Structure Elucidation of Pharmaceutically Relevant Compounds Within Pyrene‐Based Frameworks

Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coforme...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 68; pp. e202402958 - n/a
Main Authors Chaudhry, Mohammad T., Newman, Justin A., Lee, Alfred Y., Patel, Anisha
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 05.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation. Using the predictable packing arrangement of guanidinium organosulfonate with a pyrene core a host of different small molecules can be encapsulated and their structures elucidated.
AbstractList Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well-ordered structures with predictable pyrene-pyrene distances, making them ideally suited for targeting arene-based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host-guest complex formation using powder X-ray diffraction and high throughput experimentation.Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well-ordered structures with predictable pyrene-pyrene distances, making them ideally suited for targeting arene-based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host-guest complex formation using powder X-ray diffraction and high throughput experimentation.
Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation. Using the predictable packing arrangement of guanidinium organosulfonate with a pyrene core a host of different small molecules can be encapsulated and their structures elucidated.
Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G 4 PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G 4 PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation.
Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation.
Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G PYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G PYR display well-ordered structures with predictable pyrene-pyrene distances, making them ideally suited for targeting arene-based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host-guest complex formation using powder X-ray diffraction and high throughput experimentation.
Author Newman, Justin A.
Lee, Alfred Y.
Chaudhry, Mohammad T.
Patel, Anisha
Author_xml – sequence: 1
  givenname: Mohammad T.
  orcidid: 0000-0002-1482-388X
  surname: Chaudhry
  fullname: Chaudhry, Mohammad T.
  email: mohammad.chaudhry1@merck.com
  organization: Merck & Co., Inc., Rahway
– sequence: 2
  givenname: Justin A.
  orcidid: 0000-0002-2498-1259
  surname: Newman
  fullname: Newman, Justin A.
  email: justin.newman@merck.com
  organization: Merck & Co., Inc., Rahway
– sequence: 3
  givenname: Alfred Y.
  orcidid: 0000-0003-3684-4101
  surname: Lee
  fullname: Lee, Alfred Y.
  organization: Merck & Co., Inc., Rahway
– sequence: 4
  givenname: Anisha
  orcidid: 0000-0002-3030-2961
  surname: Patel
  fullname: Patel, Anisha
  organization: Merck & Co., Inc., Rahway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39150408$$D View this record in MEDLINE/PubMed
BookMark eNqFkE9P2zAYhy3UiRbGlSOKxIVLOv-JE_sIVRlIINA2xAlZjvNGTUnsYseg3vYR9hn5JAsqdNIunN7L8z766dlDI-ssIHRI8JRgTL-ZBXRTimmGqeRiB00IpyRlRc5HaIJlVqQ5Z3KM9kJYYoxlztguGjNJOM6wmKCHn72Ppo8eknkbTVPpvnE2cXVyu9C-0wZi3xjdtuvkB7TwrG2fzFy3ctFWIblv-kVjk9u1Bwuvv_-c6QBVcu51By_OP4av6Eut2wAH73cf3Z3Pf80u0qub75ez06vUUC5ESrkWQImEWoARjMlMlLKSFSVZloPOdMFLUed5oXNZF7jARpaGSk0NFbUuS7aPTjbelXdPEUKvuiYYaFttwcWgGJaMS84ZG9Dj_9Cli94O6xQjGS6IECQfqOmGMt6F4KFWK9902q8VweotvHoLr7bhh4ejd20sO6i2-EfpAZAb4KVpYf2JTs0u5tf_5H8BL76SxA
Cites_doi 10.1002/anie.202004992
10.1039/C8NP00011E
10.1002/chem.201704176
10.1039/C7SC04249C
10.1021/jacs.5b00534
10.1039/D2CE01033J
10.1039/D2CE00228K
10.1002/chir.20459
10.1002/chem.202002504
10.1002/chem.202400957
10.1107/S0108768187097325
10.1039/C5SC01681A
10.1039/c3cs35498a
10.1021/acs.orglett.6b01817
10.1002/anie.202006438
10.1021/acs.oprd.3c00091
10.1126/science.aaf9135
10.1021/acsmaterialslett.4c00400
10.1039/C5SC01838B
10.1038/s41467-019-12453-6
10.1039/C6SC04288K
10.1021/acs.cgd.4c00215
10.1039/C8CC04561E
10.1002/chem.201700266
10.1016/j.chempr.2023.12.004
10.1021/jacs.9b10501
10.1021/ja052397i
10.1016/j.trac.2018.02.014
10.1002/anie.202402976
10.1021/jo00048a015
10.1021/acs.orglett.5b00779
10.1021/acs.jmedchem.0c00754
10.1021/acs.cgd.1c00196
10.1016/j.chempr.2022.10.016
10.1021/jacs.8b07065
10.3762/bjoc.17.103
10.1002/anie.200460864
10.1039/D3SC02995F
10.1038/nature11990
10.1021/cr00007a009
10.1038/s41467-023-44401-w
10.1039/C4CS00260A
10.1107/S2052252515024379
10.1021/acsmaterialslett.3c00740
10.1039/c39860000046
10.1107/S2052520616003954
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202402958
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 10_1002_chem_202402958
39150408
CHEM202402958
Genre article
Journal Article
GrantInformation_xml – fundername: Division of Engineering Education and Centers
  sequence: 0
  funderid: DMR-2002964
– fundername: Division of Engineering Education and Centers
  sequence: 0
  grantid: DMR-2002964
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
LH4
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c2588-25a8e219ef8ec833948b9d9d21446ea4a75b8f667a69f7070c9bc29a2c28fabb3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Wed Dec 18 16:43:44 EST 2024
Thu Dec 05 17:18:40 EST 2024
Fri Dec 06 07:08:09 EST 2024
Fri Dec 06 01:35:32 EST 2024
Thu Dec 05 17:21:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 68
Keywords Pyrene
Crystallography
Structure elucidation
Pharmaceuticals
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2588-25a8e219ef8ec833948b9d9d21446ea4a75b8f667a69f7070c9bc29a2c28fabb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3684-4101
0000-0002-1482-388X
0000-0002-2498-1259
0000-0002-3030-2961
PMID 39150408
PQID 3140718816
PQPubID 986340
PageCount 6
ParticipantIDs proquest_miscellaneous_3093595533
proquest_journals_3140718816
crossref_primary_10_1002_chem_202402958
pubmed_primary_39150408
wiley_primary_10_1002_chem_202402958_CHEM202402958
PublicationCentury 2000
PublicationDate December 5, 2024
PublicationDateYYYYMMDD 2024-12-05
PublicationDate_xml – month: 12
  year: 2024
  text: December 5, 2024
  day: 05
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – sequence: 0
  name: Wiley Subscription Services, Inc
References 2017; 8
2015; 6
2021; 21
2015; 17
2023; 14
2018; 140
2020; 63
2023; 5
2019; 10
2018; 102
2023; 9
2013; 42
2017; 23
2022; 24
2020; 59
2024; 30
1992; 57
2024; 10
2016; 72
2016; 18
2019; 141
2024; 15
2005; 44
2018; 9
1987; 43
2016; 3
2015; 137
2024; 6
2023; 27
2021; 17
2015; 44
2005; 127
2016; 353
2020; 26
2024; 63
1991; 91
2013; 495
2008; 20
2024; 24
2018; 54
2018; 35
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_1
e_1_2_8_45_2
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_64_1
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_36_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_2_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_50_2
e_1_2_8_52_1
References_xml – volume: 9
  start-page: 415
  year: 2018
  end-page: 424
  publication-title: Chem. Sci.
– volume: 26
  start-page: 15799
  year: 2020
  end-page: 15803
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 1906
  year: 2024
  end-page: 1912
  publication-title: ACS Mater. Lett.
– volume: 6
  start-page: 5466
  year: 2015
  end-page: 5472
  publication-title: Chem. Sci.
– volume: 24
  start-page: 4144
  year: 2022
  end-page: 4154
  publication-title: CrystEngComm
– volume: 102
  start-page: 290
  year: 2018
  end-page: 310
  publication-title: Trends Anal. Chem.
– volume: 3
  start-page: 139
  year: 2016
  end-page: 151
  publication-title: IUCrJ
– volume: 6
  start-page: 3765
  year: 2015
  end-page: 3768
  publication-title: Chem. Sci.
– volume: 137
  start-page: 3386
  year: 2015
  end-page: 3392
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 924
  year: 2024
  end-page: 937
  publication-title: Chem
– volume: 127
  start-page: 14704
  year: 2005
  end-page: 14713
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 2330
  year: 2015
  end-page: 2375
  publication-title: Chem. Sci. Rev.
– volume: 44
  start-page: 1012
  year: 2005
  end-page: 1044
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 5408
  year: 2013
  end-page: 5424
  publication-title: Chem. Sci. Rev.
– volume: 24
  start-page: 8060
  year: 2022
  end-page: 8069
  publication-title: CrystEngComm
– volume: 24
  start-page: 3483
  year: 2024
  end-page: 3490
  publication-title: Cryst. Growth Des.
– volume: 353
  start-page: 808
  year: 2016
  end-page: 811
  publication-title: Science
– volume: 9
  start-page: 227
  year: 2023
  end-page: 241
  publication-title: Chem
– volume: 140
  start-page: 12915
  year: 2018
  end-page: 12921
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4477
  year: 2019
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1437
  year: 2023
  end-page: 1444
  publication-title: Org. Process Res. Dev.
– volume: 35
  start-page: 514
  year: 2018
  end-page: 531
  publication-title: Nat. Prod. Rep.
– volume: 72
  start-page: 171
  year: 2016
  end-page: 179
  publication-title: Acta Crystallogr. B
– volume: 17
  start-page: 1476
  year: 2021
  end-page: 1480
  publication-title: Beilstein J. Org. Chem.
– volume: 23
  start-page: 4037
  year: 2017
  end-page: 4041
  publication-title: Chem. Eur. J.
– volume: 14
  start-page: 11402
  year: 2023
  end-page: 11409
  publication-title: Chem. Sci.
– volume: 91
  start-page: 1441
  year: 1991
  end-page: 1457
  publication-title: Chem. Rev.
– volume: 23
  start-page: 15035
  year: 2017
  end-page: 15040
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 1547
  year: 2017
  end-page: 1550
  publication-title: Chem. Sci.
– volume: 57
  start-page: 5848
  year: 1992
  end-page: 5851
  publication-title: J. Org. Chem.
– volume: 5
  start-page: 2673
  year: 2023
  end-page: 2682
  publication-title: ACS Mater. Lett.
– volume: 495
  start-page: 461
  year: 2013
  end-page: 466
  publication-title: Nature
– volume: 59
  start-page: 17600
  year: 2020
  end-page: 17606
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 555
  year: 1987
  end-page: 559
  publication-title: Acta Crystallogr. B
– volume: 20
  start-page: 471
  year: 2008
  end-page: 485
  publication-title: Chirality
– volume: 17
  start-page: 2178
  year: 2015
  end-page: 2181
  publication-title: Org. Lett.
– volume: 18
  start-page: 4004
  year: 2016
  end-page: 4007
  publication-title: Org. Lett.
– volume: 141
  start-page: 18862
  year: 2019
  end-page: 18869
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 8408
  year: 2020
  end-page: 8418
  publication-title: J. Med. Chem.
– volume: 15
  start-page: 81
  year: 2024
  publication-title: Nat. Commun.
– volume: 54
  start-page: 9738
  year: 2018
  end-page: 9740
  publication-title: Chem. Commun.
– volume: 30
  year: 2024
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 3024
  year: 2021
  end-page: 3036
  publication-title: Cryst. Growth Des.
– volume: 59
  start-page: 15875
  year: 2020
  end-page: 15879
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_35_2
  doi: 10.1002/anie.202004992
– ident: e_1_2_8_10_2
  doi: 10.1039/C8NP00011E
– ident: e_1_2_8_28_2
  doi: 10.1002/chem.201704176
– ident: e_1_2_8_8_2
  doi: 10.1039/C7SC04249C
– ident: e_1_2_8_37_1
– ident: e_1_2_8_45_2
  doi: 10.1021/jacs.5b00534
– ident: e_1_2_8_49_2
  doi: 10.1039/D2CE01033J
– ident: e_1_2_8_50_2
  doi: 10.1039/D2CE00228K
– ident: e_1_2_8_6_2
  doi: 10.1002/chir.20459
– ident: e_1_2_8_62_1
– ident: e_1_2_8_67_1
– ident: e_1_2_8_59_1
– ident: e_1_2_8_26_2
  doi: 10.1002/chem.202002504
– ident: e_1_2_8_46_2
  doi: 10.1002/chem.202400957
– ident: e_1_2_8_14_1
  doi: 10.1107/S0108768187097325
– ident: e_1_2_8_19_2
  doi: 10.1039/C5SC01681A
– ident: e_1_2_8_5_2
  doi: 10.1039/c3cs35498a
– ident: e_1_2_8_32_1
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.orglett.6b01817
– ident: e_1_2_8_25_2
  doi: 10.1002/anie.202006438
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.oprd.3c00091
– ident: e_1_2_8_4_1
– ident: e_1_2_8_58_1
– ident: e_1_2_8_63_1
– ident: e_1_2_8_16_2
  doi: 10.1126/science.aaf9135
– ident: e_1_2_8_47_2
  doi: 10.1021/acsmaterialslett.4c00400
– ident: e_1_2_8_66_1
– ident: e_1_2_8_39_2
  doi: 10.1039/C5SC01838B
– ident: e_1_2_8_43_2
  doi: 10.1038/s41467-019-12453-6
– ident: e_1_2_8_21_2
  doi: 10.1039/C6SC04288K
– ident: e_1_2_8_48_2
  doi: 10.1021/acs.cgd.4c00215
– ident: e_1_2_8_44_2
  doi: 10.1039/C8CC04561E
– ident: e_1_2_8_61_1
– ident: e_1_2_8_15_1
– ident: e_1_2_8_52_1
  doi: 10.1002/chem.201700266
– ident: e_1_2_8_64_1
– ident: e_1_2_8_53_1
– ident: e_1_2_8_40_2
  doi: 10.1016/j.chempr.2023.12.004
– ident: e_1_2_8_17_2
  doi: 10.1021/jacs.9b10501
– ident: e_1_2_8_51_1
  doi: 10.1021/ja052397i
– ident: e_1_2_8_56_1
– ident: e_1_2_8_29_2
  doi: 10.1016/j.trac.2018.02.014
– ident: e_1_2_8_36_2
  doi: 10.1002/anie.202402976
– ident: e_1_2_8_12_1
  doi: 10.1021/jo00048a015
– ident: e_1_2_8_55_1
  doi: 10.1021/acs.orglett.5b00779
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.jmedchem.0c00754
– ident: e_1_2_8_1_1
– ident: e_1_2_8_7_1
– ident: e_1_2_8_30_2
  doi: 10.1021/acs.cgd.1c00196
– ident: e_1_2_8_22_2
  doi: 10.1016/j.chempr.2022.10.016
– ident: e_1_2_8_42_2
  doi: 10.1021/jacs.8b07065
– ident: e_1_2_8_27_1
– ident: e_1_2_8_34_2
  doi: 10.3762/bjoc.17.103
– ident: e_1_2_8_60_1
– ident: e_1_2_8_24_1
– ident: e_1_2_8_9_2
  doi: 10.1002/anie.200460864
– ident: e_1_2_8_38_2
  doi: 10.1039/D3SC02995F
– ident: e_1_2_8_18_2
  doi: 10.1038/nature11990
– ident: e_1_2_8_41_1
– ident: e_1_2_8_3_2
  doi: 10.1021/cr00007a009
– ident: e_1_2_8_23_2
  doi: 10.1038/s41467-023-44401-w
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.jmedchem.0c00754
– ident: e_1_2_8_57_1
– ident: e_1_2_8_2_2
  doi: 10.1039/C4CS00260A
– ident: e_1_2_8_20_2
  doi: 10.1107/S2052252515024379
– ident: e_1_2_8_33_2
  doi: 10.1021/acsmaterialslett.3c00740
– ident: e_1_2_8_68_1
– ident: e_1_2_8_11_1
  doi: 10.1039/c39860000046
– ident: e_1_2_8_69_1
  doi: 10.1107/S2052520616003954
SSID ssj0009633
Score 2.5152743
Snippet Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges...
Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202402958
SubjectTerms Adenosine
Aromatic compounds
Benzaldehyde
Benzaldehydes - chemistry
Benzamide
Benzamides - chemistry
Chemical bonds
Complex formation
Crystallography
Crystallography, X-Ray
Crystals
Encapsulation
Functional groups
Guanidine - chemistry
Hydrogen Bonding
Hydrogen bonds
Lidocaine
Models, Molecular
Molecular Structure
Pharmaceutical Preparations - chemistry
Pharmaceuticals
Pyrene
Pyrenes - chemistry
Structure elucidation
Thymidine
Thymine
Uracil
Workflow
X-Ray Diffraction
Title Structure Elucidation of Pharmaceutically Relevant Compounds Within Pyrene‐Based Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202402958
https://www.ncbi.nlm.nih.gov/pubmed/39150408
https://www.proquest.com/docview/3140718816
https://www.proquest.com/docview/3093595533
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8H4GCjITEFGji2LFHKK0QEggVKlhQ5FfUCpQi2g4w8RP4jfwSfEkTWhiQYEuUOLHv5bN99x1C-4JwZjUhPix4_MjWja9UavyQGGa0oJpRSE6-uGRnnej8jt5NZPEX-BDVhhtoRm6vQcGlGhx9gYa6MUEmOZwOCArZvgGJIabvtP2FH-Wkq6glH8U-YLCWqI318Gi6-fSs9MPVnPZc86mntYhk2eki4uThcDRUh_r1G57jf0a1hBbGfik-LgRpGc3YbAXNNcpycKvo_jpHmh09W9x8HOleUYsJ91N81Z3cFn98wW3IWXccw2BsoGzTAN_2ht1ehq9eAEHz4-39xE2eBrfKyLDBGuq0mjeNM39cm8HXIQXlopJbZ-1syq3mhIiIK2GEyRHYrIxkTBVPGYslE2ns7IoWSodChjrkqVSKrKPZrJ_ZTYQDrQULFDGKSOecaaWsrQuTGkOcFQ-ohw5K3iRPBQRHUoAthwmQK6nI5aFaybpkrIqDhASwZuU8YB7aqx474sHJiMxsf-TeqecJys719dBGwfLqV4Cg7yyd-3iYM-6XPiQAZVHdbf2l0Taah-s8aIbW0Kxjr91xrs9Q7ebi_QmSC_0H
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvpTVSEicAk0cu_aRrSqrEIvggqJ4iahAKaLtAU58At_Il-BJmkDhgATHLE5sP894bM-8AViXVHCrKfVwweOFtmo8pRLjBdRwoyXTnGFw8skpb1yFhzes8CbEWJicH6LccEPJyPQ1CjhuSG99soa6RmEoOR4PSCYGYdjJvI9eXXvnnwxSbnzl2eTDmocsrAVvYzXY6i_fPy_9MDb7bdds8qmPgyqqnfuc3G92O2pTv3xjdPxXuyZgrGeaku18LE3CgE2nYGS3yAg3DbcXGdls98mS_YeububpmEgrIWd3X3fGH57JOYatO9AI6hvM3NQm183OXTMlZ89Iovn--rbj5k9D6oVzWHsGrur7l7sNr5eewdMBQ_lisbBO4dlEWC0olaFQ0kiTkbDZOIxrTImE81rMZVJzqkVLpQMZBzoQSawUnYWhtJXaeSC-1pL7ihpFY2efaaWsrUqTGEMRVFaBjQKc6DFn4YhyvuUgwu6Kyu6qwFKBXdSTxnZEfVy2CuHzCqyVj13n4eFInNpW171TzWKUnfVbgbkc8_JXSKLvlJ37eJAh90sdImSzKK8W_lJoFUYalyfH0fHB6dEijOL9zIeGLcGQg9ouO0uoo1aysf4BcMQBNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LbxMxEIBHEKTCpS8oDbTUSEicts3aa8c-0jZRW6CKChW9oJVfq0SNNlGTHMqpP6G_kV-CZze7TeCABMd9eNf22OPxY74BeKeYFN4yFuGEJ0p8y0XGZC6izAlnFbeCo3Py53NxcpmcXfGrBS_-kg9RL7hhzyj0NXbwscsOHqChoUzoSY67A4rLx_AkEVQhPf_44gEgFZpXGUw-aUcIYa2wjS16sJx-eVj6w9ZcNl2Lsae7BrrKdXnk5Hp_NjX79sdvQMf_KdY6rM4NU_KhbEkb8Mjnm_D0qIoH9xy-fylQs7MbTzrDmR2UwZjIKCO9_uK6-PCWXKDTehAZQW2DcZsm5Ntg2h_kpHeLCM2fd_eHYfR0pFsdDZu8gMtu5-vRSTQPzhBZyrF3cS19UHc-k95KxlQijXLKFQg2rxPd5kZmQrS1UFk7KBarjKVKU0tlpo1hW9DIR7nfBhJbq0RsmDNMB-vMGuN9S7nMORbUeMyb8L6STTouGRxpSVumKVZXWldXE3Yq0aXzvjhJWYyTVilj0YS39eNQebg1onM_moV3WoWHcrB9m_CyFHn9K0ToB1UXPk4Lwf0lDymyLOqrV_-SaA9Wesfd9NPp-cfX8AxvFwdo-A40gqT9bjCDpuZN0dJ_AW3T_9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+Elucidation+of+Pharmaceutically+Relevant+Compounds+Within+Pyrene-Based+Frameworks&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chaudhry%2C+Mohammad+T&rft.au=Newman%2C+Justin+A&rft.au=Lee%2C+Alfred+Y&rft.au=Patel%2C+Anisha&rft.date=2024-12-05&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=30&rft.issue=68&rft.spage=e202402958&rft_id=info:doi/10.1002%2Fchem.202402958&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon