One‐at‐a‐Time Parameter Perturbation Ensemble of the Community Land Model, Version 5.1

Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemis...

Full description

Saved in:
Bibliographic Details
Published inJournal of advances in modeling earth systems Vol. 17; no. 8
Main Authors Kennedy, D., Dagon, K., Lawrence, D. M., Fisher, R. A., Sanderson, B. M., Collier, N., Hoffman, F. M., Koven, C. D., Kluzek, E., Levis, S., Lu, X., Oleson, K. W., Zarakas, C. M., Cheng, Y., Foster, A. C., Fowler, M. D., Hawkins, L. R., Kavoo, T., Kumar, S., Newman, A. J., Lawrence, P. J., Li, F., Lombardozzi, D. L., Luo, Y., Shuman, J. K., Swann, A. L. S., Swenson, S. C., Tang, G., Wieder, W. R., Wood, A. W.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration. Plain Language Summary The Community Land Model includes a large set of numerical settings that help describe attributes of the various components of the land system. Each setting has a default value, but we know that other values may also be reasonable within a certain range. We ran a large set of simulations, increasing and decreasing each setting independently to better understand its influence on model outputs, such as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including present‐day conditions and introducing (or removing) various aspects of climate change. We found that changing certain model settings could influence our results as much as the influence of climate change, itself. We also found that the most influential settings varied by geographic region. Understanding the influence of all of these settings can help us improve our model and also help us gauge our confidence in model predictions. Key Points We constructed a parameter perturbation ensemble of the Community Land Model, v5.1, perturbing 211 parameters across six forcing scenarios Parameter effects can exceed scenario effects and parameter effect rankings differ by biome and based on the forcing scenario The software infrastructure developed in our experiment has greatly reduced the human and computer time needed for constructing future PPEs
AbstractList Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration. The Community Land Model includes a large set of numerical settings that help describe attributes of the various components of the land system. Each setting has a default value, but we know that other values may also be reasonable within a certain range. We ran a large set of simulations, increasing and decreasing each setting independently to better understand its influence on model outputs, such as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including present‐day conditions and introducing (or removing) various aspects of climate change. We found that changing certain model settings could influence our results as much as the influence of climate change, itself. We also found that the most influential settings varied by geographic region. Understanding the influence of all of these settings can help us improve our model and also help us gauge our confidence in model predictions. We constructed a parameter perturbation ensemble of the Community Land Model, v5.1, perturbing 211 parameters across six forcing scenarios Parameter effects can exceed scenario effects and parameter effect rankings differ by biome and based on the forcing scenario The software infrastructure developed in our experiment has greatly reduced the human and computer time needed for constructing future PPEs
Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration.
Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration. Plain Language Summary The Community Land Model includes a large set of numerical settings that help describe attributes of the various components of the land system. Each setting has a default value, but we know that other values may also be reasonable within a certain range. We ran a large set of simulations, increasing and decreasing each setting independently to better understand its influence on model outputs, such as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including present‐day conditions and introducing (or removing) various aspects of climate change. We found that changing certain model settings could influence our results as much as the influence of climate change, itself. We also found that the most influential settings varied by geographic region. Understanding the influence of all of these settings can help us improve our model and also help us gauge our confidence in model predictions. Key Points We constructed a parameter perturbation ensemble of the Community Land Model, v5.1, perturbing 211 parameters across six forcing scenarios Parameter effects can exceed scenario effects and parameter effect rankings differ by biome and based on the forcing scenario The software infrastructure developed in our experiment has greatly reduced the human and computer time needed for constructing future PPEs
Author Fowler, M. D.
Wood, A. W.
Kennedy, D.
Lu, X.
Foster, A. C.
Levis, S.
Cheng, Y.
Wieder, W. R.
Newman, A. J.
Tang, G.
Fisher, R. A.
Oleson, K. W.
Kumar, S.
Swenson, S. C.
Kluzek, E.
Lawrence, D. M.
Shuman, J. K.
Swann, A. L. S.
Lawrence, P. J.
Sanderson, B. M.
Zarakas, C. M.
Dagon, K.
Collier, N.
Koven, C. D.
Hawkins, L. R.
Li, F.
Lombardozzi, D. L.
Kavoo, T.
Hoffman, F. M.
Luo, Y.
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0001-9494-3509
  surname: Kennedy
  fullname: Kennedy, D.
  email: djk2120@ucar.edu
  organization: University of California
– sequence: 2
  givenname: K.
  orcidid: 0000-0002-4518-8225
  surname: Dagon
  fullname: Dagon, K.
  organization: NSF NCAR
– sequence: 3
  givenname: D. M.
  orcidid: 0000-0002-2968-3023
  surname: Lawrence
  fullname: Lawrence, D. M.
  organization: NSF NCAR
– sequence: 4
  givenname: R. A.
  orcidid: 0000-0003-3260-9227
  surname: Fisher
  fullname: Fisher, R. A.
  organization: CICERO Centre for International Climate and Environmental Research
– sequence: 5
  givenname: B. M.
  surname: Sanderson
  fullname: Sanderson, B. M.
  organization: CICERO Centre for International Climate and Environmental Research
– sequence: 6
  givenname: N.
  orcidid: 0000-0002-7367-3981
  surname: Collier
  fullname: Collier, N.
  organization: Oak Ridge National Laboratory
– sequence: 7
  givenname: F. M.
  orcidid: 0000-0001-5802-4134
  surname: Hoffman
  fullname: Hoffman, F. M.
  organization: Oak Ridge National Laboratory
– sequence: 8
  givenname: C. D.
  orcidid: 0000-0002-3367-0065
  surname: Koven
  fullname: Koven, C. D.
  organization: Lawrence Berkeley National Lab
– sequence: 9
  givenname: E.
  orcidid: 0000-0002-1606-9219
  surname: Kluzek
  fullname: Kluzek, E.
  organization: NSF NCAR
– sequence: 10
  givenname: S.
  surname: Levis
  fullname: Levis, S.
  organization: NSF NCAR
– sequence: 11
  givenname: X.
  surname: Lu
  fullname: Lu, X.
  organization: Sun Yat‐sen University
– sequence: 12
  givenname: K. W.
  orcidid: 0000-0002-0057-9900
  surname: Oleson
  fullname: Oleson, K. W.
  organization: NSF NCAR
– sequence: 13
  givenname: C. M.
  orcidid: 0000-0001-9992-3785
  surname: Zarakas
  fullname: Zarakas, C. M.
  organization: University of Washington
– sequence: 14
  givenname: Y.
  orcidid: 0000-0002-5752-9605
  surname: Cheng
  fullname: Cheng, Y.
  organization: National Center for Atmospheric Research
– sequence: 15
  givenname: A. C.
  orcidid: 0000-0002-7382-0013
  surname: Foster
  fullname: Foster, A. C.
  organization: NSF NCAR
– sequence: 16
  givenname: M. D.
  orcidid: 0000-0002-7668-9655
  surname: Fowler
  fullname: Fowler, M. D.
  organization: NSF NCAR
– sequence: 17
  givenname: L. R.
  surname: Hawkins
  fullname: Hawkins, L. R.
  organization: Columbia University
– sequence: 18
  givenname: T.
  orcidid: 0000-0003-0567-1092
  surname: Kavoo
  fullname: Kavoo, T.
  organization: Auburn University
– sequence: 19
  givenname: S.
  orcidid: 0000-0002-0472-6074
  surname: Kumar
  fullname: Kumar, S.
  organization: Auburn University
– sequence: 20
  givenname: A. J.
  orcidid: 0000-0001-8796-0861
  surname: Newman
  fullname: Newman, A. J.
  organization: National Center for Atmospheric Research
– sequence: 21
  givenname: P. J.
  orcidid: 0000-0002-4843-4903
  surname: Lawrence
  fullname: Lawrence, P. J.
  organization: NSF NCAR
– sequence: 22
  givenname: F.
  orcidid: 0000-0002-3686-2257
  surname: Li
  fullname: Li, F.
  organization: Institute of Atmospheric Physics
– sequence: 23
  givenname: D. L.
  orcidid: 0000-0003-3557-7929
  surname: Lombardozzi
  fullname: Lombardozzi, D. L.
  organization: Colorado State University
– sequence: 24
  givenname: Y.
  orcidid: 0000-0002-4903-3095
  surname: Luo
  fullname: Luo, Y.
  organization: Cornell University
– sequence: 25
  givenname: J. K.
  orcidid: 0000-0003-2588-2161
  surname: Shuman
  fullname: Shuman, J. K.
  organization: National Aeronautics and Space Administration Ames Research Center
– sequence: 26
  givenname: A. L. S.
  orcidid: 0000-0001-8513-1074
  surname: Swann
  fullname: Swann, A. L. S.
  organization: University of Washington
– sequence: 27
  givenname: S. C.
  orcidid: 0000-0002-2923-1203
  surname: Swenson
  fullname: Swenson, S. C.
  organization: NSF NCAR
– sequence: 28
  givenname: G.
  orcidid: 0000-0002-0923-583X
  surname: Tang
  fullname: Tang, G.
  organization: NSF NCAR
– sequence: 29
  givenname: W. R.
  orcidid: 0000-0001-7116-1985
  surname: Wieder
  fullname: Wieder, W. R.
  organization: University of Colorado
– sequence: 30
  givenname: A. W.
  orcidid: 0000-0002-6231-0085
  surname: Wood
  fullname: Wood, A. W.
  organization: NSF NCAR
BookMark eNp90M1Kw0AQAOBFKthWbz7AgtembvY_x1LqHy0tWD0JYZNOMCXZrbsJ0puP4DP6JKbUQ08e5ofhYwZmgHrWWUDoOibjmNDklhLKF8-EcBWLM9SPE04jyqXsnfQXaBDClhApJRV99La08PP1bZpD6mJd1oBXxpsaGvB4Bb5pfWaa0lk8swHqrALsCty8A566um5t2ezx3NgNXrgNVCP8Cj4ctBjHl-i8MFWAq786RC93s_X0IZov7x-nk3mUU6F1FBuZawZ5QUWiGVPG0IxrzQwkSgrK-YbyBLoZVUkhQIpcqkyznMoiA2UIG6Kb496ddx8thCbdutbb7mTKKGeKKyWSTo2OKvcuBA9FuvNlbfw-jUl6-F96-r-OsyP_LCvY_2vTp8lipkgsNPsFPKl0Iw
Cites_doi 10.5194/gmd‐17‐1059‐2024
10.1002/2014WR015820
10.1029/2018MS001476
10.1016/j.ecolmodel.2005.04.008
10.5194/essd‐14‐4811‐2022
10.1088/1748‐9326/aacf68
10.1038/s41586‐021‐03939‐9
10.1002/2014JG002660
10.1038/35041539
10.1029/2022MS003312
10.5194/esd‐12‐1393‐2021
10.1016/j.jcp.2020.109716
10.1029/2020MS002217
10.1175/1520‐0477(1995)076〈0489:TPFIOL〉2.0.CO;2
10.1029/2024GL108372
10.1007/s003820050309
10.1175/JCLI‐D‐21‐0434.1
10.1016/S0921‐8181(98)00044‐7
10.1175/JCLI‐D‐18‐0812.1
10.5194/bg‐15‐5801‐2018
10.1007/s00382‐013‐1896‐4
10.1175/JCLI3800.1
10.1111/pce.13639
10.1029/2020RG000711
10.5194/gmd‐17‐5779‐2024
10.1029/2022MS003008
10.5194/bg‐17‐4173‐2020
10.1088/1748‐9326/aa66b8
10.1175/jcli‐d‐12‐00579.1
10.1088/1748‐9326/ad6019
10.1038/nature02771
10.5061/dryad.j6q573nsn
10.1029/2018MS001453
10.1038/s43247‐024‐01504‐6
10.5194/gmd‐15‐9127‐2022
10.1029/2017MS001237
10.5194/gmd‐9‐1937‐2016
10.1088/1748‐9326/7/2/024002
10.1029/2024GB008102
10.1029/2020GB006758
10.1029/2011GB004185
10.1175/1520‐0493(2000)128〈0301:SOABGH〉2.0.CO;2
10.1038/nclimate2550
10.5194/ascmo‐6‐223‐2020
10.1175/2008JCLI1869.1
10.1073/pnas.2202075119
10.5194/gmd‐10‐1789‐2017
10.1029/2021GL095084
10.1016/j.agrformet.2024.109929
10.5194/gmd‐11‐4739‐2018
10.1029/2020MS002105
10.1007/s10980‐013‐9902‐0
10.5194/gmd‐14‐3361‐2021
10.1029/2023MS003625
10.1029/2022WR032204
10.1002/2016JD025097
10.1007/s00382‐020‐05608‐5
10.5194/gmd‐15‐1913‐2022
10.1029/2019MS001892
10.1111/gcb.16623
10.1175/BAMS‐D‐15‐00135.1
10.1029/2018MS001354
10.1029/2018GB006141
10.1029/2018MS001583
10.1029/2018MS001577
10.1111/gcb.14904
10.5194/esd‐7‐917‐2016
10.5194/gmd‐9‐1827‐2016
10.5194/esd‐13‐885‐2022
10.5194/gmd‐13‐55‐2020
10.1038/s41597‐023‐02049‐7
10.1175/EI110.1
10.1029/2018JD028927
ContentType Journal Article
Copyright 2025 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.1029/2024MS004715
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage n/a
ExternalDocumentID 10_1029_2024MS004715
JAME70158
Genre researchArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2022YFE0106500
– fundername: Office of Biological & Environmental Research
– fundername: Regional and Global Model Analysis
– fundername: Environmental System Modeling Program
  funderid: DE‐SC0022070
– fundername: National Center for Atmospheric Research
– fundername: National Science Foundation
  funderid: 1852977; 1553715; 2330096; 1947282
– fundername: U.S. Department of Energy
– fundername: Office of Science
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAMMB
AAZKR
ABDBF
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
RIG
RNS
TUS
WIN
~OA
AAYXX
CITATION
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2588-1a6c83ecf2598337aa2b4883ae9765244d249e2b4279f5e65c67b83c26fbe7a03
IEDL.DBID BENPR
ISSN 1942-2466
IngestDate Wed Aug 27 01:37:09 EDT 2025
Thu Aug 14 00:04:59 EDT 2025
Wed Aug 27 10:01:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2588-1a6c83ecf2598337aa2b4883ae9765244d249e2b4279f5e65c67b83c26fbe7a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0472-6074
0000-0003-3260-9227
0000-0002-4903-3095
0000-0001-8796-0861
0000-0002-3686-2257
0000-0001-5802-4134
0000-0001-8513-1074
0000-0002-4518-8225
0000-0002-2923-1203
0000-0002-4843-4903
0000-0001-9992-3785
0000-0002-7367-3981
0000-0002-2968-3023
0000-0002-0057-9900
0000-0003-3557-7929
0000-0001-9494-3509
0000-0002-3367-0065
0000-0002-6231-0085
0000-0002-7382-0013
0000-0002-7668-9655
0000-0001-7116-1985
0000-0002-5752-9605
0000-0003-2588-2161
0000-0002-1606-9219
0000-0002-0923-583X
0000-0003-0567-1092
OpenAccessLink https://www.proquest.com/docview/3243747759?pq-origsite=%requestingapplication%
PQID 3243747759
PQPubID 616667
PageCount 17
ParticipantIDs proquest_journals_3243747759
crossref_primary_10_1029_2024MS004715
wiley_primary_10_1029_2024MS004715_JAME70158
PublicationCentury 2000
PublicationDate August 2025
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 28
2024; 348
2019; 11
2018; 123
1995; 76
2020; 17
2014; 27
2020; 13
2020; 12
2025
1970
2024; 38
2000; 408
2021; 35
2020; 6
1998; 19
2024; 5
2023; 29
2005; 189
2021; 598
2000; 128
1999; 15
2022; 35
2008; 21
2012; 26
2014; 119
2015; 5
2023; 59
2023; 15
2015; 51
2019; 33
2019; 32
2021; 424
2013; 41
2024; 51
2016; 121
2006; 19
2022; 119
2024; 17
2022; 49
2024; 19
2021; 14
2021; 13
2004; 430
2023a; 10
2016; 7
2021; 59
2021; 12
2021; 56
2019; 42
2005; 9
2017; 98
2017; 10
2017; 12
2022; 13
2022; 14
2020; 26
2022; 15
2018; 11
2012; 7
2023b; 15
2018; 10
2016; 9
2018; 15
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Whittaker R. H. (e_1_2_8_65_1) 1970
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 59
  issue: 1
  year: 2023
  article-title: Moving land models toward more actionable science: A novel application of the community terrestrial systems model across Alaska and the Yukon River basin
  publication-title: Water Resources Research
– volume: 51
  start-page: 716
  issue: 1
  year: 2015
  end-page: 728
  article-title: Are we unnecessarily constraining the agility of complex process‐based models?
  publication-title: Water Resources Research
– volume: 12
  start-page: 1393
  issue: 4
  year: 2021
  end-page: 1411
  article-title: Ubiquity of human‐induced changes in climate variability
  publication-title: Earth System Dynamics
– volume: 56
  start-page: 3437
  issue: 11
  year: 2021
  end-page: 3471
  article-title: A perturbed parameter ensemble of hadgem3‐gc3.05 coupled model projections: Part 2: Global performance and future changes
  publication-title: Climate Dynamics
– volume: 119
  issue: 47
  year: 2022
  article-title: Are general circulation models obsolete?
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  issue: 1
  year: 2024
  article-title: No constraint on long‐term tropical land carbon‐climate feedback uncertainties from interannual variability
  publication-title: Communications Earth and Environment
– volume: 12
  issue: 11
  year: 2020
  article-title: Full implementation of matrix approach to biogeochemistry module of CLM5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 128
  start-page: 301
  issue: 2
  year: 2000
  end-page: 321
  article-title: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d)
  publication-title: Monthly Weather Review
– volume: 17
  start-page: 4173
  issue: 16
  year: 2020
  end-page: 4222
  article-title: Carbon–concentration and carbon–climate feedbacks in cmip6 models and their comparison to cmip5 models
  publication-title: Biogeosciences
– volume: 19
  issue: 10
  year: 2024
  article-title: Effects of land surface model resolution on fluxes and soil state in the arctic
  publication-title: Environmental Research Letters
– volume: 11
  start-page: 4739
  issue: 12
  year: 2018
  end-page: 4754
  article-title: Land surface model parameter optimisation using in situ flux data: Comparison of gradient‐based versus random search algorithms, a case study using ORCHIDEE v1.9.5.2
  publication-title: Geoscientific Model Development
– volume: 15
  start-page: 5801
  issue: 19
  year: 2018
  end-page: 5830
  article-title: Linking big models to big data: Efficient ecosystem model calibration through Bayesian model emulation
  publication-title: Biogeosciences
– volume: 348
  year: 2024
  article-title: Ameriflux: Its impact on our understanding of the “breathing of the biosphere”, after 25 years
  publication-title: Agricultural and Forest Meteorology
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  end-page: 1958
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– volume: 26
  issue: 3
  year: 2012
  article-title: On the capability of monte carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models
  publication-title: Global Biogeochemical Cycles
– volume: 408
  start-page: 184
  issue: 6809
  year: 2000
  end-page: 187
  article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model
  publication-title: Nature
– volume: 12
  issue: 4
  year: 2020
  article-title: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 7
  start-page: 917
  issue: 4
  year: 2016
  end-page: 935
  article-title: The impact of structural error on parameter constraint in a climate model
  publication-title: Earth System Dynamics
– volume: 12
  issue: 4
  year: 2017
  article-title: Reducing uncertainty in projections of terrestrial carbon uptake
  publication-title: Environmental Research Letters
– volume: 10
  start-page: 2731
  issue: 11
  year: 2018
  end-page: 2754
  article-title: The international land model benchmarking (ILAMB) system: Design, theory, and implementation
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 28
  start-page: 1567
  issue: 8
  year: 2013
  end-page: 1586
  article-title: Representativeness‐based sampling network design for the state of Alaska
  publication-title: Landscape Ecology
– volume: 19
  start-page: 115
  issue: 1
  year: 1998
  end-page: 135
  article-title: The project for intercomparison of Land‐surface parameterization schemes (PILPS) phase 2(c) red–arkansas river basin experiment:: 1. Experiment description and summary intercomparisons
  publication-title: Global and Planetary Change
– volume: 13
  issue: 3
  year: 2021
  article-title: Process‐based climate model development harnessing machine learning: I. A calibration tool for parameterization improvement
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 35
  start-page: 2585
  issue: 8
  year: 2022
  end-page: 2602
  article-title: Does model calibration reduce uncertainty in climate projections?
  publication-title: Journal of Climate
– year: 2025
  article-title: One at a time parameter perturbation ensemble of the community land model, version 5.1
  publication-title: Dryad
– volume: 51
  issue: 21
  year: 2024
  article-title: Land processes can substantially impact the mean climate state
  publication-title: Geophysical Research Letters
– volume: 98
  start-page: 589
  issue: 3
  year: 2017
  end-page: 602
  article-title: The art and science of climate model tuning
  publication-title: Bulletin of the American Meteorological Society
– volume: 41
  start-page: 1703
  issue: 7–8
  year: 2013
  end-page: 1729
  article-title: History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble
  publication-title: Climate Dynamics
– volume: 17
  start-page: 5779
  issue: 15
  year: 2024
  end-page: 5801
  article-title: Exploring the potential of history matching for land surface model calibration
  publication-title: Geoscientific Model Development
– volume: 10
  start-page: 1790
  issue: 8
  year: 2018
  end-page: 1808
  article-title: Matrix‐based sensitivity assessment of soil organic carbon storage: A case study from the orchidee‐mict model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 13
  start-page: 885
  issue: 2
  year: 2022
  end-page: 909
  article-title: Multi‐century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios
  publication-title: Earth System Dynamics
– volume: 17
  start-page: 1059
  issue: 3
  year: 2024
  end-page: 1089
  article-title: Constraining the carbon cycle in jules‐es‐1.0
  publication-title: Geoscientific Model Development
– volume: 32
  start-page: 5725
  issue: 18
  year: 2019
  end-page: 5744
  article-title: Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and uncoupled land–atmosphere system
  publication-title: Journal of Climate
– volume: 59
  issue: 1
  year: 2021
  article-title: Satellite observations of the tropical terrestrial carbon balance and interactions with the water cycle during the 21st century
  publication-title: Reviews of Geophysics
– volume: 119
  start-page: 1684
  issue: 8
  year: 2014
  end-page: 1697
  article-title: Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocation
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 9
  start-page: 1827
  issue: 5
  year: 2016
  end-page: 1851
  article-title: Inconsistent strategies to spin up models in cmip5: Implications for ocean biogeochemical model performance assessment
  publication-title: Geoscientific Model Development
– volume: 35
  start-page: 1
  issue: 7
  year: 2021
  end-page: 23
  article-title: Global coordination in plant physiological and rooting strategies in response to water stress
  publication-title: Global Biogeochemical Cycles
– volume: 14
  start-page: 3361
  issue: 6
  year: 2021
  end-page: 3382
  article-title: Addressing biases in Arctic–boreal carbon cycling in the community land model version 5
  publication-title: Geoscientific Model Development
– volume: 189
  start-page: 25
  issue: 1
  year: 2005
  end-page: 48
  article-title: Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model
  publication-title: Ecological Modelling
– volume: 33
  start-page: 1289
  issue: 10
  year: 2019
  end-page: 1309
  article-title: Beyond static benchmarking: Using experimental manipulations to evaluate land model assumptions
  publication-title: Global Biogeochemical Cycles
– volume: 38
  issue: 7
  year: 2024
  article-title: Trends and drivers of terrestrial sources and sinks of carbon dioxide: An overview of the trendy project
  publication-title: Global Biogeochemical Cycles
– volume: 10
  start-page: 1789
  issue: 4
  year: 2017
  end-page: 1816
  article-title: Tuning without over‐tuning: Parametric uncertainty quantification for the NEMO ocean model
  publication-title: Geoscientific Model Development
– volume: 19
  start-page: 3337
  issue: 14
  year: 2006
  end-page: 3353
  article-title: Climate–carbon cycle feedback analysis: Results from the c4mip model intercomparison
  publication-title: Journal of Climate
– volume: 27
  start-page: 511
  issue: 2
  year: 2014
  end-page: 526
  article-title: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks
  publication-title: Journal of Climate
– volume: 76
  start-page: 489
  issue: 4
  year: 1995
  end-page: 504
  article-title: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3*
  publication-title: Bulletin of the American Meteorological Society
– volume: 7
  issue: 2
  year: 2012
  article-title: High sensitivity of future global warming to land carbon cycle processes
  publication-title: Environmental Research Letters
– volume: 13
  start-page: 55
  issue: 1
  year: 2020
  end-page: 69
  article-title: The land variational ensemble data assimilation framework: LAVENDAR v1.0.0
  publication-title: Geoscientific Model Development
– volume: 10
  start-page: 187
  issue: 1
  year: 2023a
  article-title: Characterizing uncertainty in community land model version 5 hydrological applications in the United States
  publication-title: Scientific Data
– volume: 15
  start-page: 1913
  issue: 5
  year: 2022
  end-page: 1929
  article-title: Emulation of high‐resolution land surface models using sparse gaussian processes with application to JULES
  publication-title: Geoscientific Model Development
– volume: 21
  start-page: 2384
  issue: 11
  year: 2008
  end-page: 2400
  article-title: Constraints on model response to greenhouse gas forcing and the role of subgrid‐scale processes
  publication-title: Journal of Climate
– volume: 6
  start-page: 223
  issue: 2
  year: 2020
  end-page: 244
  article-title: A machine learning approach to emulation and biophysical parameter estimation with the community land model, version 5
  publication-title: Advances in Statistical Climatology, Meteorology and Oceanography
– volume: 123
  start-page: 13046
  issue: 23
  year: 2018
  end-page: 13073
  article-title: Parametric sensitivity and uncertainty quantification in the version 1 of e3sm atmosphere model based on short perturbed parameter ensemble simulations
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 9
  start-page: 1
  issue: 10
  year: 2005
  end-page: 27
  article-title: Using clustered climate regimes to analyze and compare predictions from fully coupled general circulation models
  publication-title: Earth Interactions
– volume: 121
  start-page: 10676
  issue: 18
  year: 2016
  end-page: 10700
  article-title: The impact of standard and hard‐coded parameters on the hydrologic fluxes in the noah‐mp land surface model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 14
  issue: 7
  year: 2022
  article-title: Matrix approach to land carbon cycle modeling
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 598
  start-page: 468
  issue: 7881
  year: 2021
  end-page: 472
  article-title: The three major axes of terrestrial ecosystem function
  publication-title: Nature
– volume: 15
  start-page: 9127
  issue: 24
  year: 2022
  end-page: 9155
  article-title: The multiple snow data assimilation system (MuSA v1.0)
  publication-title: Geoscientific Model Development
– volume: 13
  issue: 7
  year: 2018
  article-title: Triose phosphate limitation in photosynthesis models reduces leaf photosynthesis and global terrestrial carbon storage
  publication-title: Environmental Research Letters
– volume: 11
  start-page: 83
  issue: 1
  year: 2019
  end-page: 98
  article-title: The impact of biomass heat storage on the canopy energy balance and atmospheric stability in the community land model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 42
  start-page: 3241
  issue: 12
  year: 2019
  end-page: 3252
  article-title: No evidence for triose phosphate limitation of light‐saturated leaf photosynthesis under current atmospheric co2 concentration
  publication-title: Plant, Cell and Environment
– volume: 49
  issue: 9
  year: 2022
  article-title: Investigating parametric dependence of climate feedbacks in the atmospheric component of cnrm‐cm6‐1
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 2787
  issue: 8
  year: 2019
  end-page: 2813
  article-title: Parametric sensitivity of vegetation dynamics in the triffid model and the associated uncertainty in projected climate change impacts on western u.s. forests
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 15
  issue: 5
  year: 2023b
  article-title: Large ensemble diagnostic evaluation of hydrologic parameter uncertainty in the community land model version 5 (clm5)
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 1970
– volume: 29
  start-page: 3221
  issue: 11
  year: 2023
  end-page: 3234
  article-title: Machine learning for accelerating process‐based computation of land biogeochemical cycles
  publication-title: Global Change Biology
– volume: 15
  issue: 8
  year: 2023
  article-title: Matrix approach to accelerate spin‐up of clm5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 430
  start-page: 768
  issue: 7001
  year: 2004
  end-page: 772
  article-title: Quantification of modelling uncertainties in a large ensemble of climate change simulations
  publication-title: Nature
– volume: 5
  start-page: 459
  issue: 5
  year: 2015
  end-page: 464
  article-title: Optimal stomatal behaviour around the world
  publication-title: Nature Climate Change
– volume: 424
  year: 2021
  article-title: Calibrate, emulate, sample
  publication-title: Journal of Computational Physics
– volume: 12
  issue: 7
  year: 2020
  article-title: LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 26
  start-page: 119
  issue: 1
  year: 2020
  end-page: 188
  article-title: Try plant trait database – Enhanced coverage and open access
  publication-title: Global Change Biology
– volume: 11
  start-page: 4245
  issue: 12
  year: 2019
  end-page: 4287
  article-title: The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 15
  start-page: 673
  issue: 9
  year: 1999
  end-page: 684
  article-title: Key results and implications from phase 1(c) of the project for intercomparison of Land‐surface parametrization schemes
  publication-title: Climate Dynamics
– volume: 14
  start-page: 4811
  issue: 11
  year: 2022
  end-page: 4900
  article-title: Global carbon budget 2022
  publication-title: Earth System Science Data
– ident: e_1_2_8_45_1
  doi: 10.5194/gmd‐17‐1059‐2024
– ident: e_1_2_8_47_1
  doi: 10.1002/2014WR015820
– ident: e_1_2_8_62_1
  doi: 10.1029/2018MS001476
– ident: e_1_2_8_64_1
  doi: 10.1016/j.ecolmodel.2005.04.008
– ident: e_1_2_8_23_1
  doi: 10.5194/essd‐14‐4811‐2022
– ident: e_1_2_8_41_1
  doi: 10.1088/1748‐9326/aacf68
– ident: e_1_2_8_48_1
  doi: 10.1038/s41586‐021‐03939‐9
– ident: e_1_2_8_10_1
  doi: 10.1002/2014JG002660
– ident: e_1_2_8_15_1
  doi: 10.1038/35041539
– ident: e_1_2_8_72_1
  doi: 10.1029/2022MS003312
– ident: e_1_2_8_55_1
  doi: 10.5194/esd‐12‐1393‐2021
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jcp.2020.109716
– ident: e_1_2_8_14_1
  doi: 10.1029/2020MS002217
– ident: e_1_2_8_25_1
  doi: 10.1175/1520‐0477(1995)076〈0489:TPFIOL〉2.0.CO;2
– ident: e_1_2_8_74_1
  doi: 10.1029/2024GL108372
– ident: e_1_2_8_52_1
  doi: 10.1007/s003820050309
– ident: e_1_2_8_63_1
  doi: 10.1175/JCLI‐D‐21‐0434.1
– ident: e_1_2_8_69_1
  doi: 10.1016/S0921‐8181(98)00044‐7
– ident: e_1_2_8_35_1
  doi: 10.1175/JCLI‐D‐18‐0812.1
– ident: e_1_2_8_19_1
  doi: 10.5194/bg‐15‐5801‐2018
– ident: e_1_2_8_68_1
  doi: 10.1007/s00382‐013‐1896‐4
– ident: e_1_2_8_21_1
  doi: 10.1175/JCLI3800.1
– volume-title: Communities and ecosystems
  year: 1970
  ident: e_1_2_8_65_1
– ident: e_1_2_8_34_1
  doi: 10.1111/pce.13639
– ident: e_1_2_8_70_1
  doi: 10.1029/2020RG000711
– ident: e_1_2_8_54_1
  doi: 10.5194/gmd‐17‐5779‐2024
– ident: e_1_2_8_44_1
  doi: 10.1029/2022MS003008
– ident: e_1_2_8_3_1
  doi: 10.5194/bg‐17‐4173‐2020
– ident: e_1_2_8_42_1
  doi: 10.1088/1748‐9326/aa66b8
– ident: e_1_2_8_22_1
  doi: 10.1175/jcli‐d‐12‐00579.1
– ident: e_1_2_8_57_1
  doi: 10.1088/1748‐9326/ad6019
– ident: e_1_2_8_49_1
  doi: 10.1038/nature02771
– ident: e_1_2_8_32_1
  doi: 10.5061/dryad.j6q573nsn
– ident: e_1_2_8_20_1
  doi: 10.1029/2018MS001453
– ident: e_1_2_8_39_1
  doi: 10.1038/s43247‐024‐01504‐6
– ident: e_1_2_8_2_1
  doi: 10.5194/gmd‐15‐9127‐2022
– ident: e_1_2_8_30_1
  doi: 10.1029/2017MS001237
– ident: e_1_2_8_18_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_8_9_1
  doi: 10.1088/1748‐9326/7/2/024002
– ident: e_1_2_8_60_1
  doi: 10.1029/2024GB008102
– ident: e_1_2_8_40_1
  doi: 10.1029/2020GB006758
– ident: e_1_2_8_75_1
  doi: 10.1029/2011GB004185
– ident: e_1_2_8_58_1
  doi: 10.1175/1520‐0493(2000)128〈0301:SOABGH〉2.0.CO;2
– ident: e_1_2_8_38_1
  doi: 10.1038/nclimate2550
– ident: e_1_2_8_17_1
  doi: 10.5194/ascmo‐6‐223‐2020
– ident: e_1_2_8_56_1
  doi: 10.1175/2008JCLI1869.1
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.2202075119
– ident: e_1_2_8_67_1
  doi: 10.5194/gmd‐10‐1789‐2017
– ident: e_1_2_8_50_1
  doi: 10.1029/2021GL095084
– ident: e_1_2_8_6_1
  doi: 10.1016/j.agrformet.2024.109929
– ident: e_1_2_8_7_1
  doi: 10.5194/gmd‐11‐4739‐2018
– ident: e_1_2_8_43_1
  doi: 10.1029/2020MS002105
– ident: e_1_2_8_27_1
  doi: 10.1007/s10980‐013‐9902‐0
– ident: e_1_2_8_8_1
  doi: 10.5194/gmd‐14‐3361‐2021
– ident: e_1_2_8_37_1
  doi: 10.1029/2023MS003625
– ident: e_1_2_8_11_1
  doi: 10.1029/2022WR032204
– ident: e_1_2_8_16_1
  doi: 10.1002/2016JD025097
– ident: e_1_2_8_71_1
  doi: 10.1007/s00382‐020‐05608‐5
– ident: e_1_2_8_4_1
  doi: 10.5194/gmd‐15‐1913‐2022
– ident: e_1_2_8_29_1
  doi: 10.1029/2019MS001892
– ident: e_1_2_8_61_1
  doi: 10.1111/gcb.16623
– ident: e_1_2_8_28_1
  doi: 10.1175/BAMS‐D‐15‐00135.1
– ident: e_1_2_8_13_1
  doi: 10.1029/2018MS001354
– ident: e_1_2_8_66_1
  doi: 10.1029/2018GB006141
– ident: e_1_2_8_36_1
  doi: 10.1029/2018MS001583
– ident: e_1_2_8_24_1
  doi: 10.1029/2018MS001577
– ident: e_1_2_8_31_1
  doi: 10.1111/gcb.14904
– ident: e_1_2_8_46_1
  doi: 10.5194/esd‐7‐917‐2016
– ident: e_1_2_8_59_1
  doi: 10.5194/gmd‐9‐1827‐2016
– ident: e_1_2_8_33_1
  doi: 10.5194/esd‐13‐885‐2022
– ident: e_1_2_8_51_1
  doi: 10.5194/gmd‐13‐55‐2020
– ident: e_1_2_8_73_1
  doi: 10.1038/s41597‐023‐02049‐7
– ident: e_1_2_8_26_1
  doi: 10.1175/EI110.1
– ident: e_1_2_8_53_1
  doi: 10.1029/2018JD028927
SSID ssj0066625
Score 2.3550863
Snippet Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Automation
Biogeochemistry
Calibration
Carbon
Climate change
CLM5.1
community land model
Hydrology
Land use planning
Nitrogen
Parameter estimation
parameter perturbation experiment
Parameters
PPE
Simulation
Software
Uncertainty
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF6kXryIvxitsgf11Gizu8kmRyktRawWtNCDEHazGxBqKm08ePMRfEafxJntVutF8JBAQjaE2Z2dbyYz3xByqoQ0GZjdMCuNCUWSpKFCQgDLCiOKUjKusDh5cJv0R-J6HI99wA1rYRb8EN8BN9QMt1-jgis992QDyJEJXrsY3CPbIdaYr2N1Lab0MTFc7sSAzF3TVfDTWcjgO3ziO4y_XB392yT94MxVtOrMTW-LbHqcSK8WE7tN1my1Q4IBQNzpzEXC6TntTJ4Ab7qrXfJ4V9nP9w9V4wkOrO2gQ4W5VyA6OrQzMC7azQPtVnP7rCeWTksKAJD6KpH6jd6oylDsjzZpUR9Ko_FFtEdGve5Dpx_61glhwWJY-5FKipTbogTvJuVcKsU0qCpXFuBHDCbdgNtl4R6TWRnbJC4SqVNesKTUVqo23yeNalrZA0INBy_Wxsirk4qIKcXbzJjStCMdqYjpgJwtpZe_LBgycvdnm2X5qpQD0lyKNvd6Ms858iEKKeMsIC0n7j_fkYMl6kpAMOnh_x4_IhsMG_e6zL0madSzV3sMaKLWJ27JfAH_4MHh
  priority: 102
  providerName: Wiley-Blackwell
Title One‐at‐a‐Time Parameter Perturbation Ensemble of the Community Land Model, Version 5.1
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024MS004715
https://www.proquest.com/docview/3243747759
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED3RdmFBfIpCqTwAUwONHcfJhKBqVSFaKqBSB6TIiR0JqaSlLQMbP4HfyC_h7LpqJ4ZESgYPz_a9d-fzHcC5DISKkXa9OFfKC8Iw8qQpCKBppoIsF5RJczm51w-7w-B-xEcu4DZ3aZUrm2gNtZpkJkZ-zUzlvEAIHt9MPzzTNcqcrroWGiWooAmOojJU7tr9wdPKFqM2p9yluzdpbDz9oPdsKiSaNribRLRWl5sa1ZJMZxd2nDokt8vp3IMtXexDtYfCdjKz8W9ySVrjN1SZ9usAXh8L_fv9IxfmhY-50UEG0mRcIWBkoGdIKalFn7SLuX5Px5pMcoKyj7i7IYsv8iALRUxXtHGDuAAa4Vf-IQw77ZdW13MNE7yMclzxvgyziOksR58mYkxISVPcoExqFB0ciVyhs6XxHxVxznXIs1CkEctomKdayCY7gnIxKfQxEMXQd9XcVNOJAp9KyZpUqVw1_dSXPk2rcLFCL5ku62Ik9jybxskmylWoraBN3O6YJ-u5rELDwv3vGAnyT1ugbolO_h_tFLapac9r8_NqUF7MPvUZaoZFWocSDQZ1tzzq1vP-A58pwr8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcAFsYqy-gCcGkjsOE4OCLG0KnShYpE4IAUndiSkkkJbhLjxCXwJH8WXME4T0RO3HhIpOfgwfvF7M5kFYFe6QgVIu1aQKGW5nudb0jQE0DRWbpwIyqQpTm61vfqde3nP76fgu6iFMWmVxZmYHdSqF5sY-SEznfNcIXhw_PJqmalR5u9qMUJjBIuG_nhHl21wdHGO-7tHaa16e1a38qkCVkw5wsKRXuwzHSco_H3GhJQ0QhQzqZGZObKdQo9E4zsqgoRrj8eeiHwWUy-JtJA2w3WnYcZlnk1LMHNabXeui7MffQHK8_R6mwYmsuC2bkxHRjN2d5z4_tTsuCbOSK22APO5GiUnI_gswpROl6DcQiHd62fxdrJPzrpPqGqzp2V4uEr1z-eXHJobXqaChHSkyfDCDSId3UcKi7LdJtV0oJ-jria9hKDMJHktyvCDNGWqiJnC1q2QPGBH-IGzAncTMeUqlNJeqteAKIa-suame4_vOlRKZlOlEmU7kSMdGpVhr7Be-DLqwxFm_89pEI5buQybhWnD_GschH_YKUMlM_e_a4TId1WBOslf_3-1HZit37aaYfOi3diAOWpGA2e5gZtQGvbf9BbqlWG0nYOEwOOkcfkLqGn8kA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB6FRKq4VLQUEQh0D8AJQ7zr9doHVFFIBOSHiB-JA5JZe9dSpeCEJFWVWx-hz9PH6ZN0xrFFTtw42JJ92MPs5_2-Gc8PwJ72lAmRdp0wNcbxfD9wNDUEsDwxXpIqLjQVJ_f6_sW9d_UgHyrwt6yFobTK8kzMD2ozSihGfiyoc56nlAyP0yItYnDe_jZ-cWiCFP1pLcdpLCDSsfNf6L5NTy7Pca_3OW-37s4unGLCgJNwiRBxtZ8EwiYpOgGBEEprHiOihbbI0hKZz6B3YvEdV2EqrS8TX8WBSLifxlbppsB1V6CmyCuqQu17qz-4KXkA_QIui1T7Jg8pyuD1bqk7I43gXSbBV2W7rI9zgmuvwcdCmbLTBZQ-QcVmn6HeQ1E9muSxd3bAzoY_UOHmT-vweJ3Zf7__6Bnd8KJqEjbQlO2Fm8UGdoJ0Fuc7z1rZ1D7HQ8tGKUPJyYq6lNmcdXVmGE1kGx6yInjH5JH7Be7fxZQbUM1Gmd0EZgT6zVZSJ5_Ac7nWosmNSU3TjV3t8rgO-6X1ovGiJ0eU_0vnYbRs5To0StNGxZc5jV5xVIfD3NxvrhEh97UUaqZg6-3VvsIHxGPUvex3tmGV05TgPE2wAdXZ5KfdQekyi3cLjDB4em9Y_gc1_gDU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90at%E2%80%90a%E2%80%90Time+Parameter+Perturbation+Ensemble+of+the+Community+Land+Model%2C+Version+5.1&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Kennedy%2C+D&rft.au=Dagon%2C+K&rft.au=Lawrence%2C+D.+M&rft.au=Fisher%2C+R.+A&rft.date=2025-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1942-2466&rft.volume=17&rft.issue=8&rft_id=info:doi/10.1029%2F2024MS004715&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon