpE-ggsxgJFeMMLCedEGvTlcSTSUuH66IsSHkMVx2y6zKJpTPPhOvlbfAk73XG_N-3dDR5OYRfnLyNqnUE5_kj0uYEEsbhIV8I3YnO1zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=ScribbleSup%3A+Scribble-Supervised+Convolutional+Networks+for+Semantic+Segmentation&rft.au=Di+Lin&rft.au=Jifeng+Dai&rft.au=Jiaya+Jia&rft.au=Kaiming+He&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3159&rft.epage=3167&rft_id=info:doi/10.1109%2FCVPR.2016.344&rft.externalDocID=7780713