One‐at‐a‐Time Parameter Perturbation Ensemble of the Community Land Model, Version 5.1
Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemis...
Saved in:
Published in | Journal of advances in modeling earth systems Vol. 17; no. 8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration.
Plain Language Summary
The Community Land Model includes a large set of numerical settings that help describe attributes of the various components of the land system. Each setting has a default value, but we know that other values may also be reasonable within a certain range. We ran a large set of simulations, increasing and decreasing each setting independently to better understand its influence on model outputs, such as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including present‐day conditions and introducing (or removing) various aspects of climate change. We found that changing certain model settings could influence our results as much as the influence of climate change, itself. We also found that the most influential settings varied by geographic region. Understanding the influence of all of these settings can help us improve our model and also help us gauge our confidence in model predictions.
Key Points
We constructed a parameter perturbation ensemble of the Community Land Model, v5.1, perturbing 211 parameters across six forcing scenarios
Parameter effects can exceed scenario effects and parameter effect rankings differ by biome and based on the forcing scenario
The software infrastructure developed in our experiment has greatly reduced the human and computer time needed for constructing future PPEs |
---|---|
AbstractList | Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration.
The Community Land Model includes a large set of numerical settings that help describe attributes of the various components of the land system. Each setting has a default value, but we know that other values may also be reasonable within a certain range. We ran a large set of simulations, increasing and decreasing each setting independently to better understand its influence on model outputs, such as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including present‐day conditions and introducing (or removing) various aspects of climate change. We found that changing certain model settings could influence our results as much as the influence of climate change, itself. We also found that the most influential settings varied by geographic region. Understanding the influence of all of these settings can help us improve our model and also help us gauge our confidence in model predictions.
We constructed a parameter perturbation ensemble of the Community Land Model, v5.1, perturbing 211 parameters across six forcing scenarios Parameter effects can exceed scenario effects and parameter effect rankings differ by biome and based on the forcing scenario The software infrastructure developed in our experiment has greatly reduced the human and computer time needed for constructing future PPEs Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration. Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model computational costs. We constructed a large parameter perturbation ensemble (PPE) for the Community Land Model version 5.1 with biogeochemistry configuration (CLM5.1‐BGC). We performed more than 2,000 simulations perturbing 211 parameters across six forcing scenarios. This provides an expansive data set, which can be used to identify the most influential parameters on a wide range of output variables globally, by biome, or by plant functional type. We found that parameter effects can exceed scenario effects and that a small number of parameters explains a large fraction of variance across our ensemble. The most important parameters can differ regionally and also based on the forcing scenario. The software infrastructure developed for this experiment has greatly reduced the human and computer time needed for CLM PPEs, which can facilitate routine investigation of parameter sensitivity and uncertainty, as well as automated calibration. Plain Language Summary The Community Land Model includes a large set of numerical settings that help describe attributes of the various components of the land system. Each setting has a default value, but we know that other values may also be reasonable within a certain range. We ran a large set of simulations, increasing and decreasing each setting independently to better understand its influence on model outputs, such as plant productivity and the water cycle. We repeated these experiments across a range of scenarios, including present‐day conditions and introducing (or removing) various aspects of climate change. We found that changing certain model settings could influence our results as much as the influence of climate change, itself. We also found that the most influential settings varied by geographic region. Understanding the influence of all of these settings can help us improve our model and also help us gauge our confidence in model predictions. Key Points We constructed a parameter perturbation ensemble of the Community Land Model, v5.1, perturbing 211 parameters across six forcing scenarios Parameter effects can exceed scenario effects and parameter effect rankings differ by biome and based on the forcing scenario The software infrastructure developed in our experiment has greatly reduced the human and computer time needed for constructing future PPEs |
Author | Fowler, M. D. Wood, A. W. Kennedy, D. Lu, X. Foster, A. C. Levis, S. Cheng, Y. Wieder, W. R. Newman, A. J. Tang, G. Fisher, R. A. Oleson, K. W. Kumar, S. Swenson, S. C. Kluzek, E. Lawrence, D. M. Shuman, J. K. Swann, A. L. S. Lawrence, P. J. Sanderson, B. M. Zarakas, C. M. Dagon, K. Collier, N. Koven, C. D. Hawkins, L. R. Li, F. Lombardozzi, D. L. Kavoo, T. Hoffman, F. M. Luo, Y. |
Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0001-9494-3509 surname: Kennedy fullname: Kennedy, D. email: djk2120@ucar.edu organization: University of California – sequence: 2 givenname: K. orcidid: 0000-0002-4518-8225 surname: Dagon fullname: Dagon, K. organization: NSF NCAR – sequence: 3 givenname: D. M. orcidid: 0000-0002-2968-3023 surname: Lawrence fullname: Lawrence, D. M. organization: NSF NCAR – sequence: 4 givenname: R. A. orcidid: 0000-0003-3260-9227 surname: Fisher fullname: Fisher, R. A. organization: CICERO Centre for International Climate and Environmental Research – sequence: 5 givenname: B. M. surname: Sanderson fullname: Sanderson, B. M. organization: CICERO Centre for International Climate and Environmental Research – sequence: 6 givenname: N. orcidid: 0000-0002-7367-3981 surname: Collier fullname: Collier, N. organization: Oak Ridge National Laboratory – sequence: 7 givenname: F. M. orcidid: 0000-0001-5802-4134 surname: Hoffman fullname: Hoffman, F. M. organization: Oak Ridge National Laboratory – sequence: 8 givenname: C. D. orcidid: 0000-0002-3367-0065 surname: Koven fullname: Koven, C. D. organization: Lawrence Berkeley National Lab – sequence: 9 givenname: E. orcidid: 0000-0002-1606-9219 surname: Kluzek fullname: Kluzek, E. organization: NSF NCAR – sequence: 10 givenname: S. surname: Levis fullname: Levis, S. organization: NSF NCAR – sequence: 11 givenname: X. surname: Lu fullname: Lu, X. organization: Sun Yat‐sen University – sequence: 12 givenname: K. W. orcidid: 0000-0002-0057-9900 surname: Oleson fullname: Oleson, K. W. organization: NSF NCAR – sequence: 13 givenname: C. M. orcidid: 0000-0001-9992-3785 surname: Zarakas fullname: Zarakas, C. M. organization: University of Washington – sequence: 14 givenname: Y. orcidid: 0000-0002-5752-9605 surname: Cheng fullname: Cheng, Y. organization: National Center for Atmospheric Research – sequence: 15 givenname: A. C. orcidid: 0000-0002-7382-0013 surname: Foster fullname: Foster, A. C. organization: NSF NCAR – sequence: 16 givenname: M. D. orcidid: 0000-0002-7668-9655 surname: Fowler fullname: Fowler, M. D. organization: NSF NCAR – sequence: 17 givenname: L. R. surname: Hawkins fullname: Hawkins, L. R. organization: Columbia University – sequence: 18 givenname: T. orcidid: 0000-0003-0567-1092 surname: Kavoo fullname: Kavoo, T. organization: Auburn University – sequence: 19 givenname: S. orcidid: 0000-0002-0472-6074 surname: Kumar fullname: Kumar, S. organization: Auburn University – sequence: 20 givenname: A. J. orcidid: 0000-0001-8796-0861 surname: Newman fullname: Newman, A. J. organization: National Center for Atmospheric Research – sequence: 21 givenname: P. J. orcidid: 0000-0002-4843-4903 surname: Lawrence fullname: Lawrence, P. J. organization: NSF NCAR – sequence: 22 givenname: F. orcidid: 0000-0002-3686-2257 surname: Li fullname: Li, F. organization: Institute of Atmospheric Physics – sequence: 23 givenname: D. L. orcidid: 0000-0003-3557-7929 surname: Lombardozzi fullname: Lombardozzi, D. L. organization: Colorado State University – sequence: 24 givenname: Y. orcidid: 0000-0002-4903-3095 surname: Luo fullname: Luo, Y. organization: Cornell University – sequence: 25 givenname: J. K. orcidid: 0000-0003-2588-2161 surname: Shuman fullname: Shuman, J. K. organization: National Aeronautics and Space Administration Ames Research Center – sequence: 26 givenname: A. L. S. orcidid: 0000-0001-8513-1074 surname: Swann fullname: Swann, A. L. S. organization: University of Washington – sequence: 27 givenname: S. C. orcidid: 0000-0002-2923-1203 surname: Swenson fullname: Swenson, S. C. organization: NSF NCAR – sequence: 28 givenname: G. orcidid: 0000-0002-0923-583X surname: Tang fullname: Tang, G. organization: NSF NCAR – sequence: 29 givenname: W. R. orcidid: 0000-0001-7116-1985 surname: Wieder fullname: Wieder, W. R. organization: University of Colorado – sequence: 30 givenname: A. W. orcidid: 0000-0002-6231-0085 surname: Wood fullname: Wood, A. W. organization: NSF NCAR |
BookMark | eNp90M1Kw0AQAOBFKthWbz7AgtembvY_x1LqHy0tWD0JYZNOMCXZrbsJ0puP4DP6JKbUQ08e5ofhYwZmgHrWWUDoOibjmNDklhLKF8-EcBWLM9SPE04jyqXsnfQXaBDClhApJRV99La08PP1bZpD6mJd1oBXxpsaGvB4Bb5pfWaa0lk8swHqrALsCty8A566um5t2ezx3NgNXrgNVCP8Cj4ctBjHl-i8MFWAq786RC93s_X0IZov7x-nk3mUU6F1FBuZawZ5QUWiGVPG0IxrzQwkSgrK-YbyBLoZVUkhQIpcqkyznMoiA2UIG6Kb496ddx8thCbdutbb7mTKKGeKKyWSTo2OKvcuBA9FuvNlbfw-jUl6-F96-r-OsyP_LCvY_2vTp8lipkgsNPsFPKl0Iw |
Cites_doi | 10.5194/gmd‐17‐1059‐2024 10.1002/2014WR015820 10.1029/2018MS001476 10.1016/j.ecolmodel.2005.04.008 10.5194/essd‐14‐4811‐2022 10.1088/1748‐9326/aacf68 10.1038/s41586‐021‐03939‐9 10.1002/2014JG002660 10.1038/35041539 10.1029/2022MS003312 10.5194/esd‐12‐1393‐2021 10.1016/j.jcp.2020.109716 10.1029/2020MS002217 10.1175/1520‐0477(1995)076〈0489:TPFIOL〉2.0.CO;2 10.1029/2024GL108372 10.1007/s003820050309 10.1175/JCLI‐D‐21‐0434.1 10.1016/S0921‐8181(98)00044‐7 10.1175/JCLI‐D‐18‐0812.1 10.5194/bg‐15‐5801‐2018 10.1007/s00382‐013‐1896‐4 10.1175/JCLI3800.1 10.1111/pce.13639 10.1029/2020RG000711 10.5194/gmd‐17‐5779‐2024 10.1029/2022MS003008 10.5194/bg‐17‐4173‐2020 10.1088/1748‐9326/aa66b8 10.1175/jcli‐d‐12‐00579.1 10.1088/1748‐9326/ad6019 10.1038/nature02771 10.5061/dryad.j6q573nsn 10.1029/2018MS001453 10.1038/s43247‐024‐01504‐6 10.5194/gmd‐15‐9127‐2022 10.1029/2017MS001237 10.5194/gmd‐9‐1937‐2016 10.1088/1748‐9326/7/2/024002 10.1029/2024GB008102 10.1029/2020GB006758 10.1029/2011GB004185 10.1175/1520‐0493(2000)128〈0301:SOABGH〉2.0.CO;2 10.1038/nclimate2550 10.5194/ascmo‐6‐223‐2020 10.1175/2008JCLI1869.1 10.1073/pnas.2202075119 10.5194/gmd‐10‐1789‐2017 10.1029/2021GL095084 10.1016/j.agrformet.2024.109929 10.5194/gmd‐11‐4739‐2018 10.1029/2020MS002105 10.1007/s10980‐013‐9902‐0 10.5194/gmd‐14‐3361‐2021 10.1029/2023MS003625 10.1029/2022WR032204 10.1002/2016JD025097 10.1007/s00382‐020‐05608‐5 10.5194/gmd‐15‐1913‐2022 10.1029/2019MS001892 10.1111/gcb.16623 10.1175/BAMS‐D‐15‐00135.1 10.1029/2018MS001354 10.1029/2018GB006141 10.1029/2018MS001583 10.1029/2018MS001577 10.1111/gcb.14904 10.5194/esd‐7‐917‐2016 10.5194/gmd‐9‐1827‐2016 10.5194/esd‐13‐885‐2022 10.5194/gmd‐13‐55‐2020 10.1038/s41597‐023‐02049‐7 10.1175/EI110.1 10.1029/2018JD028927 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI |
DOI | 10.1029/2024MS004715 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1942-2466 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024MS004715 JAME70158 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2022YFE0106500 – fundername: Office of Biological & Environmental Research – fundername: Regional and Global Model Analysis – fundername: Environmental System Modeling Program funderid: DE‐SC0022070 – fundername: National Center for Atmospheric Research – fundername: National Science Foundation funderid: 1852977; 1553715; 2330096; 1947282 – fundername: U.S. Department of Energy – fundername: Office of Science |
GroupedDBID | 0R~ 1OC 24P 29J 31~ 5VS 8-1 8FE 8FH AAMMB AAZKR ABDBF ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AGXDD AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZFZN BCNDV BENPR BHPHI BKSAR CCPQU D1K EAD EAP EAS EBS EJD EPL ESX GODZA GROUPED_DOAJ HCIFZ HZ~ IAO IGS IPNFZ ITC K6- KQ8 LK5 M7R M~E O9- OK1 P2P PCBAR PHGZM PHGZT PIMPY PROAC PUEGO RIG RNS TUS WIN ~OA AAYXX CITATION 7TG ABUWG AZQEC DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c2588-1a6c83ecf2598337aa2b4883ae9765244d249e2b4279f5e65c67b83c26fbe7a03 |
IEDL.DBID | BENPR |
ISSN | 1942-2466 |
IngestDate | Wed Aug 27 01:37:09 EDT 2025 Thu Aug 14 00:04:59 EDT 2025 Wed Aug 27 10:01:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2588-1a6c83ecf2598337aa2b4883ae9765244d249e2b4279f5e65c67b83c26fbe7a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0472-6074 0000-0003-3260-9227 0000-0002-4903-3095 0000-0001-8796-0861 0000-0002-3686-2257 0000-0001-5802-4134 0000-0001-8513-1074 0000-0002-4518-8225 0000-0002-2923-1203 0000-0002-4843-4903 0000-0001-9992-3785 0000-0002-7367-3981 0000-0002-2968-3023 0000-0002-0057-9900 0000-0003-3557-7929 0000-0001-9494-3509 0000-0002-3367-0065 0000-0002-6231-0085 0000-0002-7382-0013 0000-0002-7668-9655 0000-0001-7116-1985 0000-0002-5752-9605 0000-0003-2588-2161 0000-0002-1606-9219 0000-0002-0923-583X 0000-0003-0567-1092 |
OpenAccessLink | https://www.proquest.com/docview/3243747759?pq-origsite=%requestingapplication% |
PQID | 3243747759 |
PQPubID | 616667 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3243747759 crossref_primary_10_1029_2024MS004715 wiley_primary_10_1029_2024MS004715_JAME70158 |
PublicationCentury | 2000 |
PublicationDate | August 2025 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of advances in modeling earth systems |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2013; 28 2024; 348 2019; 11 2018; 123 1995; 76 2020; 17 2014; 27 2020; 13 2020; 12 2025 1970 2024; 38 2000; 408 2021; 35 2020; 6 1998; 19 2024; 5 2023; 29 2005; 189 2021; 598 2000; 128 1999; 15 2022; 35 2008; 21 2012; 26 2014; 119 2015; 5 2023; 59 2023; 15 2015; 51 2019; 33 2019; 32 2021; 424 2013; 41 2024; 51 2016; 121 2006; 19 2022; 119 2024; 17 2022; 49 2024; 19 2021; 14 2021; 13 2004; 430 2023a; 10 2016; 7 2021; 59 2021; 12 2021; 56 2019; 42 2005; 9 2017; 98 2017; 10 2017; 12 2022; 13 2022; 14 2020; 26 2022; 15 2018; 11 2012; 7 2023b; 15 2018; 10 2016; 9 2018; 15 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Whittaker R. H. (e_1_2_8_65_1) 1970 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 59 issue: 1 year: 2023 article-title: Moving land models toward more actionable science: A novel application of the community terrestrial systems model across Alaska and the Yukon River basin publication-title: Water Resources Research – volume: 51 start-page: 716 issue: 1 year: 2015 end-page: 728 article-title: Are we unnecessarily constraining the agility of complex process‐based models? publication-title: Water Resources Research – volume: 12 start-page: 1393 issue: 4 year: 2021 end-page: 1411 article-title: Ubiquity of human‐induced changes in climate variability publication-title: Earth System Dynamics – volume: 56 start-page: 3437 issue: 11 year: 2021 end-page: 3471 article-title: A perturbed parameter ensemble of hadgem3‐gc3.05 coupled model projections: Part 2: Global performance and future changes publication-title: Climate Dynamics – volume: 119 issue: 47 year: 2022 article-title: Are general circulation models obsolete? publication-title: Proceedings of the National Academy of Sciences – volume: 5 issue: 1 year: 2024 article-title: No constraint on long‐term tropical land carbon‐climate feedback uncertainties from interannual variability publication-title: Communications Earth and Environment – volume: 12 issue: 11 year: 2020 article-title: Full implementation of matrix approach to biogeochemistry module of CLM5 publication-title: Journal of Advances in Modeling Earth Systems – volume: 128 start-page: 301 issue: 2 year: 2000 end-page: 321 article-title: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d) publication-title: Monthly Weather Review – volume: 17 start-page: 4173 issue: 16 year: 2020 end-page: 4222 article-title: Carbon–concentration and carbon–climate feedbacks in cmip6 models and their comparison to cmip5 models publication-title: Biogeosciences – volume: 19 issue: 10 year: 2024 article-title: Effects of land surface model resolution on fluxes and soil state in the arctic publication-title: Environmental Research Letters – volume: 11 start-page: 4739 issue: 12 year: 2018 end-page: 4754 article-title: Land surface model parameter optimisation using in situ flux data: Comparison of gradient‐based versus random search algorithms, a case study using ORCHIDEE v1.9.5.2 publication-title: Geoscientific Model Development – volume: 15 start-page: 5801 issue: 19 year: 2018 end-page: 5830 article-title: Linking big models to big data: Efficient ecosystem model calibration through Bayesian model emulation publication-title: Biogeosciences – volume: 348 year: 2024 article-title: Ameriflux: Its impact on our understanding of the “breathing of the biosphere”, after 25 years publication-title: Agricultural and Forest Meteorology – volume: 9 start-page: 1937 issue: 5 year: 2016 end-page: 1958 article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization publication-title: Geoscientific Model Development – volume: 26 issue: 3 year: 2012 article-title: On the capability of monte carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models publication-title: Global Biogeochemical Cycles – volume: 408 start-page: 184 issue: 6809 year: 2000 end-page: 187 article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model publication-title: Nature – volume: 12 issue: 4 year: 2020 article-title: Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems publication-title: Journal of Advances in Modeling Earth Systems – volume: 7 start-page: 917 issue: 4 year: 2016 end-page: 935 article-title: The impact of structural error on parameter constraint in a climate model publication-title: Earth System Dynamics – volume: 12 issue: 4 year: 2017 article-title: Reducing uncertainty in projections of terrestrial carbon uptake publication-title: Environmental Research Letters – volume: 10 start-page: 2731 issue: 11 year: 2018 end-page: 2754 article-title: The international land model benchmarking (ILAMB) system: Design, theory, and implementation publication-title: Journal of Advances in Modeling Earth Systems – volume: 28 start-page: 1567 issue: 8 year: 2013 end-page: 1586 article-title: Representativeness‐based sampling network design for the state of Alaska publication-title: Landscape Ecology – volume: 19 start-page: 115 issue: 1 year: 1998 end-page: 135 article-title: The project for intercomparison of Land‐surface parameterization schemes (PILPS) phase 2(c) red–arkansas river basin experiment:: 1. Experiment description and summary intercomparisons publication-title: Global and Planetary Change – volume: 13 issue: 3 year: 2021 article-title: Process‐based climate model development harnessing machine learning: I. A calibration tool for parameterization improvement publication-title: Journal of Advances in Modeling Earth Systems – volume: 35 start-page: 2585 issue: 8 year: 2022 end-page: 2602 article-title: Does model calibration reduce uncertainty in climate projections? publication-title: Journal of Climate – year: 2025 article-title: One at a time parameter perturbation ensemble of the community land model, version 5.1 publication-title: Dryad – volume: 51 issue: 21 year: 2024 article-title: Land processes can substantially impact the mean climate state publication-title: Geophysical Research Letters – volume: 98 start-page: 589 issue: 3 year: 2017 end-page: 602 article-title: The art and science of climate model tuning publication-title: Bulletin of the American Meteorological Society – volume: 41 start-page: 1703 issue: 7–8 year: 2013 end-page: 1729 article-title: History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble publication-title: Climate Dynamics – volume: 17 start-page: 5779 issue: 15 year: 2024 end-page: 5801 article-title: Exploring the potential of history matching for land surface model calibration publication-title: Geoscientific Model Development – volume: 10 start-page: 1790 issue: 8 year: 2018 end-page: 1808 article-title: Matrix‐based sensitivity assessment of soil organic carbon storage: A case study from the orchidee‐mict model publication-title: Journal of Advances in Modeling Earth Systems – volume: 13 start-page: 885 issue: 2 year: 2022 end-page: 909 article-title: Multi‐century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios publication-title: Earth System Dynamics – volume: 17 start-page: 1059 issue: 3 year: 2024 end-page: 1089 article-title: Constraining the carbon cycle in jules‐es‐1.0 publication-title: Geoscientific Model Development – volume: 32 start-page: 5725 issue: 18 year: 2019 end-page: 5744 article-title: Separating the impact of individual land surface properties on the terrestrial surface energy budget in both the coupled and uncoupled land–atmosphere system publication-title: Journal of Climate – volume: 59 issue: 1 year: 2021 article-title: Satellite observations of the tropical terrestrial carbon balance and interactions with the water cycle during the 21st century publication-title: Reviews of Geophysics – volume: 119 start-page: 1684 issue: 8 year: 2014 end-page: 1697 article-title: Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocation publication-title: Journal of Geophysical Research: Biogeosciences – volume: 9 start-page: 1827 issue: 5 year: 2016 end-page: 1851 article-title: Inconsistent strategies to spin up models in cmip5: Implications for ocean biogeochemical model performance assessment publication-title: Geoscientific Model Development – volume: 35 start-page: 1 issue: 7 year: 2021 end-page: 23 article-title: Global coordination in plant physiological and rooting strategies in response to water stress publication-title: Global Biogeochemical Cycles – volume: 14 start-page: 3361 issue: 6 year: 2021 end-page: 3382 article-title: Addressing biases in Arctic–boreal carbon cycling in the community land model version 5 publication-title: Geoscientific Model Development – volume: 189 start-page: 25 issue: 1 year: 2005 end-page: 48 article-title: Ecosystem model spin‐up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model publication-title: Ecological Modelling – volume: 33 start-page: 1289 issue: 10 year: 2019 end-page: 1309 article-title: Beyond static benchmarking: Using experimental manipulations to evaluate land model assumptions publication-title: Global Biogeochemical Cycles – volume: 38 issue: 7 year: 2024 article-title: Trends and drivers of terrestrial sources and sinks of carbon dioxide: An overview of the trendy project publication-title: Global Biogeochemical Cycles – volume: 10 start-page: 1789 issue: 4 year: 2017 end-page: 1816 article-title: Tuning without over‐tuning: Parametric uncertainty quantification for the NEMO ocean model publication-title: Geoscientific Model Development – volume: 19 start-page: 3337 issue: 14 year: 2006 end-page: 3353 article-title: Climate–carbon cycle feedback analysis: Results from the c4mip model intercomparison publication-title: Journal of Climate – volume: 27 start-page: 511 issue: 2 year: 2014 end-page: 526 article-title: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks publication-title: Journal of Climate – volume: 76 start-page: 489 issue: 4 year: 1995 end-page: 504 article-title: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3* publication-title: Bulletin of the American Meteorological Society – volume: 7 issue: 2 year: 2012 article-title: High sensitivity of future global warming to land carbon cycle processes publication-title: Environmental Research Letters – volume: 13 start-page: 55 issue: 1 year: 2020 end-page: 69 article-title: The land variational ensemble data assimilation framework: LAVENDAR v1.0.0 publication-title: Geoscientific Model Development – volume: 10 start-page: 187 issue: 1 year: 2023a article-title: Characterizing uncertainty in community land model version 5 hydrological applications in the United States publication-title: Scientific Data – volume: 15 start-page: 1913 issue: 5 year: 2022 end-page: 1929 article-title: Emulation of high‐resolution land surface models using sparse gaussian processes with application to JULES publication-title: Geoscientific Model Development – volume: 21 start-page: 2384 issue: 11 year: 2008 end-page: 2400 article-title: Constraints on model response to greenhouse gas forcing and the role of subgrid‐scale processes publication-title: Journal of Climate – volume: 6 start-page: 223 issue: 2 year: 2020 end-page: 244 article-title: A machine learning approach to emulation and biophysical parameter estimation with the community land model, version 5 publication-title: Advances in Statistical Climatology, Meteorology and Oceanography – volume: 123 start-page: 13046 issue: 23 year: 2018 end-page: 13073 article-title: Parametric sensitivity and uncertainty quantification in the version 1 of e3sm atmosphere model based on short perturbed parameter ensemble simulations publication-title: Journal of Geophysical Research: Atmospheres – volume: 9 start-page: 1 issue: 10 year: 2005 end-page: 27 article-title: Using clustered climate regimes to analyze and compare predictions from fully coupled general circulation models publication-title: Earth Interactions – volume: 121 start-page: 10676 issue: 18 year: 2016 end-page: 10700 article-title: The impact of standard and hard‐coded parameters on the hydrologic fluxes in the noah‐mp land surface model publication-title: Journal of Geophysical Research: Atmospheres – volume: 14 issue: 7 year: 2022 article-title: Matrix approach to land carbon cycle modeling publication-title: Journal of Advances in Modeling Earth Systems – volume: 598 start-page: 468 issue: 7881 year: 2021 end-page: 472 article-title: The three major axes of terrestrial ecosystem function publication-title: Nature – volume: 15 start-page: 9127 issue: 24 year: 2022 end-page: 9155 article-title: The multiple snow data assimilation system (MuSA v1.0) publication-title: Geoscientific Model Development – volume: 13 issue: 7 year: 2018 article-title: Triose phosphate limitation in photosynthesis models reduces leaf photosynthesis and global terrestrial carbon storage publication-title: Environmental Research Letters – volume: 11 start-page: 83 issue: 1 year: 2019 end-page: 98 article-title: The impact of biomass heat storage on the canopy energy balance and atmospheric stability in the community land model publication-title: Journal of Advances in Modeling Earth Systems – volume: 42 start-page: 3241 issue: 12 year: 2019 end-page: 3252 article-title: No evidence for triose phosphate limitation of light‐saturated leaf photosynthesis under current atmospheric co2 concentration publication-title: Plant, Cell and Environment – volume: 49 issue: 9 year: 2022 article-title: Investigating parametric dependence of climate feedbacks in the atmospheric component of cnrm‐cm6‐1 publication-title: Geophysical Research Letters – volume: 11 start-page: 2787 issue: 8 year: 2019 end-page: 2813 article-title: Parametric sensitivity of vegetation dynamics in the triffid model and the associated uncertainty in projected climate change impacts on western u.s. forests publication-title: Journal of Advances in Modeling Earth Systems – volume: 15 issue: 5 year: 2023b article-title: Large ensemble diagnostic evaluation of hydrologic parameter uncertainty in the community land model version 5 (clm5) publication-title: Journal of Advances in Modeling Earth Systems – year: 1970 – volume: 29 start-page: 3221 issue: 11 year: 2023 end-page: 3234 article-title: Machine learning for accelerating process‐based computation of land biogeochemical cycles publication-title: Global Change Biology – volume: 15 issue: 8 year: 2023 article-title: Matrix approach to accelerate spin‐up of clm5 publication-title: Journal of Advances in Modeling Earth Systems – volume: 430 start-page: 768 issue: 7001 year: 2004 end-page: 772 article-title: Quantification of modelling uncertainties in a large ensemble of climate change simulations publication-title: Nature – volume: 5 start-page: 459 issue: 5 year: 2015 end-page: 464 article-title: Optimal stomatal behaviour around the world publication-title: Nature Climate Change – volume: 424 year: 2021 article-title: Calibrate, emulate, sample publication-title: Journal of Computational Physics – volume: 12 issue: 7 year: 2020 article-title: LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics publication-title: Journal of Advances in Modeling Earth Systems – volume: 26 start-page: 119 issue: 1 year: 2020 end-page: 188 article-title: Try plant trait database – Enhanced coverage and open access publication-title: Global Change Biology – volume: 11 start-page: 4245 issue: 12 year: 2019 end-page: 4287 article-title: The community land model version 5: Description of new features, benchmarking, and impact of forcing uncertainty publication-title: Journal of Advances in Modeling Earth Systems – volume: 15 start-page: 673 issue: 9 year: 1999 end-page: 684 article-title: Key results and implications from phase 1(c) of the project for intercomparison of Land‐surface parametrization schemes publication-title: Climate Dynamics – volume: 14 start-page: 4811 issue: 11 year: 2022 end-page: 4900 article-title: Global carbon budget 2022 publication-title: Earth System Science Data – ident: e_1_2_8_45_1 doi: 10.5194/gmd‐17‐1059‐2024 – ident: e_1_2_8_47_1 doi: 10.1002/2014WR015820 – ident: e_1_2_8_62_1 doi: 10.1029/2018MS001476 – ident: e_1_2_8_64_1 doi: 10.1016/j.ecolmodel.2005.04.008 – ident: e_1_2_8_23_1 doi: 10.5194/essd‐14‐4811‐2022 – ident: e_1_2_8_41_1 doi: 10.1088/1748‐9326/aacf68 – ident: e_1_2_8_48_1 doi: 10.1038/s41586‐021‐03939‐9 – ident: e_1_2_8_10_1 doi: 10.1002/2014JG002660 – ident: e_1_2_8_15_1 doi: 10.1038/35041539 – ident: e_1_2_8_72_1 doi: 10.1029/2022MS003312 – ident: e_1_2_8_55_1 doi: 10.5194/esd‐12‐1393‐2021 – ident: e_1_2_8_12_1 doi: 10.1016/j.jcp.2020.109716 – ident: e_1_2_8_14_1 doi: 10.1029/2020MS002217 – ident: e_1_2_8_25_1 doi: 10.1175/1520‐0477(1995)076〈0489:TPFIOL〉2.0.CO;2 – ident: e_1_2_8_74_1 doi: 10.1029/2024GL108372 – ident: e_1_2_8_52_1 doi: 10.1007/s003820050309 – ident: e_1_2_8_63_1 doi: 10.1175/JCLI‐D‐21‐0434.1 – ident: e_1_2_8_69_1 doi: 10.1016/S0921‐8181(98)00044‐7 – ident: e_1_2_8_35_1 doi: 10.1175/JCLI‐D‐18‐0812.1 – ident: e_1_2_8_19_1 doi: 10.5194/bg‐15‐5801‐2018 – ident: e_1_2_8_68_1 doi: 10.1007/s00382‐013‐1896‐4 – ident: e_1_2_8_21_1 doi: 10.1175/JCLI3800.1 – volume-title: Communities and ecosystems year: 1970 ident: e_1_2_8_65_1 – ident: e_1_2_8_34_1 doi: 10.1111/pce.13639 – ident: e_1_2_8_70_1 doi: 10.1029/2020RG000711 – ident: e_1_2_8_54_1 doi: 10.5194/gmd‐17‐5779‐2024 – ident: e_1_2_8_44_1 doi: 10.1029/2022MS003008 – ident: e_1_2_8_3_1 doi: 10.5194/bg‐17‐4173‐2020 – ident: e_1_2_8_42_1 doi: 10.1088/1748‐9326/aa66b8 – ident: e_1_2_8_22_1 doi: 10.1175/jcli‐d‐12‐00579.1 – ident: e_1_2_8_57_1 doi: 10.1088/1748‐9326/ad6019 – ident: e_1_2_8_49_1 doi: 10.1038/nature02771 – ident: e_1_2_8_32_1 doi: 10.5061/dryad.j6q573nsn – ident: e_1_2_8_20_1 doi: 10.1029/2018MS001453 – ident: e_1_2_8_39_1 doi: 10.1038/s43247‐024‐01504‐6 – ident: e_1_2_8_2_1 doi: 10.5194/gmd‐15‐9127‐2022 – ident: e_1_2_8_30_1 doi: 10.1029/2017MS001237 – ident: e_1_2_8_18_1 doi: 10.5194/gmd‐9‐1937‐2016 – ident: e_1_2_8_9_1 doi: 10.1088/1748‐9326/7/2/024002 – ident: e_1_2_8_60_1 doi: 10.1029/2024GB008102 – ident: e_1_2_8_40_1 doi: 10.1029/2020GB006758 – ident: e_1_2_8_75_1 doi: 10.1029/2011GB004185 – ident: e_1_2_8_58_1 doi: 10.1175/1520‐0493(2000)128〈0301:SOABGH〉2.0.CO;2 – ident: e_1_2_8_38_1 doi: 10.1038/nclimate2550 – ident: e_1_2_8_17_1 doi: 10.5194/ascmo‐6‐223‐2020 – ident: e_1_2_8_56_1 doi: 10.1175/2008JCLI1869.1 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.2202075119 – ident: e_1_2_8_67_1 doi: 10.5194/gmd‐10‐1789‐2017 – ident: e_1_2_8_50_1 doi: 10.1029/2021GL095084 – ident: e_1_2_8_6_1 doi: 10.1016/j.agrformet.2024.109929 – ident: e_1_2_8_7_1 doi: 10.5194/gmd‐11‐4739‐2018 – ident: e_1_2_8_43_1 doi: 10.1029/2020MS002105 – ident: e_1_2_8_27_1 doi: 10.1007/s10980‐013‐9902‐0 – ident: e_1_2_8_8_1 doi: 10.5194/gmd‐14‐3361‐2021 – ident: e_1_2_8_37_1 doi: 10.1029/2023MS003625 – ident: e_1_2_8_11_1 doi: 10.1029/2022WR032204 – ident: e_1_2_8_16_1 doi: 10.1002/2016JD025097 – ident: e_1_2_8_71_1 doi: 10.1007/s00382‐020‐05608‐5 – ident: e_1_2_8_4_1 doi: 10.5194/gmd‐15‐1913‐2022 – ident: e_1_2_8_29_1 doi: 10.1029/2019MS001892 – ident: e_1_2_8_61_1 doi: 10.1111/gcb.16623 – ident: e_1_2_8_28_1 doi: 10.1175/BAMS‐D‐15‐00135.1 – ident: e_1_2_8_13_1 doi: 10.1029/2018MS001354 – ident: e_1_2_8_66_1 doi: 10.1029/2018GB006141 – ident: e_1_2_8_36_1 doi: 10.1029/2018MS001583 – ident: e_1_2_8_24_1 doi: 10.1029/2018MS001577 – ident: e_1_2_8_31_1 doi: 10.1111/gcb.14904 – ident: e_1_2_8_46_1 doi: 10.5194/esd‐7‐917‐2016 – ident: e_1_2_8_59_1 doi: 10.5194/gmd‐9‐1827‐2016 – ident: e_1_2_8_33_1 doi: 10.5194/esd‐13‐885‐2022 – ident: e_1_2_8_51_1 doi: 10.5194/gmd‐13‐55‐2020 – ident: e_1_2_8_73_1 doi: 10.1038/s41597‐023‐02049‐7 – ident: e_1_2_8_26_1 doi: 10.1175/EI110.1 – ident: e_1_2_8_53_1 doi: 10.1029/2018JD028927 |
SSID | ssj0066625 |
Score | 2.3550863 |
Snippet | Comprehensive land models are subject to significant parametric uncertainty, which can be hard to quantify due to the large number of parameters and high model... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Automation Biogeochemistry Calibration Carbon Climate change CLM5.1 community land model Hydrology Land use planning Nitrogen Parameter estimation parameter perturbation experiment Parameters PPE Simulation Software Uncertainty |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF6kXryIvxitsgf11Gizu8kmRyktRawWtNCDEHazGxBqKm08ePMRfEafxJntVutF8JBAQjaE2Z2dbyYz3xByqoQ0GZjdMCuNCUWSpKFCQgDLCiOKUjKusDh5cJv0R-J6HI99wA1rYRb8EN8BN9QMt1-jgis992QDyJEJXrsY3CPbIdaYr2N1Lab0MTFc7sSAzF3TVfDTWcjgO3ziO4y_XB392yT94MxVtOrMTW-LbHqcSK8WE7tN1my1Q4IBQNzpzEXC6TntTJ4Ab7qrXfJ4V9nP9w9V4wkOrO2gQ4W5VyA6OrQzMC7azQPtVnP7rCeWTksKAJD6KpH6jd6oylDsjzZpUR9Ko_FFtEdGve5Dpx_61glhwWJY-5FKipTbogTvJuVcKsU0qCpXFuBHDCbdgNtl4R6TWRnbJC4SqVNesKTUVqo23yeNalrZA0INBy_Wxsirk4qIKcXbzJjStCMdqYjpgJwtpZe_LBgycvdnm2X5qpQD0lyKNvd6Ms858iEKKeMsIC0n7j_fkYMl6kpAMOnh_x4_IhsMG_e6zL0madSzV3sMaKLWJ27JfAH_4MHh priority: 102 providerName: Wiley-Blackwell |
Title | One‐at‐a‐Time Parameter Perturbation Ensemble of the Community Land Model, Version 5.1 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024MS004715 https://www.proquest.com/docview/3243747759 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED3RdmFBfIpCqTwAUwONHcfJhKBqVSFaKqBSB6TIiR0JqaSlLQMbP4HfyC_h7LpqJ4ZESgYPz_a9d-fzHcC5DISKkXa9OFfKC8Iw8qQpCKBppoIsF5RJczm51w-7w-B-xEcu4DZ3aZUrm2gNtZpkJkZ-zUzlvEAIHt9MPzzTNcqcrroWGiWooAmOojJU7tr9wdPKFqM2p9yluzdpbDz9oPdsKiSaNribRLRWl5sa1ZJMZxd2nDokt8vp3IMtXexDtYfCdjKz8W9ySVrjN1SZ9usAXh8L_fv9IxfmhY-50UEG0mRcIWBkoGdIKalFn7SLuX5Px5pMcoKyj7i7IYsv8iALRUxXtHGDuAAa4Vf-IQw77ZdW13MNE7yMclzxvgyziOksR58mYkxISVPcoExqFB0ciVyhs6XxHxVxznXIs1CkEctomKdayCY7gnIxKfQxEMXQd9XcVNOJAp9KyZpUqVw1_dSXPk2rcLFCL5ku62Ik9jybxskmylWoraBN3O6YJ-u5rELDwv3vGAnyT1ugbolO_h_tFLapac9r8_NqUF7MPvUZaoZFWocSDQZ1tzzq1vP-A58pwr8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcAFsYqy-gCcGkjsOE4OCLG0KnShYpE4IAUndiSkkkJbhLjxCXwJH8WXME4T0RO3HhIpOfgwfvF7M5kFYFe6QgVIu1aQKGW5nudb0jQE0DRWbpwIyqQpTm61vfqde3nP76fgu6iFMWmVxZmYHdSqF5sY-SEznfNcIXhw_PJqmalR5u9qMUJjBIuG_nhHl21wdHGO-7tHaa16e1a38qkCVkw5wsKRXuwzHSco_H3GhJQ0QhQzqZGZObKdQo9E4zsqgoRrj8eeiHwWUy-JtJA2w3WnYcZlnk1LMHNabXeui7MffQHK8_R6mwYmsuC2bkxHRjN2d5z4_tTsuCbOSK22APO5GiUnI_gswpROl6DcQiHd62fxdrJPzrpPqGqzp2V4uEr1z-eXHJobXqaChHSkyfDCDSId3UcKi7LdJtV0oJ-jria9hKDMJHktyvCDNGWqiJnC1q2QPGBH-IGzAncTMeUqlNJeqteAKIa-suame4_vOlRKZlOlEmU7kSMdGpVhr7Be-DLqwxFm_89pEI5buQybhWnD_GschH_YKUMlM_e_a4TId1WBOslf_3-1HZit37aaYfOi3diAOWpGA2e5gZtQGvbf9BbqlWG0nYOEwOOkcfkLqGn8kA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB6FRKq4VLQUEQh0D8AJQ7zr9doHVFFIBOSHiB-JA5JZe9dSpeCEJFWVWx-hz9PH6ZN0xrFFTtw42JJ92MPs5_2-Gc8PwJ72lAmRdp0wNcbxfD9wNDUEsDwxXpIqLjQVJ_f6_sW9d_UgHyrwt6yFobTK8kzMD2ozSihGfiyoc56nlAyP0yItYnDe_jZ-cWiCFP1pLcdpLCDSsfNf6L5NTy7Pca_3OW-37s4unGLCgJNwiRBxtZ8EwiYpOgGBEEprHiOihbbI0hKZz6B3YvEdV2EqrS8TX8WBSLifxlbppsB1V6CmyCuqQu17qz-4KXkA_QIui1T7Jg8pyuD1bqk7I43gXSbBV2W7rI9zgmuvwcdCmbLTBZQ-QcVmn6HeQ1E9muSxd3bAzoY_UOHmT-vweJ3Zf7__6Bnd8KJqEjbQlO2Fm8UGdoJ0Fuc7z1rZ1D7HQ8tGKUPJyYq6lNmcdXVmGE1kGx6yInjH5JH7Be7fxZQbUM1Gmd0EZgT6zVZSJ5_Ac7nWosmNSU3TjV3t8rgO-6X1ovGiJ0eU_0vnYbRs5To0StNGxZc5jV5xVIfD3NxvrhEh97UUaqZg6-3VvsIHxGPUvex3tmGV05TgPE2wAdXZ5KfdQekyi3cLjDB4em9Y_gc1_gDU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90at%E2%80%90a%E2%80%90Time+Parameter+Perturbation+Ensemble+of+the+Community+Land+Model%2C+Version+5.1&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Kennedy%2C+D&rft.au=Dagon%2C+K&rft.au=Lawrence%2C+D.+M&rft.au=Fisher%2C+R.+A&rft.date=2025-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1942-2466&rft.volume=17&rft.issue=8&rft_id=info:doi/10.1029%2F2024MS004715&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon |