Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model

In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions,...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 34; no. 3; pp. 1169 - 1187
Main Authors Li, Rui, Li, Tao, Su, Huacheng, You, Jinhong
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online.
AbstractList In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online.
Author Su, Huacheng
You, Jinhong
Li, Tao
Li, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  organization: School of Statistics and Information, Shanghai University of International Business and Economics
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-7261-3952
  surname: Li
  fullname: Li, Tao
  organization: School of Statistics and Data Science, Shanghai University of Finance and Economics
– sequence: 3
  givenname: Huacheng
  surname: Su
  fullname: Su, Huacheng
  organization: School of Statistics and Data Science, Shanghai University of Finance and Economics
– sequence: 4
  givenname: Jinhong
  surname: You
  fullname: You, Jinhong
  organization: School of Statistics and Data Science, Shanghai University of Finance and Economics
BookMark eNp9kMtqwzAQRUVJoUnaTyjoB5xKsuXHriV9JJDSN12KkTUKKrYUZJeSv69N0m1Xc2HOvYszIxMfPBJyydmCs5JdcZbzMmdsIZjIFiJL07wQJ2TKZVokouByMuSBSUbojMy67osxxvOqmJLPl2_wvWuQvuI2Yte54Cl4Q1ehDVv06Po9XRscGOtq6Md3sBToG7ZuBxFa7KOr6TN4bOgt9EAfg8HmnJxaaDq8ON45-bi_e1-uks3Tw3p5s0lqIcs-4caKSpeQCV2XospMJUWdSgsaMq3RsMLmzHBpsOCZrrjISoQ6SyvEqpRap3MiD7t1DF0X0apddC3EveJMjXbUnx012lFHO0Pv-tBz3obYwk-IjVE97JsQbQRfu06l_0_8AlXobsg
Cites_doi 10.1016/j.jeconom.2019.04.006
10.1080/10485252.2016.1191632
10.1093/ectj/utz008
10.1111/j.1541-0420.2007.00843.x
10.1007/978-1-4612-6333-3_9
10.1198/016214508000000788
10.1198/016214501753382273
10.1039/c2cs35095e
10.1016/j.jeconom.2017.11.003
10.1016/j.apr.2023.101665
10.1016/j.spl.2013.03.005
10.1214/14-AOS1245
10.1111/sjos.12067
10.1080/07350015.2017.1340299
10.1016/j.envpol.2020.115775
10.1080/07474938.2012.690687
10.1016/j.jeconom.2019.05.018
10.1214/aoms/1177729437
10.1214/aoms/1177730256
10.5705/ss.202018.0248
10.1080/07350015.2013.775093
10.1080/01621459.2014.892882
10.1137/1.9781611973907
10.1016/j.atmosres.2019.06.001
10.1080/03610926.2020.1804589
10.5705/ss.202020.0170
10.1016/j.atmosenv.2022.119159
10.1080/03461238.1928.10416862
10.1080/07350015.2019.1665531
10.1016/j.jeconom.2014.08.001
10.1029/2020JD032423
10.1016/j.jeconom.2022.04.012
10.1016/j.jeconom.2020.04.003
10.1142/S2010326321500052
10.1016/j.csda.2007.04.008
10.5705/ss.202019.0467
ContentType Journal Article
Copyright 2025 American Statistical Association and Institute of Mathematical Statistics 2025
Copyright_xml – notice: 2025 American Statistical Association and Institute of Mathematical Statistics 2025
DBID AAYXX
CITATION
DOI 10.1080/10618600.2024.2433672
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 1187
ExternalDocumentID 10_1080_10618600_2024_2433672
2433672
Genre Research Article
GrantInformation_xml – fundername: Humanities and Social Sciences Fund of Ministry of Education
  grantid: 21YJA910001
– fundername: National Natural Science Foundation of China
  grantid: 11971291
– fundername: Humanities and Social Sciences Fund of Ministry of Education
  grantid: 23YJA910003
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c258t-1df29b8a42bc8294d952c35faba4bbed07f60d15de714b91248eac439ee985bb3
ISSN 1061-8600
IngestDate Wed Aug 27 16:22:10 EDT 2025
Tue Aug 26 04:10:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-1df29b8a42bc8294d952c35faba4bbed07f60d15de714b91248eac439ee985bb3
ORCID 0000-0002-7261-3952
PageCount 19
ParticipantIDs informaworld_taylorfrancis_310_1080_10618600_2024_2433672
crossref_primary_10_1080_10618600_2024_2433672
PublicationCentury 2000
PublicationDate 7/3/2025
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 7/3/2025
  day: 03
PublicationDecade 2020
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
Kolmogorov A. N. (e_1_3_4_18_1) 1933; 4
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_19_1
Mises R. v. (e_1_3_4_28_1) 2013
References_xml – ident: e_1_3_4_15_1
  doi: 10.1016/j.jeconom.2019.04.006
– ident: e_1_3_4_22_1
  doi: 10.1080/10485252.2016.1191632
– volume: 4
  start-page: 89
  year: 1933
  ident: e_1_3_4_18_1
  article-title: “Sulla determinazione empirica di una legge didistribuzione,”
  publication-title: Giorn Dell’inst Ital Degli Att
– ident: e_1_3_4_4_1
  doi: 10.1093/ectj/utz008
– ident: e_1_3_4_3_1
  doi: 10.1111/j.1541-0420.2007.00843.x
– ident: e_1_3_4_9_1
  doi: 10.1007/978-1-4612-6333-3_9
– ident: e_1_3_4_33_1
  doi: 10.1198/016214508000000788
– ident: e_1_3_4_10_1
  doi: 10.1198/016214501753382273
– ident: e_1_3_4_13_1
  doi: 10.1039/c2cs35095e
– ident: e_1_3_4_7_1
  doi: 10.1016/j.jeconom.2017.11.003
– ident: e_1_3_4_24_1
  doi: 10.1016/j.apr.2023.101665
– volume-title: Wahrscheinlichkeit Statistik und Wahrheit
  year: 2013
  ident: e_1_3_4_28_1
– ident: e_1_3_4_19_1
  doi: 10.1016/j.spl.2013.03.005
– ident: e_1_3_4_14_1
  doi: 10.1214/14-AOS1245
– ident: e_1_3_4_39_1
  doi: 10.1111/sjos.12067
– ident: e_1_3_4_31_1
  doi: 10.1080/07350015.2017.1340299
– ident: e_1_3_4_27_1
  doi: 10.1016/j.envpol.2020.115775
– ident: e_1_3_4_6_1
  doi: 10.1080/07474938.2012.690687
– ident: e_1_3_4_11_1
  doi: 10.1016/j.jeconom.2019.05.018
– ident: e_1_3_4_2_1
  doi: 10.1214/aoms/1177729437
– ident: e_1_3_4_30_1
  doi: 10.1214/aoms/1177730256
– ident: e_1_3_4_12_1
  doi: 10.5705/ss.202018.0248
– ident: e_1_3_4_5_1
  doi: 10.1080/07350015.2013.775093
– ident: e_1_3_4_17_1
  doi: 10.1080/01621459.2014.892882
– ident: e_1_3_4_29_1
  doi: 10.1137/1.9781611973907
– ident: e_1_3_4_23_1
  doi: 10.1016/j.atmosres.2019.06.001
– ident: e_1_3_4_34_1
  doi: 10.1080/03610926.2020.1804589
– ident: e_1_3_4_25_1
  doi: 10.5705/ss.202020.0170
– ident: e_1_3_4_26_1
  doi: 10.1016/j.atmosenv.2022.119159
– ident: e_1_3_4_8_1
  doi: 10.1080/03461238.1928.10416862
– ident: e_1_3_4_21_1
  doi: 10.1080/07350015.2019.1665531
– ident: e_1_3_4_20_1
  doi: 10.1016/j.jeconom.2014.08.001
– ident: e_1_3_4_37_1
  doi: 10.1029/2020JD032423
– ident: e_1_3_4_32_1
  doi: 10.1016/j.jeconom.2022.04.012
– ident: e_1_3_4_35_1
  doi: 10.1016/j.jeconom.2020.04.003
– ident: e_1_3_4_38_1
  doi: 10.1142/S2010326321500052
– ident: e_1_3_4_36_1
  doi: 10.1016/j.csda.2007.04.008
– ident: e_1_3_4_16_1
  doi: 10.5705/ss.202019.0467
SSID ssj0001697
Score 2.4191835
Snippet In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 1169
SubjectTerms Binary segmentation
Panel data
Quantile regression
Trend function
Varying index coefficient model
Title Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2024.2433672
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOCBYQy0s-cE2JX6lzRAhUIe1KsF2xt8h2bKhEEwTJhX_Av2b8SJpAQTwuUeXKcTTzZeazMw-Enhrnq1Q6kpUWEMyBIGcK9kG-mzuhpC5Ybv2B_tl5sb7kr6_E1WLxbRK11Hd6ab4ezCv5F63CGOjVZ8n-hWbHm8IA_Ab9whU0DNc_0vGbHuQCrzUI6X2MZ42hxet218Ik6xl2zMR16WgupkNe2N3W1_ze-XZaBlhkY8H4qU6F1mgff0FYTWgAMRwe-nVCteuYV-nHQ8nnMcInhAm87bfzgY1q99-hgt_rfUnp5D-j-QnI2jYf2jSaDiWoCAGsbITR5qf-IBMTCwwik0Uev8bYweyuMrqKiZ2DXU6HnNvptj0YWUJid5fksH3D9IPOIEZP-vX8ckt4Tr6knLEiNgv6oc52-ucauk5hx-FNJsvPR6dOUp-e4eGHZDCZPzu4wIzmzIrgTujL5ha6mdSIn0cQ3UYL25ygG2dj0d4vJ-j4YlTiHfRuwBbeYwuDzvEEW3iOLdw6rPAcWzhgC3ts4YCtu-jy1cvNi3WWmnBkhgrZZaR2tNRScaqNpCWvS0ENE05pxbW2db5yRV4TUdsV4boEuijBlwPNtbaUQmt2Dx01bWPvI2wYTDYGGGOtOctzJRi3QhqjXSlqSU7RcpBZ9SnWWqlIKmE7CLnyQq6SkE9ROZVs1QXYuYi4iv127oP_mPsQHe9B_wgddZ97-xi4aaefBNR8B0dWiWY
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO2LHB64p8ZbGR8SisrRiFdwi27ERgqYI0gtfz0yToIIEFz5gstjj8ZvRzHuE7LmALJWBRdqDB0sAyJGBPAjV3BlneSJijwX9bi_p3MmzB_UwNguDbZWYQ4eKKGIUq_FwYzG6aYnbxzQmhZsa0jsuW1wKkbQhDE8pnbTR10Xc-4rGrBZYAZMIbZopnt8e8-1--sZeOnbvnMwT13xx1W7y3BqWtuU-fpA5_u-XFshcDUvpQeVHi2TCF0tktvvF6fq-RGYQl1a0zsvk_moIWwIRhV77x6qVtqDwdtoZ9Afgkx7APa2GgENdFaSDQA298f0npBvvo5KXo5em8C_0yJSGoirbywq5Ozm-PexEtUZD5LhKy4jlgWubGsmtS7mWuVbcCRWMNdJan8ftkMQ5U7lvM2k1oIkUQj2gIO91qqwVq2SyGBR-jVAnwNg5ABS5lSKOjRLSq9Q5G7TKU7ZOWs3OZK8VFUfGaobTZvkyXL6sXr51osf3LytHNZBQCZZk4k_bjX_Y7pLpzm33Irs47Z1vkhmOisFYEBZbZLJ8G_ptgDGl3Rn56Sd0GeRY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSKgcWAqIsvrANSXe0uSIgKpsVdkEt8grQrRJBemFr2fcJIgiwYUPmCz2ePxmNPMeQofaeZZKR4LEggdzAMiBhDzIq7kTSkzEQusL-tf9qPfAL55E3U34XrVV-hzalUQR01jtD_fYuLoj7shnMTFc1JDdUd6mnLGoA1F4IfKDln6KI-x_BWNS6auASeBt6iGe3x4zcz3NkJd-u3a6K0jVH1x2m7y2J4Vq648fXI7_-qNVtFyBUnxcetEamrNZEy1dfzG6vjdRw6PSktR5HT3eTGBDIJ7gW_tcNtJmGF6Oe_koB4-0AO1xOQLsqpogzh2W-M6OXjzZ-MjreGk8kJkd4lNZSOw12YYb6KF7dn_SCyqFhkBTERcBMY4mKpacKh3ThJtEUM2Ek0pypawJOy4KDRHGdghXCWCJGAI9YCBrk1goxTbRfJZndgthzcBYa4ATRnEWhlIwbkWstXKJMDFpoXa9Mem4JOJIScVvWi9f6pcvrZavhZLv25cW0wqIK-VKUvan7fY_bA_Q4uC0m16d9y93UIN6uWBfDWa7aL54m9g9wDCF2p966Se0J-L8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantile+Regression+and+Homogeneity+Identification+of+a+Semiparametric+Panel+Data+Model&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Li%2C+Rui&rft.au=Li%2C+Tao&rft.au=Su%2C+Huacheng&rft.au=You%2C+Jinhong&rft.date=2025-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=34&rft.issue=3&rft.spage=1169&rft.epage=1187&rft_id=info:doi/10.1080%2F10618600.2024.2433672&rft.externalDocID=2433672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon