Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions,...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 34; no. 3; pp. 1169 - 1187 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
03.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online. |
---|---|
AbstractList | In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online. |
Author | Su, Huacheng You, Jinhong Li, Tao Li, Rui |
Author_xml | – sequence: 1 givenname: Rui surname: Li fullname: Li, Rui organization: School of Statistics and Information, Shanghai University of International Business and Economics – sequence: 2 givenname: Tao orcidid: 0000-0002-7261-3952 surname: Li fullname: Li, Tao organization: School of Statistics and Data Science, Shanghai University of Finance and Economics – sequence: 3 givenname: Huacheng surname: Su fullname: Su, Huacheng organization: School of Statistics and Data Science, Shanghai University of Finance and Economics – sequence: 4 givenname: Jinhong surname: You fullname: You, Jinhong organization: School of Statistics and Data Science, Shanghai University of Finance and Economics |
BookMark | eNp9kMtqwzAQRUVJoUnaTyjoB5xKsuXHriV9JJDSN12KkTUKKrYUZJeSv69N0m1Xc2HOvYszIxMfPBJyydmCs5JdcZbzMmdsIZjIFiJL07wQJ2TKZVokouByMuSBSUbojMy67osxxvOqmJLPl2_wvWuQvuI2Yte54Cl4Q1ehDVv06Po9XRscGOtq6Md3sBToG7ZuBxFa7KOr6TN4bOgt9EAfg8HmnJxaaDq8ON45-bi_e1-uks3Tw3p5s0lqIcs-4caKSpeQCV2XospMJUWdSgsaMq3RsMLmzHBpsOCZrrjISoQ6SyvEqpRap3MiD7t1DF0X0apddC3EveJMjXbUnx012lFHO0Pv-tBz3obYwk-IjVE97JsQbQRfu06l_0_8AlXobsg |
Cites_doi | 10.1016/j.jeconom.2019.04.006 10.1080/10485252.2016.1191632 10.1093/ectj/utz008 10.1111/j.1541-0420.2007.00843.x 10.1007/978-1-4612-6333-3_9 10.1198/016214508000000788 10.1198/016214501753382273 10.1039/c2cs35095e 10.1016/j.jeconom.2017.11.003 10.1016/j.apr.2023.101665 10.1016/j.spl.2013.03.005 10.1214/14-AOS1245 10.1111/sjos.12067 10.1080/07350015.2017.1340299 10.1016/j.envpol.2020.115775 10.1080/07474938.2012.690687 10.1016/j.jeconom.2019.05.018 10.1214/aoms/1177729437 10.1214/aoms/1177730256 10.5705/ss.202018.0248 10.1080/07350015.2013.775093 10.1080/01621459.2014.892882 10.1137/1.9781611973907 10.1016/j.atmosres.2019.06.001 10.1080/03610926.2020.1804589 10.5705/ss.202020.0170 10.1016/j.atmosenv.2022.119159 10.1080/03461238.1928.10416862 10.1080/07350015.2019.1665531 10.1016/j.jeconom.2014.08.001 10.1029/2020JD032423 10.1016/j.jeconom.2022.04.012 10.1016/j.jeconom.2020.04.003 10.1142/S2010326321500052 10.1016/j.csda.2007.04.008 10.5705/ss.202019.0467 |
ContentType | Journal Article |
Copyright | 2025 American Statistical Association and Institute of Mathematical Statistics 2025 |
Copyright_xml | – notice: 2025 American Statistical Association and Institute of Mathematical Statistics 2025 |
DBID | AAYXX CITATION |
DOI | 10.1080/10618600.2024.2433672 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 1187 |
ExternalDocumentID | 10_1080_10618600_2024_2433672 2433672 |
Genre | Research Article |
GrantInformation_xml | – fundername: Humanities and Social Sciences Fund of Ministry of Education grantid: 21YJA910001 – fundername: National Natural Science Foundation of China grantid: 11971291 – fundername: Humanities and Social Sciences Fund of Ministry of Education grantid: 23YJA910003 |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CS3 D0L DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION |
ID | FETCH-LOGICAL-c258t-1df29b8a42bc8294d952c35faba4bbed07f60d15de714b91248eac439ee985bb3 |
ISSN | 1061-8600 |
IngestDate | Wed Aug 27 16:22:10 EDT 2025 Tue Aug 26 04:10:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c258t-1df29b8a42bc8294d952c35faba4bbed07f60d15de714b91248eac439ee985bb3 |
ORCID | 0000-0002-7261-3952 |
PageCount | 19 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10618600_2024_2433672 crossref_primary_10_1080_10618600_2024_2433672 |
PublicationCentury | 2000 |
PublicationDate | 7/3/2025 |
PublicationDateYYYYMMDD | 2025-07-03 |
PublicationDate_xml | – month: 07 year: 2025 text: 7/3/2025 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational and graphical statistics |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 Kolmogorov A. N. (e_1_3_4_18_1) 1933; 4 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_19_1 Mises R. v. (e_1_3_4_28_1) 2013 |
References_xml | – ident: e_1_3_4_15_1 doi: 10.1016/j.jeconom.2019.04.006 – ident: e_1_3_4_22_1 doi: 10.1080/10485252.2016.1191632 – volume: 4 start-page: 89 year: 1933 ident: e_1_3_4_18_1 article-title: “Sulla determinazione empirica di una legge didistribuzione,” publication-title: Giorn Dell’inst Ital Degli Att – ident: e_1_3_4_4_1 doi: 10.1093/ectj/utz008 – ident: e_1_3_4_3_1 doi: 10.1111/j.1541-0420.2007.00843.x – ident: e_1_3_4_9_1 doi: 10.1007/978-1-4612-6333-3_9 – ident: e_1_3_4_33_1 doi: 10.1198/016214508000000788 – ident: e_1_3_4_10_1 doi: 10.1198/016214501753382273 – ident: e_1_3_4_13_1 doi: 10.1039/c2cs35095e – ident: e_1_3_4_7_1 doi: 10.1016/j.jeconom.2017.11.003 – ident: e_1_3_4_24_1 doi: 10.1016/j.apr.2023.101665 – volume-title: Wahrscheinlichkeit Statistik und Wahrheit year: 2013 ident: e_1_3_4_28_1 – ident: e_1_3_4_19_1 doi: 10.1016/j.spl.2013.03.005 – ident: e_1_3_4_14_1 doi: 10.1214/14-AOS1245 – ident: e_1_3_4_39_1 doi: 10.1111/sjos.12067 – ident: e_1_3_4_31_1 doi: 10.1080/07350015.2017.1340299 – ident: e_1_3_4_27_1 doi: 10.1016/j.envpol.2020.115775 – ident: e_1_3_4_6_1 doi: 10.1080/07474938.2012.690687 – ident: e_1_3_4_11_1 doi: 10.1016/j.jeconom.2019.05.018 – ident: e_1_3_4_2_1 doi: 10.1214/aoms/1177729437 – ident: e_1_3_4_30_1 doi: 10.1214/aoms/1177730256 – ident: e_1_3_4_12_1 doi: 10.5705/ss.202018.0248 – ident: e_1_3_4_5_1 doi: 10.1080/07350015.2013.775093 – ident: e_1_3_4_17_1 doi: 10.1080/01621459.2014.892882 – ident: e_1_3_4_29_1 doi: 10.1137/1.9781611973907 – ident: e_1_3_4_23_1 doi: 10.1016/j.atmosres.2019.06.001 – ident: e_1_3_4_34_1 doi: 10.1080/03610926.2020.1804589 – ident: e_1_3_4_25_1 doi: 10.5705/ss.202020.0170 – ident: e_1_3_4_26_1 doi: 10.1016/j.atmosenv.2022.119159 – ident: e_1_3_4_8_1 doi: 10.1080/03461238.1928.10416862 – ident: e_1_3_4_21_1 doi: 10.1080/07350015.2019.1665531 – ident: e_1_3_4_20_1 doi: 10.1016/j.jeconom.2014.08.001 – ident: e_1_3_4_37_1 doi: 10.1029/2020JD032423 – ident: e_1_3_4_32_1 doi: 10.1016/j.jeconom.2022.04.012 – ident: e_1_3_4_35_1 doi: 10.1016/j.jeconom.2020.04.003 – ident: e_1_3_4_38_1 doi: 10.1142/S2010326321500052 – ident: e_1_3_4_36_1 doi: 10.1016/j.csda.2007.04.008 – ident: e_1_3_4_16_1 doi: 10.5705/ss.202019.0467 |
SSID | ssj0001697 |
Score | 2.4191835 |
Snippet | In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed... |
SourceID | crossref informaworld |
SourceType | Index Database Publisher |
StartPage | 1169 |
SubjectTerms | Binary segmentation Panel data Quantile regression Trend function Varying index coefficient model |
Title | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2024.2433672 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKclkOCBYQy0s-cE2JX6lzRAhUIe1KsF2xt8h2bKhEEwTJhX_Av2b8SJpAQTwuUeXKcTTzZeazMw-Enhrnq1Q6kpUWEMyBIGcK9kG-mzuhpC5Ybv2B_tl5sb7kr6_E1WLxbRK11Hd6ab4ezCv5F63CGOjVZ8n-hWbHm8IA_Ab9whU0DNc_0vGbHuQCrzUI6X2MZ42hxet218Ik6xl2zMR16WgupkNe2N3W1_ze-XZaBlhkY8H4qU6F1mgff0FYTWgAMRwe-nVCteuYV-nHQ8nnMcInhAm87bfzgY1q99-hgt_rfUnp5D-j-QnI2jYf2jSaDiWoCAGsbITR5qf-IBMTCwwik0Uev8bYweyuMrqKiZ2DXU6HnNvptj0YWUJid5fksH3D9IPOIEZP-vX8ckt4Tr6knLEiNgv6oc52-ucauk5hx-FNJsvPR6dOUp-e4eGHZDCZPzu4wIzmzIrgTujL5ha6mdSIn0cQ3UYL25ygG2dj0d4vJ-j4YlTiHfRuwBbeYwuDzvEEW3iOLdw6rPAcWzhgC3ts4YCtu-jy1cvNi3WWmnBkhgrZZaR2tNRScaqNpCWvS0ENE05pxbW2db5yRV4TUdsV4boEuijBlwPNtbaUQmt2Dx01bWPvI2wYTDYGGGOtOctzJRi3QhqjXSlqSU7RcpBZ9SnWWqlIKmE7CLnyQq6SkE9ROZVs1QXYuYi4iv127oP_mPsQHe9B_wgddZ97-xi4aaefBNR8B0dWiWY |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO2LHB64p8ZbGR8SisrRiFdwi27ERgqYI0gtfz0yToIIEFz5gstjj8ZvRzHuE7LmALJWBRdqDB0sAyJGBPAjV3BlneSJijwX9bi_p3MmzB_UwNguDbZWYQ4eKKGIUq_FwYzG6aYnbxzQmhZsa0jsuW1wKkbQhDE8pnbTR10Xc-4rGrBZYAZMIbZopnt8e8-1--sZeOnbvnMwT13xx1W7y3BqWtuU-fpA5_u-XFshcDUvpQeVHi2TCF0tktvvF6fq-RGYQl1a0zsvk_moIWwIRhV77x6qVtqDwdtoZ9Afgkx7APa2GgENdFaSDQA298f0npBvvo5KXo5em8C_0yJSGoirbywq5Ozm-PexEtUZD5LhKy4jlgWubGsmtS7mWuVbcCRWMNdJan8ftkMQ5U7lvM2k1oIkUQj2gIO91qqwVq2SyGBR-jVAnwNg5ABS5lSKOjRLSq9Q5G7TKU7ZOWs3OZK8VFUfGaobTZvkyXL6sXr51osf3LytHNZBQCZZk4k_bjX_Y7pLpzm33Irs47Z1vkhmOisFYEBZbZLJ8G_ptgDGl3Rn56Sd0GeRY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSKgcWAqIsvrANSXe0uSIgKpsVdkEt8grQrRJBemFr2fcJIgiwYUPmCz2ePxmNPMeQofaeZZKR4LEggdzAMiBhDzIq7kTSkzEQusL-tf9qPfAL55E3U34XrVV-hzalUQR01jtD_fYuLoj7shnMTFc1JDdUd6mnLGoA1F4IfKDln6KI-x_BWNS6auASeBt6iGe3x4zcz3NkJd-u3a6K0jVH1x2m7y2J4Vq648fXI7_-qNVtFyBUnxcetEamrNZEy1dfzG6vjdRw6PSktR5HT3eTGBDIJ7gW_tcNtJmGF6Oe_koB4-0AO1xOQLsqpogzh2W-M6OXjzZ-MjreGk8kJkd4lNZSOw12YYb6KF7dn_SCyqFhkBTERcBMY4mKpacKh3ThJtEUM2Ek0pypawJOy4KDRHGdghXCWCJGAI9YCBrk1goxTbRfJZndgthzcBYa4ATRnEWhlIwbkWstXKJMDFpoXa9Mem4JOJIScVvWi9f6pcvrZavhZLv25cW0wqIK-VKUvan7fY_bA_Q4uC0m16d9y93UIN6uWBfDWa7aL54m9g9wDCF2p966Se0J-L8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantile+Regression+and+Homogeneity+Identification+of+a+Semiparametric+Panel+Data+Model&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Li%2C+Rui&rft.au=Li%2C+Tao&rft.au=Su%2C+Huacheng&rft.au=You%2C+Jinhong&rft.date=2025-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=34&rft.issue=3&rft.spage=1169&rft.epage=1187&rft_id=info:doi/10.1080%2F10618600.2024.2433672&rft.externalDocID=2433672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |