Structure Elucidation of Pharmaceutically Relevant Compounds Within Pyrene‐Based Frameworks
Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coforme...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 68; pp. e202402958 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
05.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation.
Using the predictable packing arrangement of guanidinium organosulfonate with a pyrene core a host of different small molecules can be encapsulated and their structures elucidated. |
---|---|
AbstractList | Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well-ordered structures with predictable pyrene-pyrene distances, making them ideally suited for targeting arene-based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host-guest complex formation using powder X-ray diffraction and high throughput experimentation.Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well-ordered structures with predictable pyrene-pyrene distances, making them ideally suited for targeting arene-based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host-guest complex formation using powder X-ray diffraction and high throughput experimentation. Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation. Using the predictable packing arrangement of guanidinium organosulfonate with a pyrene core a host of different small molecules can be encapsulated and their structures elucidated. Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G 4 PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G 4 PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation. Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G4PYR), a robust guanidinium‐organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G4PYR display well‐ordered structures with predictable pyrene‐pyrene distances, making them ideally suited for targeting arene‐based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host‐guest complex formation using powder X‐ray diffraction and high throughput experimentation. Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges when dealing with specific small molecules and active pharmaceutical ingredients (APIs), as many do not form quality crystals without coformers or can be unstable. In this study, we introduce tetrakis(guanidinium) pyrenetetrasulfonate (G PYR), a robust guanidinium-organosulfonate (GS) framework that efficiently encapsulates small molecules and APIs rich in functional groups. The hydrogen bonding frameworks formed by G PYR display well-ordered structures with predictable pyrene-pyrene distances, making them ideally suited for targeting arene-based APIs with pendant groups. Successful encapsulation of various guests, including benzaldehyde, benzamide, and arenes containing multiple hydrogen bond donors and acceptors like uracil and thymine, was achieved. Furthermore, we successfully encapsulated important pharmaceutical and biologically relevant compounds, such as lidocaine, ropinirole, adenosine, thymidine, and others. Notably, we present a workflow for investigating host-guest complex formation using powder X-ray diffraction and high throughput experimentation. |
Author | Newman, Justin A. Lee, Alfred Y. Chaudhry, Mohammad T. Patel, Anisha |
Author_xml | – sequence: 1 givenname: Mohammad T. orcidid: 0000-0002-1482-388X surname: Chaudhry fullname: Chaudhry, Mohammad T. email: mohammad.chaudhry1@merck.com organization: Merck & Co., Inc., Rahway – sequence: 2 givenname: Justin A. orcidid: 0000-0002-2498-1259 surname: Newman fullname: Newman, Justin A. email: justin.newman@merck.com organization: Merck & Co., Inc., Rahway – sequence: 3 givenname: Alfred Y. orcidid: 0000-0003-3684-4101 surname: Lee fullname: Lee, Alfred Y. organization: Merck & Co., Inc., Rahway – sequence: 4 givenname: Anisha orcidid: 0000-0002-3030-2961 surname: Patel fullname: Patel, Anisha organization: Merck & Co., Inc., Rahway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39150408$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE9P2zAYhy3UiRbGlSOKxIVLOv-JE_sIVRlIINA2xAlZjvNGTUnsYseg3vYR9hn5JAsqdNIunN7L8z766dlDI-ssIHRI8JRgTL-ZBXRTimmGqeRiB00IpyRlRc5HaIJlVqQ5Z3KM9kJYYoxlztguGjNJOM6wmKCHn72Ppo8eknkbTVPpvnE2cXVyu9C-0wZi3xjdtuvkB7TwrG2fzFy3ctFWIblv-kVjk9u1Bwuvv_-c6QBVcu51By_OP4av6Eut2wAH73cf3Z3Pf80u0qub75ez06vUUC5ESrkWQImEWoARjMlMlLKSFSVZloPOdMFLUed5oXNZF7jARpaGSk0NFbUuS7aPTjbelXdPEUKvuiYYaFttwcWgGJaMS84ZG9Dj_9Cli94O6xQjGS6IECQfqOmGMt6F4KFWK9902q8VweotvHoLr7bhh4ejd20sO6i2-EfpAZAb4KVpYf2JTs0u5tf_5H8BL76SxA |
Cites_doi | 10.1002/anie.202004992 10.1039/C8NP00011E 10.1002/chem.201704176 10.1039/C7SC04249C 10.1021/jacs.5b00534 10.1039/D2CE01033J 10.1039/D2CE00228K 10.1002/chir.20459 10.1002/chem.202002504 10.1002/chem.202400957 10.1107/S0108768187097325 10.1039/C5SC01681A 10.1039/c3cs35498a 10.1021/acs.orglett.6b01817 10.1002/anie.202006438 10.1021/acs.oprd.3c00091 10.1126/science.aaf9135 10.1021/acsmaterialslett.4c00400 10.1039/C5SC01838B 10.1038/s41467-019-12453-6 10.1039/C6SC04288K 10.1021/acs.cgd.4c00215 10.1039/C8CC04561E 10.1002/chem.201700266 10.1016/j.chempr.2023.12.004 10.1021/jacs.9b10501 10.1021/ja052397i 10.1016/j.trac.2018.02.014 10.1002/anie.202402976 10.1021/jo00048a015 10.1021/acs.orglett.5b00779 10.1021/acs.jmedchem.0c00754 10.1021/acs.cgd.1c00196 10.1016/j.chempr.2022.10.016 10.1021/jacs.8b07065 10.3762/bjoc.17.103 10.1002/anie.200460864 10.1039/D3SC02995F 10.1038/nature11990 10.1021/cr00007a009 10.1038/s41467-023-44401-w 10.1039/C4CS00260A 10.1107/S2052252515024379 10.1021/acsmaterialslett.3c00740 10.1039/c39860000046 10.1107/S2052520616003954 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202402958 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 10_1002_chem_202402958 39150408 CHEM202402958 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Division of Engineering Education and Centers sequence: 0 funderid: DMR-2002964 – fundername: Division of Engineering Education and Centers sequence: 0 grantid: DMR-2002964 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION LH4 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c2588-25a8e219ef8ec833948b9d9d21446ea4a75b8f667a69f7070c9bc29a2c28fabb3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Wed Dec 18 16:43:44 EST 2024 Thu Dec 05 17:18:40 EST 2024 Fri Dec 06 07:08:09 EST 2024 Fri Dec 06 01:35:32 EST 2024 Thu Dec 05 17:21:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 68 |
Keywords | Pyrene Crystallography Structure elucidation Pharmaceuticals |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2588-25a8e219ef8ec833948b9d9d21446ea4a75b8f667a69f7070c9bc29a2c28fabb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3684-4101 0000-0002-1482-388X 0000-0002-2498-1259 0000-0002-3030-2961 |
PMID | 39150408 |
PQID | 3140718816 |
PQPubID | 986340 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3093595533 proquest_journals_3140718816 crossref_primary_10_1002_chem_202402958 pubmed_primary_39150408 wiley_primary_10_1002_chem_202402958_CHEM202402958 |
PublicationCentury | 2000 |
PublicationDate | December 5, 2024 |
PublicationDateYYYYMMDD | 2024-12-05 |
PublicationDate_xml | – month: 12 year: 2024 text: December 5, 2024 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – sequence: 0 name: Wiley Subscription Services, Inc |
References | 2017; 8 2015; 6 2021; 21 2015; 17 2023; 14 2018; 140 2020; 63 2023; 5 2019; 10 2018; 102 2023; 9 2013; 42 2017; 23 2022; 24 2020; 59 2024; 30 1992; 57 2024; 10 2016; 72 2016; 18 2019; 141 2024; 15 2005; 44 2018; 9 1987; 43 2016; 3 2015; 137 2024; 6 2023; 27 2021; 17 2015; 44 2005; 127 2016; 353 2020; 26 2024; 63 1991; 91 2013; 495 2008; 20 2024; 24 2018; 54 2018; 35 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_1 e_1_2_8_45_2 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_64_1 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_36_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_2_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_35_2 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_50_2 e_1_2_8_52_1 |
References_xml | – volume: 9 start-page: 415 year: 2018 end-page: 424 publication-title: Chem. Sci. – volume: 26 start-page: 15799 year: 2020 end-page: 15803 publication-title: Chem. Eur. J. – volume: 6 start-page: 1906 year: 2024 end-page: 1912 publication-title: ACS Mater. Lett. – volume: 6 start-page: 5466 year: 2015 end-page: 5472 publication-title: Chem. Sci. – volume: 24 start-page: 4144 year: 2022 end-page: 4154 publication-title: CrystEngComm – volume: 102 start-page: 290 year: 2018 end-page: 310 publication-title: Trends Anal. Chem. – volume: 3 start-page: 139 year: 2016 end-page: 151 publication-title: IUCrJ – volume: 6 start-page: 3765 year: 2015 end-page: 3768 publication-title: Chem. Sci. – volume: 137 start-page: 3386 year: 2015 end-page: 3392 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 924 year: 2024 end-page: 937 publication-title: Chem – volume: 127 start-page: 14704 year: 2005 end-page: 14713 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 2330 year: 2015 end-page: 2375 publication-title: Chem. Sci. Rev. – volume: 44 start-page: 1012 year: 2005 end-page: 1044 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 5408 year: 2013 end-page: 5424 publication-title: Chem. Sci. Rev. – volume: 24 start-page: 8060 year: 2022 end-page: 8069 publication-title: CrystEngComm – volume: 24 start-page: 3483 year: 2024 end-page: 3490 publication-title: Cryst. Growth Des. – volume: 353 start-page: 808 year: 2016 end-page: 811 publication-title: Science – volume: 9 start-page: 227 year: 2023 end-page: 241 publication-title: Chem – volume: 140 start-page: 12915 year: 2018 end-page: 12921 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4477 year: 2019 publication-title: Nat. Commun. – volume: 27 start-page: 1437 year: 2023 end-page: 1444 publication-title: Org. Process Res. Dev. – volume: 35 start-page: 514 year: 2018 end-page: 531 publication-title: Nat. Prod. Rep. – volume: 72 start-page: 171 year: 2016 end-page: 179 publication-title: Acta Crystallogr. B – volume: 17 start-page: 1476 year: 2021 end-page: 1480 publication-title: Beilstein J. Org. Chem. – volume: 23 start-page: 4037 year: 2017 end-page: 4041 publication-title: Chem. Eur. J. – volume: 14 start-page: 11402 year: 2023 end-page: 11409 publication-title: Chem. Sci. – volume: 91 start-page: 1441 year: 1991 end-page: 1457 publication-title: Chem. Rev. – volume: 23 start-page: 15035 year: 2017 end-page: 15040 publication-title: Chem. Eur. J. – volume: 8 start-page: 1547 year: 2017 end-page: 1550 publication-title: Chem. Sci. – volume: 57 start-page: 5848 year: 1992 end-page: 5851 publication-title: J. Org. Chem. – volume: 5 start-page: 2673 year: 2023 end-page: 2682 publication-title: ACS Mater. Lett. – volume: 495 start-page: 461 year: 2013 end-page: 466 publication-title: Nature – volume: 59 start-page: 17600 year: 2020 end-page: 17606 publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 555 year: 1987 end-page: 559 publication-title: Acta Crystallogr. B – volume: 20 start-page: 471 year: 2008 end-page: 485 publication-title: Chirality – volume: 17 start-page: 2178 year: 2015 end-page: 2181 publication-title: Org. Lett. – volume: 18 start-page: 4004 year: 2016 end-page: 4007 publication-title: Org. Lett. – volume: 141 start-page: 18862 year: 2019 end-page: 18869 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 8408 year: 2020 end-page: 8418 publication-title: J. Med. Chem. – volume: 15 start-page: 81 year: 2024 publication-title: Nat. Commun. – volume: 54 start-page: 9738 year: 2018 end-page: 9740 publication-title: Chem. Commun. – volume: 30 year: 2024 publication-title: Chem. Eur. J. – volume: 21 start-page: 3024 year: 2021 end-page: 3036 publication-title: Cryst. Growth Des. – volume: 59 start-page: 15875 year: 2020 end-page: 15879 publication-title: Angew. Chem. Int. Ed. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_35_2 doi: 10.1002/anie.202004992 – ident: e_1_2_8_10_2 doi: 10.1039/C8NP00011E – ident: e_1_2_8_28_2 doi: 10.1002/chem.201704176 – ident: e_1_2_8_8_2 doi: 10.1039/C7SC04249C – ident: e_1_2_8_37_1 – ident: e_1_2_8_45_2 doi: 10.1021/jacs.5b00534 – ident: e_1_2_8_49_2 doi: 10.1039/D2CE01033J – ident: e_1_2_8_50_2 doi: 10.1039/D2CE00228K – ident: e_1_2_8_6_2 doi: 10.1002/chir.20459 – ident: e_1_2_8_62_1 – ident: e_1_2_8_67_1 – ident: e_1_2_8_59_1 – ident: e_1_2_8_26_2 doi: 10.1002/chem.202002504 – ident: e_1_2_8_46_2 doi: 10.1002/chem.202400957 – ident: e_1_2_8_14_1 doi: 10.1107/S0108768187097325 – ident: e_1_2_8_19_2 doi: 10.1039/C5SC01681A – ident: e_1_2_8_5_2 doi: 10.1039/c3cs35498a – ident: e_1_2_8_32_1 – ident: e_1_2_8_13_1 doi: 10.1021/acs.orglett.6b01817 – ident: e_1_2_8_25_2 doi: 10.1002/anie.202006438 – ident: e_1_2_8_65_1 doi: 10.1021/acs.oprd.3c00091 – ident: e_1_2_8_4_1 – ident: e_1_2_8_58_1 – ident: e_1_2_8_63_1 – ident: e_1_2_8_16_2 doi: 10.1126/science.aaf9135 – ident: e_1_2_8_47_2 doi: 10.1021/acsmaterialslett.4c00400 – ident: e_1_2_8_66_1 – ident: e_1_2_8_39_2 doi: 10.1039/C5SC01838B – ident: e_1_2_8_43_2 doi: 10.1038/s41467-019-12453-6 – ident: e_1_2_8_21_2 doi: 10.1039/C6SC04288K – ident: e_1_2_8_48_2 doi: 10.1021/acs.cgd.4c00215 – ident: e_1_2_8_44_2 doi: 10.1039/C8CC04561E – ident: e_1_2_8_61_1 – ident: e_1_2_8_15_1 – ident: e_1_2_8_52_1 doi: 10.1002/chem.201700266 – ident: e_1_2_8_64_1 – ident: e_1_2_8_53_1 – ident: e_1_2_8_40_2 doi: 10.1016/j.chempr.2023.12.004 – ident: e_1_2_8_17_2 doi: 10.1021/jacs.9b10501 – ident: e_1_2_8_51_1 doi: 10.1021/ja052397i – ident: e_1_2_8_56_1 – ident: e_1_2_8_29_2 doi: 10.1016/j.trac.2018.02.014 – ident: e_1_2_8_36_2 doi: 10.1002/anie.202402976 – ident: e_1_2_8_12_1 doi: 10.1021/jo00048a015 – ident: e_1_2_8_55_1 doi: 10.1021/acs.orglett.5b00779 – ident: e_1_2_8_31_1 doi: 10.1021/acs.jmedchem.0c00754 – ident: e_1_2_8_1_1 – ident: e_1_2_8_7_1 – ident: e_1_2_8_30_2 doi: 10.1021/acs.cgd.1c00196 – ident: e_1_2_8_22_2 doi: 10.1016/j.chempr.2022.10.016 – ident: e_1_2_8_42_2 doi: 10.1021/jacs.8b07065 – ident: e_1_2_8_27_1 – ident: e_1_2_8_34_2 doi: 10.3762/bjoc.17.103 – ident: e_1_2_8_60_1 – ident: e_1_2_8_24_1 – ident: e_1_2_8_9_2 doi: 10.1002/anie.200460864 – ident: e_1_2_8_38_2 doi: 10.1039/D3SC02995F – ident: e_1_2_8_18_2 doi: 10.1038/nature11990 – ident: e_1_2_8_41_1 – ident: e_1_2_8_3_2 doi: 10.1021/cr00007a009 – ident: e_1_2_8_23_2 doi: 10.1038/s41467-023-44401-w – ident: e_1_2_8_54_1 doi: 10.1021/acs.jmedchem.0c00754 – ident: e_1_2_8_57_1 – ident: e_1_2_8_2_2 doi: 10.1039/C4CS00260A – ident: e_1_2_8_20_2 doi: 10.1107/S2052252515024379 – ident: e_1_2_8_33_2 doi: 10.1021/acsmaterialslett.3c00740 – ident: e_1_2_8_68_1 – ident: e_1_2_8_11_1 doi: 10.1039/c39860000046 – ident: e_1_2_8_69_1 doi: 10.1107/S2052520616003954 |
SSID | ssj0009633 |
Score | 2.5152743 |
Snippet | Single‐crystal X‐ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges... Single-crystal X-ray diffraction (SCXRD) is the preferred and most accurate technique for determining molecular structures. However, it can present challenges... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202402958 |
SubjectTerms | Adenosine Aromatic compounds Benzaldehyde Benzaldehydes - chemistry Benzamide Benzamides - chemistry Chemical bonds Complex formation Crystallography Crystallography, X-Ray Crystals Encapsulation Functional groups Guanidine - chemistry Hydrogen Bonding Hydrogen bonds Lidocaine Models, Molecular Molecular Structure Pharmaceutical Preparations - chemistry Pharmaceuticals Pyrene Pyrenes - chemistry Structure elucidation Thymidine Thymine Uracil Workflow X-Ray Diffraction |
Title | Structure Elucidation of Pharmaceutically Relevant Compounds Within Pyrene‐Based Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202402958 https://www.ncbi.nlm.nih.gov/pubmed/39150408 https://www.proquest.com/docview/3140718816 https://www.proquest.com/docview/3093595533 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8H4GCjITEFGji2LFHKK0QEggVKlhQ5FfUCpQi2g4w8RP4jfwSfEkTWhiQYEuUOLHv5bN99x1C-4JwZjUhPix4_MjWja9UavyQGGa0oJpRSE6-uGRnnej8jt5NZPEX-BDVhhtoRm6vQcGlGhx9gYa6MUEmOZwOCArZvgGJIabvtP2FH-Wkq6glH8U-YLCWqI318Gi6-fSs9MPVnPZc86mntYhk2eki4uThcDRUh_r1G57jf0a1hBbGfik-LgRpGc3YbAXNNcpycKvo_jpHmh09W9x8HOleUYsJ91N81Z3cFn98wW3IWXccw2BsoGzTAN_2ht1ehq9eAEHz4-39xE2eBrfKyLDBGuq0mjeNM39cm8HXIQXlopJbZ-1syq3mhIiIK2GEyRHYrIxkTBVPGYslE2ns7IoWSodChjrkqVSKrKPZrJ_ZTYQDrQULFDGKSOecaaWsrQuTGkOcFQ-ohw5K3iRPBQRHUoAthwmQK6nI5aFaybpkrIqDhASwZuU8YB7aqx474sHJiMxsf-TeqecJys719dBGwfLqV4Cg7yyd-3iYM-6XPiQAZVHdbf2l0Taah-s8aIbW0Kxjr91xrs9Q7ebi_QmSC_0H |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvpTVSEicAk0cu_aRrSqrEIvggqJ4iahAKaLtAU58At_Il-BJmkDhgATHLE5sP894bM-8AViXVHCrKfVwweOFtmo8pRLjBdRwoyXTnGFw8skpb1yFhzes8CbEWJicH6LccEPJyPQ1CjhuSG99soa6RmEoOR4PSCYGYdjJvI9eXXvnnwxSbnzl2eTDmocsrAVvYzXY6i_fPy_9MDb7bdds8qmPgyqqnfuc3G92O2pTv3xjdPxXuyZgrGeaku18LE3CgE2nYGS3yAg3DbcXGdls98mS_YeububpmEgrIWd3X3fGH57JOYatO9AI6hvM3NQm183OXTMlZ89Iovn--rbj5k9D6oVzWHsGrur7l7sNr5eewdMBQ_lisbBO4dlEWC0olaFQ0kiTkbDZOIxrTImE81rMZVJzqkVLpQMZBzoQSawUnYWhtJXaeSC-1pL7ihpFY2efaaWsrUqTGEMRVFaBjQKc6DFn4YhyvuUgwu6Kyu6qwFKBXdSTxnZEfVy2CuHzCqyVj13n4eFInNpW171TzWKUnfVbgbkc8_JXSKLvlJ37eJAh90sdImSzKK8W_lJoFUYalyfH0fHB6dEijOL9zIeGLcGQg9ouO0uoo1aysf4BcMQBNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LbxMxEIBHEKTCpS8oDbTUSEicts3aa8c-0jZRW6CKChW9oJVfq0SNNlGTHMqpP6G_kV-CZze7TeCABMd9eNf22OPxY74BeKeYFN4yFuGEJ0p8y0XGZC6izAlnFbeCo3Py53NxcpmcXfGrBS_-kg9RL7hhzyj0NXbwscsOHqChoUzoSY67A4rLx_AkEVQhPf_44gEgFZpXGUw-aUcIYa2wjS16sJx-eVj6w9ZcNl2Lsae7BrrKdXnk5Hp_NjX79sdvQMf_KdY6rM4NU_KhbEkb8Mjnm_D0qIoH9xy-fylQs7MbTzrDmR2UwZjIKCO9_uK6-PCWXKDTehAZQW2DcZsm5Ntg2h_kpHeLCM2fd_eHYfR0pFsdDZu8gMtu5-vRSTQPzhBZyrF3cS19UHc-k95KxlQijXLKFQg2rxPd5kZmQrS1UFk7KBarjKVKU0tlpo1hW9DIR7nfBhJbq0RsmDNMB-vMGuN9S7nMORbUeMyb8L6STTouGRxpSVumKVZXWldXE3Yq0aXzvjhJWYyTVilj0YS39eNQebg1onM_moV3WoWHcrB9m_CyFHn9K0ToB1UXPk4Lwf0lDymyLOqrV_-SaA9Wesfd9NPp-cfX8AxvFwdo-A40gqT9bjCDpuZN0dJ_AW3T_9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+Elucidation+of+Pharmaceutically+Relevant+Compounds+Within+Pyrene-Based+Frameworks&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chaudhry%2C+Mohammad+T&rft.au=Newman%2C+Justin+A&rft.au=Lee%2C+Alfred+Y&rft.au=Patel%2C+Anisha&rft.date=2024-12-05&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=30&rft.issue=68&rft.spage=e202402958&rft_id=info:doi/10.1002%2Fchem.202402958&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |