Fundamental theory and cutting-edge applications of TENGs
Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and advanced materials science. The capability of TENGs to convert high-entropy energy into electrical signals has led to technological breakthroughs...
Saved in:
Published in | Materials futures Vol. 4; no. 4; pp. 42101 - 42132 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and advanced materials science. The capability of TENGs to convert high-entropy energy into electrical signals has led to technological breakthroughs in multiple domains. In the field of energy harvesting, TENGs have moved beyond conventional fluid energy harvesting, harvesting energy even from slow, low-frequency fluid motion. This has given them significant advantages in distributed energy scenarios. In the field of intelligent sensing, TENG-based sensors have achieved high sensitivity, driving advancements in the industrial Internet of Things and environmental monitoring. High-voltage output (tens of kilovolts) and contact electrification are two characteristics of TENGs. Based on these two characteristics, TENGs can be used to develop new high-voltage power sources and interface probe applications. This topical review introduces the working principles and theoretical foundations of TENGs and then presents four of their cutting-edge applications: fluid energy harvesting, self-adaptive sensors and systems, high-voltage power sources, and interface probes. Finally, the current challenges faced by TENGs in these fields are discussed, and some solutions are offered. This review not only provides a comprehensive overview of the latest applications of TENGs but also offers guidance for their future development. |
---|---|
AbstractList | Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and advanced materials science. The capability of TENGs to convert high-entropy energy into electrical signals has led to technological breakthroughs in multiple domains. In the field of energy harvesting, TENGs have moved beyond conventional fluid energy harvesting, harvesting energy even from slow, low-frequency fluid motion. This has given them significant advantages in distributed energy scenarios. In the field of intelligent sensing, TENG-based sensors have achieved high sensitivity, driving advancements in the industrial Internet of Things and environmental monitoring. High-voltage output (tens of kilovolts) and contact electrification are two characteristics of TENGs. Based on these two characteristics, TENGs can be used to develop new high-voltage power sources and interface probe applications. This topical review introduces the working principles and theoretical foundations of TENGs and then presents four of their cutting-edge applications: fluid energy harvesting, self-adaptive sensors and systems, high-voltage power sources, and interface probes. Finally, the current challenges faced by TENGs in these fields are discussed, and some solutions are offered. This review not only provides a comprehensive overview of the latest applications of TENGs but also offers guidance for their future development. |
Author | Wang, Junlei Yurchenko, Daniil Kang, Xilong Li, Pengbo Dai, Shuge |
Author_xml | – sequence: 1 givenname: Xilong orcidid: 0000-0002-7369-6956 surname: Kang fullname: Kang, Xilong organization: Zhengzhou University School of Mechanical and Power Engineering, Zhengzhou 450001, People’s Republic of China – sequence: 2 givenname: Pengbo surname: Li fullname: Li, Pengbo organization: Zhengzhou University School of Mechanical and Power Engineering, Zhengzhou 450001, People’s Republic of China – sequence: 3 givenname: Daniil surname: Yurchenko fullname: Yurchenko, Daniil organization: University of Southampton Institute of Sound and Vibration Research, Southampton SO17 1BJ, United Kingdom – sequence: 4 givenname: Shuge orcidid: 0000-0003-0718-2559 surname: Dai fullname: Dai, Shuge organization: Zhengzhou University School of Physics, Zhengzhou 450001, People’s Republic of China – sequence: 5 givenname: Junlei orcidid: 0000-0003-4453-0946 surname: Wang fullname: Wang, Junlei organization: Zhengzhou University School of Mechanical and Power Engineering, Zhengzhou 450001, People’s Republic of China |
BookMark | eNp1kE1PAjEQhhuDiYjcPe4PcGXabj84GgJIQvSC56afuGRpN93lwL8XXGO8eJrJm3mfZJ57NIopeoQeMTxjkHJGBCMlE6SaaRcwJTdo_BuN_ux3aNp1BwAgQlRMiDGar07R6aOPvW6K_tOnfC50dIU99X0d96V3e1_otm1qq_s6xa5Iodgt39bdA7oNuun89GdO0MdquVu8ltv39Wbxsi0tYZKUgRpuvAuWSMqCBQcGOLOaWIaxMQxbbjmt3FxSTJygZA7W0AAgmQnBaTpBm4Hrkj6oNtdHnc8q6Vp9Bynvlc59bRuvLLbACakk17jighjusKAVEGukZwYuLBhYNqeuyz788jCoq0l1VaWuqtRg8lJ5Gip1atUhnXK8PPv_-Rc3knS1 |
CODEN | MFAUAP |
Cites_doi | 10.1016/j.mattod.2017.10.006 10.1016/j.nanoen.2021.106585 10.1016/j.nanoen.2024.109517 10.1021/acsnano.6b01569 10.1021/nn506673x 10.1002/adma.201104365 10.1016/j.nanoen.2024.109387 10.1016/j.nanoen.2020.105670 10.1002/adfm.201806351 10.1126/sciadv.abj0349 10.1002/adma.202109568 10.1088/1361-6463/ac7365 10.1002/adfm.201904090 10.1002/aisy.202100228 10.1021/acsami.2c03853 10.1016/j.nanoen.2012.01.004 10.1088/1361-6633/ac0a50 10.1002/aenm.202300051 10.1039/d3ee01035j 10.1126/sciadv.abe2943 10.1021/acsnano.1c00345 10.1016/j.nanoen.2024.109917 10.1002/aenm.201501467 10.1021/acs.chemrev.1c00176 10.1016/j.nanoen.2022.106992 10.1002/adma.202110363 10.1002/adfm.202207498 10.1021/acsnano.0c07464 10.1038/ncomms9376 10.1016/j.nanoen.2022.107622 10.1038/s41467-020-19444-y 10.1126/sciadv.abi6751 10.1038/s41467-021-27789-1 10.1016/j.jechem.2022.12.024 10.1016/j.nanoen.2018.11.064 10.1088/2399-6528/ac871e 10.1016/j.bios.2022.114115 10.1039/d3nr00507k 10.1021/acsnano.8b05359 10.1016/j.nanoen.2022.107183 10.1038/s41467-022-31042-8 10.1038/s41586-020-1985-6 10.1016/j.nanoen.2018.02.022 10.1038/s41467-020-17842-w 10.1002/aenm.201802190 10.1021/acsnano.1c11321 10.1002/adfm.202306749 10.1039/c9ee03258d 10.1080/23746149.2024.2354767 10.1038/s41467-022-32745-8 10.1002/adfm.200800541 10.1002/aenm.202100065 10.1016/j.nanoen.2023.109063 10.1021/acs.jpcc.1c03483 10.1142/s021797922350159x 10.1016/j.nanoen.2020.105740 10.1016/j.nanoen.2021.106410 10.1016/j.nanoen.2020.104477 10.1021/acsnano.1c07158 10.1016/j.nanoen.2022.107901 10.1002/adfm.201606408 10.1016/j.nanoen.2022.107465 10.1002/adma.202307184 10.1002/adfm.202108580 10.1038/542159a 10.1016/j.nanoen.2023.108196 10.1016/j.nanoen.2024.109831 10.1039/d3cs00736g 10.1016/j.nanoen.2022.107509 10.1002/adma.201905696 10.1002/adma.201704077 10.1021/acssuschemeng.7b00892 10.1002/adfm.202209100 10.1002/adfm.201303799 10.1002/adma.202203073 10.1021/acsnano.2c01594 10.1016/j.nanoen.2023.108532 10.1016/j.nanoen.2022.108133 10.1126/sciadv.aay9842 10.1002/advs.202100230 10.1007/s12274-023-5674-2 10.1016/j.nanoen.2015.01.013 10.1038/s41467-019-10433-4 10.1126/sciadv.aay2840 10.1002/adma.202102765 10.1039/d1nr08203e 10.1016/j.nanoen.2023.108874 10.1021/jasms.4c00010 10.1002/adfm.202304321 10.1016/j.nanoen.2017.06.035 10.1021/acsnano.7b05626 10.1038/s41565-017-0019-5 10.1016/j.nanoen.2020.105070 10.1002/adma.202211027 10.3390/mi14051008 10.1002/adma.202209117 10.1360/SST-2022-0322 10.1002/smll.202307119 10.1021/acsnano.0c09015 10.1016/j.matt.2019.12.025 10.1021/nn506631t 10.1039/d2ta01788a 10.1021/acsenergylett.1c00704 10.1016/j.nanoen.2020.105229 10.1016/j.nanoen.2024.110471 10.1016/j.nanoen.2024.109316 10.1002/adma.202205064 10.1002/advs.202000261 10.1038/nnano.2017.17 10.1016/j.nanoen.2018.11.006 10.1016/j.nanoen.2021.106881 10.1016/j.joule.2021.03.006 10.1360/SST-2022-0226 10.1016/j.enconman.2023.117383 10.1016/j.bios.2020.112714 10.1016/j.mattod.2022.07.012 10.1002/adfm.202409422 10.1016/j.nanoen.2023.108389 10.1002/aenm.202103654 10.1007/s12274-022-4321-7 10.1021/acsnano.2c12592 10.1002/smll.202202835 10.1063/1.5133023 10.1016/j.mattod.2020.10.031 10.1002/adma.201706790 10.1016/j.nanoen.2020.104736 10.1016/j.nanoen.2022.107599 10.1002/adma.202400451 10.1002/adma.201400373 10.1039/c7ee01139c 10.1016/j.nanoen.2023.108240 10.1016/j.nanoen.2022.108106 10.1016/j.nanoen.2020.104524 10.1016/j.nanoen.2019.104272 10.1002/adma.202000928 10.1002/adfm.202204803 10.1021/acsnano.7b08674 10.1016/j.nanoen.2024.109508 10.1021/acsami.1c22457 10.1002/adfm.202306491 10.1002/adma.202207093 10.1002/advs.202104168 10.1038/s41467-019-14278-9 10.1038/s41467-024-49660-9 10.1002/anie.201300437 10.1002/adma.202313878 10.1002/adfm.201706680 10.1016/j.nanoen.2021.105833 10.1002/adfm.201800610 10.1038/s41467-018-06198-x 10.1002/adma.201901418 10.1002/advs.201801883 10.1038/s41467-021-25047-y 10.1021/acsnano.1c04903 10.1016/j.nanoen.2019.02.012 10.1016/j.nanoen.2022.107210 10.1039/d0ee01236j 10.1016/j.nanoen.2023.108329 10.1016/j.mattod.2019.05.016 10.1038/ncomms5929 10.1021/acsami.3c08052 10.1016/j.nanoen.2018.07.032 10.1016/j.mtener.2024.101529 10.1016/j.nanoen.2023.108735 10.1021/acsenergylett.2c01908 10.1016/j.nanoen.2024.109340 10.1021/acsnano.2c11633 10.1016/j.joule.2021.04.016 10.1016/j.nanoen.2021.106062 10.1016/j.nanoen.2019.03.054 10.1088/2752-5724/ad2f6a 10.1038/s41467-022-32984-9 10.1016/j.nanoen.2022.107029 10.1002/aenm.201903713 10.1016/j.jpowsour.2023.234005 10.1016/j.nanoen.2024.109431 10.1126/sciadv.abe7738 10.1038/s41467-019-12465-2 10.1038/s41467-024-48456-1 10.1002/adma.201302808 10.1016/j.joule.2024.04.013 10.1360/SST-2022-0176 10.1021/acsnano.1c09792 10.1016/j.nanoen.2022.107239 10.1016/j.bios.2022.114999 10.1016/j.nanoen.2021.106715 10.1016/j.nanoen.2019.104210 10.1021/acsnano.0c08332 10.1002/advs.202103694 10.1016/j.nanoen.2018.09.068 10.1016/j.mattod.2016.12.001 10.1016/j.nanoen.2023.108836 10.1016/j.nanoen.2022.107018 10.1016/j.nanoen.2023.109071 10.1016/j.nanoen.2023.109233 10.1007/s12274-021-3968-9 10.1021/acsnano.5b07157 10.1016/j.eng.2023.05.023 10.1039/d2ta09797d 10.23919/emsci.2023.0017 10.1002/aenm.202000137 10.1016/j.nanoen.2023.109010 10.1038/s41467-022-29083-0 10.1039/d4ee00482e 10.1002/smll.202309318 10.1021/acsnano.5b00072 10.1016/j.device.2024.100548 10.1039/d3ee01290e 10.1002/adma.201405826 10.1002/adfm.202315725 10.1016/j.matt.2019.05.003 10.1002/adfm.201903142 10.1039/c3ee42571a 10.1016/j.nanoen.2024.109886 10.1016/j.nanoen.2021.105810 10.1021/jacs.3c07445 10.1002/adfm.201909724 10.1016/j.nanoen.2020.104526 10.1016/j.nanoen.2021.106743 10.1021/acsnano.1c05127 10.1002/aenm.202103076 10.1016/j.nanoen.2019.03.072 10.1007/s40820-023-01238-8 10.1002/aenm.202303119 10.1039/d3ee04253g 10.1007/s11431-020-1604-9 10.1016/j.joule.2021.03.013 10.1016/j.nanoen.2019.02.051 10.1002/adfm.201901102 10.1016/j.nantod.2010.10.008 10.1002/advs.202307382 10.3390/nano13061036 10.1002/adfm.202213410 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory |
DBID | O3W TSCCA AAYXX CITATION DOA |
DOI | 10.1088/2752-5724/adf132 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2752-5724 |
ExternalDocumentID | oai_doaj_org_article_c1c0622486a14672b6d173402cb8e5b0 10_1088_2752_5724_adf132 mfadf132 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52277227 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | AAFWJ ACHIP AEINN AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS CJUJL GROUPED_DOAJ M~E N5L O3W OK1 TSCCA AAYXX CITATION |
ID | FETCH-LOGICAL-c2582-f3b6bedfc2835fc0d0b065ca2c511bb51c6c634d98312d73290cb3f0085bffda3 |
IEDL.DBID | O3W |
ISSN | 2752-5724 |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Thu Aug 21 00:30:43 EDT 2025 Tue Aug 26 23:34:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2582-f3b6bedfc2835fc0d0b065ca2c511bb51c6c634d98312d73290cb3f0085bffda3 |
Notes | MF-100720.R1 |
ORCID | 0000-0002-7369-6956 0000-0003-0718-2559 0000-0003-4453-0946 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2752-5724/adf132 |
PageCount | 32 |
ParticipantIDs | crossref_primary_10_1088_2752_5724_adf132 iop_journals_10_1088_2752_5724_adf132 doaj_primary_oai_doaj_org_article_c1c0622486a14672b6d173402cb8e5b0 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials futures |
PublicationTitleAbbrev | mf |
PublicationTitleAlternate | Mater. Futures |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Niu (mfadf132bib84) 2013; 6 Bae (mfadf132bib117) 2014; 5 Liang (mfadf132bib11) 2020; 13 Zheng (mfadf132bib68) 2021; 83 Cheng (mfadf132bib106) 2022; 102 Yu (mfadf132bib145) 2023; 16 Guo (mfadf132bib162) 2022; 32 Gao (mfadf132bib140) 2024; 128 Zhao (mfadf132bib75) 2022; 13 Wang (mfadf132bib57) 2021; 15 Dong (mfadf132bib33) 2024; 124 Li (mfadf132bib167) 2022; 95 Lin (mfadf132bib159) 2013; 52 Nan (mfadf132bib233) 2023; 16 Lu (mfadf132bib184) 2022; 13 Du (mfadf132bib148) 2023; 33 Li (mfadf132bib206) 2022; 104 Long (mfadf132bib4) 2021; 12 Wen (mfadf132bib185) 2020; 7 Xu (mfadf132bib46) 2019; 29 Yang (mfadf132bib152) 2015; 9 Nie (mfadf132bib213) 2019; 29 Li (mfadf132bib59) 2024; 15 Tat (mfadf132bib3) 2021; 171 Wang (mfadf132bib113) 2021; 15 Wang (mfadf132bib158) 2021; 15 Yuan (mfadf132bib132) 2022; 100 Shi (mfadf132bib180) 2021; 7 Zhao (mfadf132bib165) 2022; 205 Wang (mfadf132bib51) 2024; 9 Xu (mfadf132bib48) 2018; 30 Liu (mfadf132bib66) 2018; 13 Wang (mfadf132bib80) 2022; 6 t’Lam (mfadf132bib194) 2017; 5 Chung (mfadf132bib121) 2023; 111 Wang (mfadf132bib119) 2020; 73 Liu (mfadf132bib217) 2023; 33 Bai (mfadf132bib38) 2022; 95 Wang (mfadf132bib226) 2012; 24 Lu (mfadf132bib22) 2023; 35 Pan (mfadf132bib169) 2023; 222 Fu (mfadf132bib154) 2021; 6 Li (mfadf132bib5) 2022; 34 Zhang (mfadf132bib181) 2022; 4 Li (mfadf132bib193) 2021; 90 Wong (mfadf132bib199) 2019; 29 Wang (mfadf132bib202) 2024; 121 Wang (mfadf132bib82) 2023; 1 Chen (mfadf132bib73) 2020; 11 Wang (mfadf132bib79) 2023; 53 Wu (mfadf132bib156) 2023; 13 Li (mfadf132bib126) 2023; 292 Wang (mfadf132bib17) 2022; 100 Sun (mfadf132bib29) 2021; 33 Zhang (mfadf132bib178) 2021; 9 Wu (mfadf132bib210) 2019; 29 Wang (mfadf132bib227) 2010; 5 Zhu (mfadf132bib211) 2021; 15 Liang (mfadf132bib101) 2024; 34 Asef (mfadf132bib30) 2024; 35 Wang (mfadf132bib31) 2023; 11 Sun (mfadf132bib186) 2021; 8 Sun (mfadf132bib189) 2022; 101 Song (mfadf132bib166) 2020; 6 Wang (mfadf132bib102) 2024; 2 Li (mfadf132bib141) 2024; 17 Yu (mfadf132bib109) 2024; 8 Meng (mfadf132bib177) 2020; 2 Zhou (mfadf132bib207) 2023; 35 Shao (mfadf132bib96) 2019; 59 Tang (mfadf132bib61) 2024; 36 Huang (mfadf132bib188) 2024; 123 Wang (mfadf132bib134) 2022; 97 Lin (mfadf132bib52) 2014; 26 Wang (mfadf132bib115) 2017; 39 Cheng (mfadf132bib23) 2018; 9 Zeng (mfadf132bib128) 2020; 70 Zhao (mfadf132bib122) 2016; 10 Fan (mfadf132bib45) 2012; 1 Shi (mfadf132bib187) 2023; 17 Liu (mfadf132bib149) 2024; 128 Lai (mfadf132bib168) 2019; 6 Sun (mfadf132bib123) 2020; 70 Luo (mfadf132bib215) 2023; 117 Sun (mfadf132bib25) 2024; 119 Kim (mfadf132bib136) 2022; 12 Yang (mfadf132bib198) 2023; 15 Sun (mfadf132bib179) 2022; 13 Wang (mfadf132bib100) 2017; 542 Zhang (mfadf132bib70) 2020; 10 Lin (mfadf132bib67) 2020; 76 Zhao (mfadf132bib182) 2021; 5 Liu (mfadf132bib16) 2023; 35 Gao (mfadf132bib98) 2024; 15 Liu (mfadf132bib203) 2019; 56 Niu (mfadf132bib87) 2015; 12 Chen (mfadf132bib112) 2018; 21 Yao (mfadf132bib171) 2022; 34 Sun (mfadf132bib208) 2022; 58 Zhang (mfadf132bib14) 2022; 7 Xia (mfadf132bib97) 2019; 10 Shao (mfadf132bib116) 2021; 11 Wang (mfadf132bib161) 2021; 89 Zhang (mfadf132bib34) 2021; 43 Niu (mfadf132bib85) 2013; 25 Wang (mfadf132bib43) 2019; 30 Zhang (mfadf132bib190) 2022; 14 Li (mfadf132bib153) 2024; 11 Wang (mfadf132bib58) 2021; 84 Zi (mfadf132bib94) 2015; 6 Zhu (mfadf132bib146) 2023; 13 Fu (mfadf132bib147) 2023; 33 Ning (mfadf132bib176) 2022; 16 Jiang (mfadf132bib13) 2024; 33 Li (mfadf132bib127) 2023; 13 Ruan (mfadf132bib200) 2024; 20 Zheng (mfadf132bib65) 2020; 32 Tao (mfadf132bib35) 2022; 9 Lin (mfadf132bib56) 2021; 125 Wu (mfadf132bib170) 2022; 92 Zhan (mfadf132bib214) 2020; 14 Lee (mfadf132bib142) 2021; 86 Chen (mfadf132bib28) 2024; 123 Choi (mfadf132bib150) 2024; 119 Zhu (mfadf132bib220) 2024; 122 Wang (mfadf132bib130) 2022; 15 Li (mfadf132bib39) 2020; 11 Wang (mfadf132bib138) 2025; 133 Xu (mfadf132bib160) 2022; 94 Wang (mfadf132bib81) 2023; 37 Machado (mfadf132bib143) 2023; 115 Shao (mfadf132bib41) 2019; 60 Wang (mfadf132bib228) 2008; 18 Niu (mfadf132bib86) 2014; 24 Han (mfadf132bib144) 2022; 32 Lu (mfadf132bib173) 2023; 107 Fan (mfadf132bib175) 2020; 6 Wang (mfadf132bib225) 2018; 54 Shao (mfadf132bib92) 2020; 7 Yang (mfadf132bib104) 2019; 60 Zhao (mfadf132bib201) 2020; 78 Nie (mfadf132bib54) 2020; 32 Barri (mfadf132bib155) 2023; 35 Lin (mfadf132bib49) 2020; 30 Zhang (mfadf132bib36) 2023; 17 Wang (mfadf132bib78) 2022; 52 Wang (mfadf132bib222) 2022; 13 Tan (mfadf132bib209) 2024; 36 Wu (mfadf132bib62) 2024; 594 Zi (mfadf132bib99) 2016; 10 Guo (mfadf132bib93) 2022; 55 Dharmasena (mfadf132bib89) 2018; 8 Chen (mfadf132bib69) 2022; 14 Shao (mfadf132bib91) 2020; 63 Shao (mfadf132bib95) 2018; 51 Wang (mfadf132bib77) 2022; 52 Zhang (mfadf132bib19) 2023; 108 Zhang (mfadf132bib197) 2022; 18 Li (mfadf132bib110) 2023; 16 Zhang (mfadf132bib133) 2022; 95 Zheng (mfadf132bib195) 2022; 97 Fu (mfadf132bib139) 2021; 5 Zi (mfadf132bib26) 2018; 28 Li (mfadf132bib24) 2017; 11 Yang (mfadf132bib164) 2022; 16 Wang (mfadf132bib10) 2015; 5 Han (mfadf132bib135) 2024; 119 Luo (mfadf132bib218) 2023; 113 Zhang (mfadf132bib223) 2023; 110 Jiang (mfadf132bib1) 2024; 17 Xu (mfadf132bib204) 2018; 12 Xu (mfadf132bib53) 2020; 578 Xu (mfadf132bib114) 2018; 12 Wang (mfadf132bib12) 2019; 55 Wang (mfadf132bib230) 2015; 27 Bhatta (mfadf132bib18) 2021; 81 Zou (mfadf132bib163) 2019; 10 Wang (mfadf132bib42) 2020; 10 Yu (mfadf132bib118) 2022; 32 Chen (mfadf132bib224) 2023; 145 Gao (mfadf132bib103) 2022; 16 Bai (mfadf132bib196) 2018; 28 Zhang (mfadf132bib191) 2024; 124 Sun (mfadf132bib6) 2023; 79 Lin (mfadf132bib47) 2019; 31 Cheng (mfadf132bib124) 2023; 106 Lin (mfadf132bib64) 2015; 9 Zhang (mfadf132bib216) 2021; 15 Yang (mfadf132bib27) 2020; 67 Zhang (mfadf132bib212) 2022; 98 Maity (mfadf132bib231) 2022; 92 Zheng (mfadf132bib205) 2017; 27 Luo (mfadf132bib219) 2024; 34 Zhang (mfadf132bib157) 2022; 10 Xu (mfadf132bib108) 2023; 109 Lei (mfadf132bib8) 2020; 13 Zheng (mfadf132bib7) 2022; 15 Zou (mfadf132bib111) 2024; 122 Cao (mfadf132bib72) 2018; 30 Gao (mfadf132bib50) 2023; 33 Wang (mfadf132bib9) 2019; 58 Zhang (mfadf132bib105) 2021; 5 Peng (mfadf132bib229) 2015; 9 Wang (mfadf132bib221) 2024; 53 Zheng (mfadf132bib232) 2021; 7 Zhou (mfadf132bib32) 2022; 32 Dharmasena (mfadf132bib88) 2017; 10 Xia (mfadf132bib63) 2018; 47 Cao (mfadf132bib129) 2024; 20 Ning (mfadf132bib172) 2024; 3 Zhang (mfadf132bib131) 2020; 70 Hu (mfadf132bib44) 2024; 16 Cai (mfadf132bib20) 2021; 83 Lin (mfadf132bib40) 2022; 122 Wei (mfadf132bib183) 2022; 34 Wu (mfadf132bib15) 2022; 12 Yue (mfadf132bib120) 2024; 128 Wu (mfadf132bib2) 2024; 41 Lin (mfadf132bib55) 2020; 11 Hao (mfadf132bib71) 2019; 1 Qaseem (mfadf132bib137) 2023; 14 Li (mfadf132bib192) 2017; 12 Wang (mfadf132bib151) 2021; 82 Ahmed (mfadf132bib90) 2023; 117 Deng (mfadf132bib125) 2022; 34 Li (mfadf132bib37) 2021; 7 Wang (mfadf132bib74) 2021; 7 Wang (mfadf132bib83) 2020; 68 Liu (mfadf132bib174) 2022; 14 Zhao (mfadf132bib21) 2023; 15 Wang (mfadf132bib76) 2017; 20 Liu (mfadf132bib107) 2021; 15 Lin (mfadf132bib60) 2022; 13 |
References_xml | – volume: 21 start-page: 88 year: 2018 ident: mfadf132bib112 article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator publication-title: Mater. Today doi: 10.1016/j.mattod.2017.10.006 – volume: 90 year: 2021 ident: mfadf132bib193 article-title: Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106585 – volume: 124 year: 2024 ident: mfadf132bib191 article-title: An ultra-high voltage (>10 kv) direct-current triboelectric nanogenerator realized by structural and material optimizations publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109517 – volume: 10 start-page: 4797 year: 2016 ident: mfadf132bib99 article-title: Harvesting low-frequency (<5 hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 9 start-page: 922 year: 2015 ident: mfadf132bib64 article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55% publication-title: ACS Nano doi: 10.1021/nn506673x – volume: 24 start-page: 4632 year: 2012 ident: mfadf132bib226 article-title: Progress in piezotronics and piezo-phototronics publication-title: Adv. Mater. doi: 10.1002/adma.201104365 – volume: 123 year: 2024 ident: mfadf132bib188 article-title: Electrohydrodynamic drying of pollens based on a dual-polarization induction mode triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109387 – volume: 81 year: 2021 ident: mfadf132bib18 article-title: High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105670 – volume: 29 year: 2019 ident: mfadf132bib213 article-title: Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806351 – volume: 7 start-page: eabj0349 year: 2021 ident: mfadf132bib37 article-title: Interface inter-atomic electron-transition induced photon emission in contact-electrification publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0349 – volume: 34 year: 2022 ident: mfadf132bib171 article-title: Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy publication-title: Adv. Mater. doi: 10.1002/adma.202109568 – volume: 55 year: 2022 ident: mfadf132bib93 article-title: Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators publication-title: J. Appl. Phys. doi: 10.1088/1361-6463/ac7365 – volume: 29 year: 2019 ident: mfadf132bib199 article-title: Microplasma-discharge-based nitrogen fixation driven by triboelectric nanogenerator toward self-powered mechano-nitrogenous fertilizer supplier publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904090 – volume: 4 year: 2022 ident: mfadf132bib181 article-title: Artificial intelligence‐enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202100228 – volume: 14 start-page: 24020 year: 2022 ident: mfadf132bib69 article-title: Friction-dominated carrier excitation and transport mechanism for GaN-based direct-current triboelectric nanogenerators publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c03853 – volume: 1 start-page: 328 year: 2012 ident: mfadf132bib45 article-title: Flexible triboelectric generator! publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 84 year: 2021 ident: mfadf132bib58 article-title: From contact electrification to triboelectric nanogenerators publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ac0a50 – volume: 13 year: 2023 ident: mfadf132bib156 article-title: All‐in‐one sensing system for online vibration monitoring via ir wireless communication as driven by high‐power TENG publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300051 – volume: 16 start-page: 3040 year: 2023 ident: mfadf132bib110 article-title: Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure publication-title: Energy Environ. Sci. doi: 10.1039/d3ee01035j – volume: 7 start-page: eabe2943 year: 2021 ident: mfadf132bib180 article-title: Self-powered electro-tactile system for virtual tactile experiences publication-title: Sci. Adv. doi: 10.1126/sciadv.abe2943 – volume: 15 start-page: 9412 year: 2021 ident: mfadf132bib107 article-title: Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.1c00345 – volume: 128 year: 2024 ident: mfadf132bib149 article-title: A bioinspired triboelectric wireless anemometer with low cut-in wind speed for meteorological UAVs publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109917 – volume: 5 year: 2015 ident: mfadf132bib10 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501467 – volume: 122 start-page: 5209 year: 2022 ident: mfadf132bib40 article-title: Contact electrification at the liquid-solid interface publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00176 – volume: 95 year: 2022 ident: mfadf132bib38 article-title: Chemical warfare agents decontamination via air mircoplasma excited by a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106992 – volume: 34 year: 2022 ident: mfadf132bib5 article-title: A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles publication-title: Adv. Mater. doi: 10.1002/adma.202110363 – volume: 32 year: 2022 ident: mfadf132bib118 article-title: Moisture resistant and stable wireless wind speed sensing system based on triboelectric nanogenerator with charge-excitation strategy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207498 – volume: 15 start-page: 894 year: 2021 ident: mfadf132bib211 article-title: Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification publication-title: ACS Nano doi: 10.1021/acsnano.0c07464 – volume: 6 start-page: 8376 year: 2015 ident: mfadf132bib94 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 102 year: 2022 ident: mfadf132bib106 article-title: Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107622 – volume: 11 start-page: 5625 year: 2020 ident: mfadf132bib39 article-title: Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples publication-title: Nat. Commun. doi: 10.1038/s41467-020-19444-y – volume: 7 start-page: eabi6751 year: 2021 ident: mfadf132bib74 article-title: A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current publication-title: Sci. Adv. doi: 10.1126/sciadv.abi6751 – volume: 13 start-page: 130 year: 2022 ident: mfadf132bib222 article-title: Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders publication-title: Nat. Commun. doi: 10.1038/s41467-021-27789-1 – volume: 79 start-page: 477 year: 2023 ident: mfadf132bib6 article-title: Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.12.024 – volume: 56 start-page: 482 year: 2019 ident: mfadf132bib203 article-title: Electrical analysis of triboelectric nanogenerator for high voltage applications exampled by DBD microplasma publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.064 – volume: 6 year: 2022 ident: mfadf132bib80 article-title: Maxwell’s equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r,t) publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/ac871e – volume: 205 year: 2022 ident: mfadf132bib165 article-title: Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114115 – volume: 15 start-page: 6709 year: 2023 ident: mfadf132bib198 article-title: A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds publication-title: Nanoscale doi: 10.1039/d3nr00507k – volume: 12 start-page: 10262 year: 2018 ident: mfadf132bib204 article-title: Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion publication-title: ACS Nano doi: 10.1021/acsnano.8b05359 – volume: 97 year: 2022 ident: mfadf132bib195 article-title: Indoor air dust removal system based on high-voltage direct current triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107183 – volume: 13 start-page: 3325 year: 2022 ident: mfadf132bib75 article-title: Underwater wireless communication via TENG-generated Maxwell’s displacement current publication-title: Nat. Commun. doi: 10.1038/s41467-022-31042-8 – volume: 578 start-page: 392 year: 2020 ident: mfadf132bib53 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 47 start-page: 43 year: 2018 ident: mfadf132bib63 article-title: Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.022 – volume: 11 start-page: 4143 year: 2020 ident: mfadf132bib73 article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication publication-title: Nat. Commun. doi: 10.1038/s41467-020-17842-w – volume: 8 year: 2018 ident: mfadf132bib89 article-title: Nature of power generation and output optimization criteria for triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802190 – volume: 16 start-page: 4654 year: 2022 ident: mfadf132bib164 article-title: Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range publication-title: ACS Nano doi: 10.1021/acsnano.1c11321 – volume: 33 year: 2023 ident: mfadf132bib147 article-title: Non-contact triboelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306749 – volume: 13 start-page: 277 year: 2020 ident: mfadf132bib11 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energy Environ. Sci. doi: 10.1039/c9ee03258d – volume: 9 year: 2024 ident: mfadf132bib51 article-title: The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS) publication-title: Adv. Phys. X doi: 10.1080/23746149.2024.2354767 – volume: 13 start-page: 5224 year: 2022 ident: mfadf132bib179 article-title: Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions publication-title: Nat. Commun. doi: 10.1038/s41467-022-32745-8 – volume: 18 start-page: 3553 year: 2008 ident: mfadf132bib228 article-title: Towards self-powered nanosystems: from nanogenerators to nanopiezotronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800541 – volume: 11 year: 2021 ident: mfadf132bib116 article-title: Designing rules and optimization of triboelectric nanogenerator arrays publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100065 – volume: 119 year: 2024 ident: mfadf132bib135 article-title: Enhance vortices vibration with y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109063 – volume: 125 start-page: 14098 year: 2021 ident: mfadf132bib56 article-title: Detecting the liquid-solid contact electrification charges in a liquid environment publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03483 – volume: 37 year: 2023 ident: mfadf132bib81 article-title: The expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration publication-title: Int. J. Mod. Phys. B doi: 10.1142/s021797922350159x – volume: 82 year: 2021 ident: mfadf132bib151 article-title: Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105740 – volume: 89 year: 2021 ident: mfadf132bib161 article-title: Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106410 – volume: 70 year: 2020 ident: mfadf132bib131 article-title: Galloping triboelectric nanogenerator for energy harvesting under low wind speed publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104477 – volume: 15 start-page: 18206 year: 2021 ident: mfadf132bib57 article-title: Study of contact electrification at liquid-gas interface publication-title: ACS Nano doi: 10.1021/acsnano.1c07158 – volume: 104 year: 2022 ident: mfadf132bib206 article-title: Honeybee-inspired electrostatic microparticle manipulation system based on triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107901 – volume: 27 year: 2017 ident: mfadf132bib205 article-title: Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606408 – volume: 100 year: 2022 ident: mfadf132bib132 article-title: Scavenging breeze wind energy (1-8.1 ms−1) by minimalist triboelectric nanogenerator based on the wake galloping phenomenon* publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107465 – volume: 35 year: 2023 ident: mfadf132bib16 article-title: Micro-droplets parameters monitoring in a microfluidic chip via liquid-solid triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.202307184 – volume: 32 year: 2022 ident: mfadf132bib144 article-title: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108580 – volume: 542 start-page: 159 year: 2017 ident: mfadf132bib100 article-title: New wave power publication-title: Nature doi: 10.1038/542159a – volume: 108 year: 2023 ident: mfadf132bib19 article-title: Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108196 – volume: 128 year: 2024 ident: mfadf132bib140 article-title: Wind-driven suspended triboelectric-electromagnetic hybrid generator with vibration elimination for environmental monitoring in the high-voltage power transmission line publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109831 – volume: 53 start-page: 4349 year: 2024 ident: mfadf132bib221 article-title: Contact-electro-catalysis (CEC) publication-title: Chem. Soc. Rev. doi: 10.1039/d3cs00736g – volume: 100 year: 2022 ident: mfadf132bib17 article-title: Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107509 – volume: 32 year: 2020 ident: mfadf132bib54 article-title: Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface publication-title: Adv. Mater. doi: 10.1002/adma.201905696 – volume: 30 year: 2018 ident: mfadf132bib72 article-title: Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201704077 – volume: 5 start-page: 6046 year: 2017 ident: mfadf132bib194 article-title: Mild and selective protein release of cell wall deficient microalgae with pulsed electric field publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00892 – volume: 32 year: 2022 ident: mfadf132bib32 article-title: Solution-tube-based volume effect triboelectric nanogenerator with salt and pH sensitivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209100 – volume: 24 start-page: 3332 year: 2014 ident: mfadf132bib86 article-title: Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303799 – volume: 34 year: 2022 ident: mfadf132bib183 article-title: An open-environment tactile sensing system: toward simple and efficient material identification publication-title: Adv. Mater. doi: 10.1002/adma.202203073 – volume: 16 start-page: 6781 year: 2022 ident: mfadf132bib103 article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano doi: 10.1021/acsnano.2c01594 – volume: 113 year: 2023 ident: mfadf132bib218 article-title: Triboelectric charge-separable probes for quantificationally charge investigating at the liquid-solid interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108532 – volume: 107 year: 2023 ident: mfadf132bib173 article-title: Sensory-motor coupling electrical stimulation driven by a bionic Z‐structured triboelectric nanogenerator improves functional recovery from spinal cord injury publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108133 – volume: 6 start-page: eaay9842 year: 2020 ident: mfadf132bib166 article-title: Wireless battery-free wearable sweat sensor powered by human motion publication-title: Sci. Adv. doi: 10.1126/sciadv.aay9842 – volume: 8 year: 2021 ident: mfadf132bib186 article-title: Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator publication-title: Adv. Sci. doi: 10.1002/advs.202100230 – volume: 16 start-page: 11545 year: 2023 ident: mfadf132bib233 article-title: Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfaces publication-title: Nano Res. doi: 10.1007/s12274-023-5674-2 – volume: 12 start-page: 760 year: 2015 ident: mfadf132bib87 article-title: Theory of freestanding triboelectric-layer-based nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 10 start-page: 2695 year: 2019 ident: mfadf132bib163 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-019-10433-4 – volume: 6 start-page: eaay2840 year: 2020 ident: mfadf132bib175 article-title: Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2840 – volume: 33 year: 2021 ident: mfadf132bib29 article-title: A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis publication-title: Adv. Mater. doi: 10.1002/adma.202102765 – volume: 14 start-page: 4244 year: 2022 ident: mfadf132bib190 article-title: Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators publication-title: Nanoscale doi: 10.1039/d1nr08203e – volume: 117 year: 2023 ident: mfadf132bib215 article-title: Triboelectric probes for investigating charge transfer at the colloid-solid interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108874 – volume: 35 start-page: 943 year: 2024 ident: mfadf132bib30 article-title: Triboelectric nanogenerators for the masses: a low-cost do-it-yourself pulsed ion source for sample-limited applications publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.4c00010 – volume: 33 year: 2023 ident: mfadf132bib217 article-title: Liquid-solid triboelectric probes for real-time monitoring of sucrose fluid status publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304321 – volume: 39 start-page: 9 year: 2017 ident: mfadf132bib115 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 11 start-page: 10439 year: 2017 ident: mfadf132bib24 article-title: Self-powered electrospinning system driven by a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.7b05626 – volume: 13 start-page: 112 year: 2018 ident: mfadf132bib66 article-title: Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0019-5 – volume: 76 year: 2020 ident: mfadf132bib67 article-title: The tribovoltaic effect and electron transfer at a liquid-semiconductor interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105070 – volume: 35 year: 2023 ident: mfadf132bib155 article-title: Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure publication-title: Adv. Mater. doi: 10.1002/adma.202211027 – volume: 14 start-page: 1008 year: 2023 ident: mfadf132bib137 article-title: Magnetic bistability for a wider bandwidth in vibro-impact triboelectric energy harvesters publication-title: Micromachines doi: 10.3390/mi14051008 – volume: 35 year: 2023 ident: mfadf132bib22 article-title: Wearable triboelectric visual sensors for tactile perception publication-title: Adv. Mater. doi: 10.1002/adma.202209117 – volume: 53 start-page: 430 year: 2023 ident: mfadf132bib79 article-title: From faraday’s law to the expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration publication-title: Sci. Sin. Technol. doi: 10.1360/SST-2022-0322 – volume: 20 year: 2024 ident: mfadf132bib129 article-title: A rolling-bead triboelectric nanogenerator for harvesting omnidirectional wind-induced energy toward shelter forests monitoring publication-title: Small doi: 10.1002/smll.202307119 – volume: 15 start-page: 2911 year: 2021 ident: mfadf132bib158 article-title: Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal-organic framework-derived CuO nanohybrid ammonia sensor publication-title: ACS Nano doi: 10.1021/acsnano.0c09015 – volume: 2 start-page: 896 year: 2020 ident: mfadf132bib177 article-title: A wireless textile-based sensor system for self-powered personalized health care publication-title: Matter doi: 10.1016/j.matt.2019.12.025 – volume: 9 start-page: 901 year: 2015 ident: mfadf132bib152 article-title: Paper-based origami triboelectric nanogenerators and self-powered pressure sensors publication-title: ACS Nano doi: 10.1021/nn506631t – volume: 10 start-page: 10935 year: 2022 ident: mfadf132bib157 article-title: An eco-friendly gelatin based triboelectric nanogenerator for a self-powered PANI nanorod/NiCo2O4 nanosphere ammonia gas sensor publication-title: J. Mater. Chem. A doi: 10.1039/d2ta01788a – volume: 6 start-page: 2343 year: 2021 ident: mfadf132bib154 article-title: Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00704 – volume: 78 year: 2020 ident: mfadf132bib201 article-title: The triboelectric microplasma transistor of monolayer graphene with a reversible oxygen ion floating gate publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105229 – volume: 133 year: 2025 ident: mfadf132bib138 article-title: Soft-soft contact TENG using nonlinear coupling galloping phenomenon for harvesting wind energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110471 – volume: 122 year: 2024 ident: mfadf132bib111 article-title: Advances in self-powered triboelectric sensor toward marine IoT publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109316 – volume: 34 year: 2022 ident: mfadf132bib125 article-title: Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing publication-title: Adv. Mater. doi: 10.1002/adma.202205064 – volume: 7 year: 2020 ident: mfadf132bib185 article-title: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in vr/ar applications publication-title: Adv. Sci. doi: 10.1002/advs.202000261 – volume: 12 start-page: 481 year: 2017 ident: mfadf132bib192 article-title: Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.17 – volume: 55 start-page: 541 year: 2019 ident: mfadf132bib12 article-title: Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.006 – volume: 94 year: 2022 ident: mfadf132bib160 article-title: Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106881 – volume: 5 start-page: 1074 year: 2021 ident: mfadf132bib139 article-title: Rotational energy harvesting for self-powered sensing publication-title: Joule doi: 10.1016/j.joule.2021.03.006 – volume: 52 start-page: 1416 year: 2022 ident: mfadf132bib78 article-title: Maxwell’s equations for a mechano-driven varying-speed-motion media system for engineering electrodynamics and their solutions publication-title: Sci. Sin. Technol. doi: 10.1360/SST-2022-0226 – volume: 292 year: 2023 ident: mfadf132bib126 article-title: Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2023.117383 – volume: 171 year: 2021 ident: mfadf132bib3 article-title: Advances in triboelectric nanogenerators for biomedical sensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112714 – volume: 58 start-page: 41 year: 2022 ident: mfadf132bib208 article-title: Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection publication-title: Mater. Today doi: 10.1016/j.mattod.2022.07.012 – volume: 34 year: 2024 ident: mfadf132bib101 article-title: Triboelectric nanogenerators using recycled disposable medical masks for water wave energy harvesting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202409422 – volume: 111 year: 2023 ident: mfadf132bib121 article-title: Boosting power output of fluttering triboelectric nanogenerator based on charge excitation through multi-utilization of wind publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108389 – volume: 12 year: 2022 ident: mfadf132bib15 article-title: Multi‐parameter optimized triboelectric nanogenerator based self‐powered sensor network for broadband aeolian vibration online‐monitoring of transmission lines publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103654 – volume: 15 start-page: 6213 year: 2022 ident: mfadf132bib7 article-title: Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing publication-title: Nano Res. doi: 10.1007/s12274-022-4321-7 – volume: 17 start-page: 4985 year: 2023 ident: mfadf132bib187 article-title: Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence publication-title: ACS Nano doi: 10.1021/acsnano.2c12592 – volume: 18 year: 2022 ident: mfadf132bib197 article-title: Self-powered high-voltage recharging system for removing noxious tobacco smoke by biomimetic hairy-contact triboelectric nanogenerator publication-title: Small doi: 10.1002/smll.202202835 – volume: 7 year: 2020 ident: mfadf132bib92 article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode publication-title: Appl. Phys. Rev. doi: 10.1063/1.5133023 – volume: 43 start-page: 37 year: 2021 ident: mfadf132bib34 article-title: All-in-one 3D acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system publication-title: Mater. Today doi: 10.1016/j.mattod.2020.10.031 – volume: 30 year: 2018 ident: mfadf132bib48 article-title: On the electron-transfer mechanism in the contact-electrification effect publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 73 year: 2020 ident: mfadf132bib119 article-title: Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104736 – volume: 101 year: 2022 ident: mfadf132bib189 article-title: High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107599 – volume: 36 year: 2024 ident: mfadf132bib61 article-title: Spontaneous wetting induced by contact-electrification at liquid-solid interface publication-title: Adv. Mater. doi: 10.1002/adma.202400451 – volume: 26 start-page: 4690 year: 2014 ident: mfadf132bib52 article-title: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process publication-title: Adv. Mater. doi: 10.1002/adma.201400373 – volume: 10 start-page: 1801 year: 2017 ident: mfadf132bib88 article-title: Triboelectric nanogenerators: providing a fundamental framework publication-title: Energy Environ. Sci. doi: 10.1039/c7ee01139c – volume: 109 year: 2023 ident: mfadf132bib108 article-title: A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108240 – volume: 106 year: 2023 ident: mfadf132bib124 article-title: High output performance flutter-driven triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108106 – volume: 70 year: 2020 ident: mfadf132bib128 article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104524 – volume: 68 year: 2020 ident: mfadf132bib83 article-title: On the first principle theory of nanogenerators from Maxwell’s equations publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104272 – volume: 32 year: 2020 ident: mfadf132bib65 article-title: Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors publication-title: Adv. Mater. doi: 10.1002/adma.202000928 – volume: 32 year: 2022 ident: mfadf132bib162 article-title: Deep learning assisted body area triboelectric hydrogel sensor network for infant care publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204803 – volume: 12 start-page: 1849 year: 2018 ident: mfadf132bib114 article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 124 year: 2024 ident: mfadf132bib33 article-title: Metasurface-enhanced multifunctional flag nanogenerator for efficient wind energy harvesting and environmental sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109508 – volume: 14 start-page: 7301 year: 2022 ident: mfadf132bib174 article-title: Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22457 – volume: 33 year: 2023 ident: mfadf132bib148 article-title: High durable rotary triboelectric nanogenerator enabled by ferromagnetic metal particles as a friction material publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306491 – volume: 35 year: 2023 ident: mfadf132bib207 article-title: A self-powered dielectrophoretic microparticle manipulation platform based on a triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.202207093 – volume: 9 year: 2022 ident: mfadf132bib35 article-title: Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces publication-title: Adv. Sci. doi: 10.1002/advs.202104168 – volume: 11 start-page: 399 year: 2020 ident: mfadf132bib55 article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer publication-title: Nat. Commun. doi: 10.1038/s41467-019-14278-9 – volume: 15 start-page: 6004 year: 2024 ident: mfadf132bib59 article-title: Visualization and standardized quantification of surface charge density for triboelectric materials publication-title: Nat. Commun. doi: 10.1038/s41467-024-49660-9 – volume: 52 start-page: 5065 year: 2013 ident: mfadf132bib159 article-title: A self-powered triboelectric nanosensor for mercury ion detection publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201300437 – volume: 36 year: 2024 ident: mfadf132bib209 article-title: Controllable manipulation of large-volume droplet on non-slippery surfaces based on triboelectric contactless charge injection publication-title: Adv. Mater. doi: 10.1002/adma.202313878 – volume: 28 year: 2018 ident: mfadf132bib196 article-title: Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706680 – volume: 83 year: 2021 ident: mfadf132bib20 article-title: Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105833 – volume: 28 year: 2018 ident: mfadf132bib26 article-title: Field emission of electrons powered by a triboelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800610 – volume: 9 start-page: 3733 year: 2018 ident: mfadf132bib23 article-title: Triboelectric microplasma powered by mechanical stimuli publication-title: Nat. Commun. doi: 10.1038/s41467-018-06198-x – volume: 31 year: 2019 ident: mfadf132bib47 article-title: Electron transfer in nanoscale contact electrification: photon excitation effect publication-title: Adv. Mater. doi: 10.1002/adma.201901418 – volume: 6 year: 2019 ident: mfadf132bib168 article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors publication-title: Adv. Sci. doi: 10.1002/advs.201801883 – volume: 12 start-page: 4689 year: 2021 ident: mfadf132bib4 article-title: High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-021-25047-y – volume: 15 start-page: 14830 year: 2021 ident: mfadf132bib216 article-title: Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces publication-title: ACS Nano doi: 10.1021/acsnano.1c04903 – volume: 58 start-page: 669 year: 2019 ident: mfadf132bib9 article-title: Entropy theory of distributed energy for internet of things publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.012 – volume: 97 year: 2022 ident: mfadf132bib134 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107210 – volume: 13 start-page: 2178 year: 2020 ident: mfadf132bib8 article-title: Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy publication-title: Energy Environ. Sci. doi: 10.1039/d0ee01236j – volume: 110 year: 2023 ident: mfadf132bib223 article-title: Rotation-mode liquid-solid triboelectric nanogenerator for efficient contact-electro-catalysis and adsorption publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108329 – volume: 30 start-page: 34 year: 2019 ident: mfadf132bib43 article-title: On the origin of contact-electrification publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 5 start-page: 4929 year: 2014 ident: mfadf132bib117 article-title: Flutter-driven triboelectrification for harvesting wind energy publication-title: Nat. Commun. doi: 10.1038/ncomms5929 – volume: 15 start-page: 40975 year: 2023 ident: mfadf132bib21 article-title: Self-healable, adhesive, anti-drying, freezing-tolerant, and transparent conductive organohydrogel as flexible strain sensor, triboelectric nanogenerator, and skin barrier publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c08052 – volume: 51 start-page: 688 year: 2018 ident: mfadf132bib95 article-title: Structural figure-of-merits of triboelectric nanogenerators at powering loads publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.032 – volume: 41 year: 2024 ident: mfadf132bib2 article-title: Recent advances in nanogenerators driven by flow-induced vibrations for harvesting energy publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2024.101529 – volume: 115 year: 2023 ident: mfadf132bib143 article-title: Optimisation-driven design of sliding mode triboelectric energy harvesters publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108735 – volume: 7 start-page: 4282 year: 2022 ident: mfadf132bib14 article-title: Enhancing low-velocity water flow energy harvesting of triboelectric-electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01908 – volume: 122 year: 2024 ident: mfadf132bib220 article-title: Triboelectric probes integrated with deep learning for real-time online monitoring of suspensions in liquid transport publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109340 – volume: 17 start-page: 1646 year: 2023 ident: mfadf132bib36 article-title: Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid-solid contacting publication-title: ACS Nano doi: 10.1021/acsnano.2c11633 – volume: 5 start-page: 1613 year: 2021 ident: mfadf132bib105 article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy publication-title: Joule doi: 10.1016/j.joule.2021.04.016 – volume: 86 year: 2021 ident: mfadf132bib142 article-title: Sliding triboelectric nanogenerator with staggered electrodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106062 – volume: 60 start-page: 404 year: 2019 ident: mfadf132bib104 article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.054 – volume: 3 year: 2024 ident: mfadf132bib172 article-title: Highly stretchable kirigami-patterned nanofiber-based nanogenerators for harvesting human motion energy to power wearable electronics publication-title: Mater. Futures doi: 10.1088/2752-5724/ad2f6a – volume: 13 start-page: 5230 year: 2022 ident: mfadf132bib60 article-title: Spin-selected electron transfer in liquid-solid contact electrification publication-title: Nat. Commun. doi: 10.1038/s41467-022-32984-9 – volume: 95 year: 2022 ident: mfadf132bib133 article-title: Vortex-induced vibration triboelectric nanogenerator for low speed wind energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107029 – volume: 10 year: 2020 ident: mfadf132bib70 article-title: Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903713 – volume: 594 year: 2024 ident: mfadf132bib62 article-title: Suppressing the self-discharge of high-frequency supercapacitors using electrolytes containing BaTiO3 nanoparticles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.234005 – volume: 123 year: 2024 ident: mfadf132bib28 article-title: Formaldehyde degradation by soft-sliding-electrification-induced air ionization publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109431 – volume: 7 start-page: eabe7738 year: 2021 ident: mfadf132bib232 article-title: Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array publication-title: Sci. Adv. doi: 10.1126/sciadv.abe7738 – volume: 10 start-page: 4428 year: 2019 ident: mfadf132bib97 article-title: A universal standardized method for output capability assessment of nanogenerators publication-title: Nat. Commun. doi: 10.1038/s41467-019-12465-2 – volume: 15 start-page: 4167 year: 2024 ident: mfadf132bib98 article-title: Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency publication-title: Nat. Commun. doi: 10.1038/s41467-024-48456-1 – volume: 25 start-page: 6184 year: 2013 ident: mfadf132bib85 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201302808 – volume: 8 start-page: 1855 year: 2024 ident: mfadf132bib109 article-title: Substantially boosting performance of triboelectric nanogenerators via a triboelectrification enhancement effect publication-title: Joule doi: 10.1016/j.joule.2024.04.013 – volume: 52 start-page: 1198 year: 2022 ident: mfadf132bib77 article-title: Maxwell’s equations for a mechano-driven varying-speed motion media system under slow motion and nonrelativistic approximations publication-title: Sci. Sin. Technol. doi: 10.1360/SST-2022-0176 – volume: 16 start-page: 2811 year: 2022 ident: mfadf132bib176 article-title: Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring publication-title: ACS Nano doi: 10.1021/acsnano.1c09792 – volume: 98 year: 2022 ident: mfadf132bib212 article-title: Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107239 – volume: 222 year: 2023 ident: mfadf132bib169 article-title: Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114999 – volume: 92 year: 2022 ident: mfadf132bib170 article-title: A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106715 – volume: 67 year: 2020 ident: mfadf132bib27 article-title: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104210 – volume: 14 start-page: 17565 year: 2020 ident: mfadf132bib214 article-title: Electron transfer as a liquid droplet contacting a polymer surface publication-title: ACS Nano doi: 10.1021/acsnano.0c08332 – volume: 9 year: 2021 ident: mfadf132bib178 article-title: Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot‐based smart healthcare applications publication-title: Adv. Sci. doi: 10.1002/advs.202103694 – volume: 54 start-page: 477 year: 2018 ident: mfadf132bib225 article-title: Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—a recall on the original thoughts for coining these fields publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.068 – volume: 20 start-page: 74 year: 2017 ident: mfadf132bib76 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 117 year: 2023 ident: mfadf132bib90 article-title: An enhanced distance-dependent electric field model for contact-separation triboelectric nanogenerator: air-breakdown limit as a case study publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108836 – volume: 95 year: 2022 ident: mfadf132bib167 article-title: Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107018 – volume: 119 year: 2024 ident: mfadf132bib150 article-title: Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109071 – volume: 121 year: 2024 ident: mfadf132bib202 article-title: Self-driven microplasma decontaminates chemical warfare agent simulant in different gas environments publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109233 – volume: 15 start-page: 3246 year: 2022 ident: mfadf132bib130 article-title: A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy publication-title: Nano Res. doi: 10.1007/s12274-021-3968-9 – volume: 10 start-page: 1780 year: 2016 ident: mfadf132bib122 article-title: Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions publication-title: ACS Nano doi: 10.1021/acsnano.5b07157 – volume: 33 start-page: 204 year: 2024 ident: mfadf132bib13 article-title: Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring publication-title: Engineering doi: 10.1016/j.eng.2023.05.023 – volume: 11 start-page: 5696 year: 2023 ident: mfadf132bib31 article-title: Studying the droplet sliding velocity and charge transfer at a liquid-solid interface publication-title: J. Mater. Chem. A doi: 10.1039/d2ta09797d – volume: 1 year: 2023 ident: mfadf132bib82 article-title: Recent progress on the Maxwell’s equations for describing a mechano-driven medium system with multiple moving objects/media publication-title: Electromagn. Sci. doi: 10.23919/emsci.2023.0017 – volume: 10 year: 2020 ident: mfadf132bib42 article-title: Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000137 – volume: 119 year: 2024 ident: mfadf132bib25 article-title: Device physics and application prospect of the emerging high-voltage supply technology arising from triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109010 – volume: 13 start-page: 1401 year: 2022 ident: mfadf132bib184 article-title: Decoding lip language using triboelectric sensors with deep learning publication-title: Nat. Commun. doi: 10.1038/s41467-022-29083-0 – volume: 17 start-page: 3700 year: 2024 ident: mfadf132bib1 article-title: Fluid-based triboelectric nanogenerators: unveiling the prolific landscape of renewable energy harvesting and beyond publication-title: Energy Environ. Sci. doi: 10.1039/d4ee00482e – volume: 20 year: 2024 ident: mfadf132bib200 article-title: In situ local band engineering of monolayer graphene using triboelectric plasma publication-title: Small doi: 10.1002/smll.202309318 – volume: 9 start-page: 3143 year: 2015 ident: mfadf132bib229 article-title: High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging publication-title: ACS Nano doi: 10.1021/acsnano.5b00072 – volume: 2 year: 2024 ident: mfadf132bib102 article-title: Improving mechanical energy harvesters without complex fabrication using origami/kirigami publication-title: Device doi: 10.1016/j.device.2024.100548 – volume: 16 start-page: 3932 year: 2023 ident: mfadf132bib145 article-title: Contact-sliding-separation mode triboelectric nanogenerator publication-title: Energy Environ. Sci. doi: 10.1039/d3ee01290e – volume: 27 start-page: 2324 year: 2015 ident: mfadf132bib230 article-title: Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process publication-title: Adv. Mater. doi: 10.1002/adma.201405826 – volume: 34 year: 2024 ident: mfadf132bib219 article-title: Liquid-solid triboelectric probes for bubbles status monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202315725 – volume: 1 start-page: 639 year: 2019 ident: mfadf132bib71 article-title: Co-harvesting light and mechanical energy based on dynamic metal/perovskite Schottky junction publication-title: Matter doi: 10.1016/j.matt.2019.05.003 – volume: 29 year: 2019 ident: mfadf132bib46 article-title: Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903142 – volume: 6 start-page: 3576 year: 2013 ident: mfadf132bib84 article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42571a – volume: 128 year: 2024 ident: mfadf132bib120 article-title: A bladeless wind-tunnel generator based on a flutter-driven triboelectric nanogenerator with on-demand micro-structuring publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109886 – volume: 83 year: 2021 ident: mfadf132bib68 article-title: Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105810 – volume: 145 start-page: 21538 year: 2023 ident: mfadf132bib224 article-title: Hydrocarbon degradation by contact with anoxic water microdroplets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c07445 – volume: 30 year: 2020 ident: mfadf132bib49 article-title: The overlapped electron-cloud model for electron transfer in contact electrification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909724 – volume: 70 year: 2020 ident: mfadf132bib123 article-title: Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104526 – volume: 92 year: 2022 ident: mfadf132bib231 article-title: Piezo-phototronic effect in highly stable CsPbI3-PVDF composite for self-powered nanogenerator and photodetector publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106743 – volume: 15 start-page: 15700 year: 2021 ident: mfadf132bib113 article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things publication-title: ACS Nano doi: 10.1021/acsnano.1c05127 – volume: 12 year: 2022 ident: mfadf132bib136 article-title: Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103076 – volume: 60 start-page: 630 year: 2019 ident: mfadf132bib41 article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.072 – volume: 16 start-page: 7 year: 2024 ident: mfadf132bib44 article-title: A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01238-8 – volume: 13 year: 2023 ident: mfadf132bib146 article-title: Bionic blade lift-drag combination triboelectric-electromagnetic hybrid generator with enhanced aerodynamic performance for wind energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202303119 – volume: 17 start-page: 2651 year: 2024 ident: mfadf132bib141 article-title: Ultra-stability and high output performance of a sliding mode triboelectric nanogenerator achieved by an asymmetric electrode structure design publication-title: Energy Environ. Sci. doi: 10.1039/d3ee04253g – volume: 63 start-page: 1087 year: 2020 ident: mfadf132bib91 article-title: Theoretical foundations of triboelectric nanogenerators (TENGs) publication-title: Sci. China doi: 10.1007/s11431-020-1604-9 – volume: 5 start-page: 1391 year: 2021 ident: mfadf132bib182 article-title: Nanogenerators for smart cities in the era of 5G and internet of things publication-title: Joule doi: 10.1016/j.joule.2021.03.013 – volume: 59 start-page: 380 year: 2019 ident: mfadf132bib96 article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.051 – volume: 29 year: 2019 ident: mfadf132bib210 article-title: Electrohydrodynamic jet printing driven by a triboelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901102 – volume: 5 start-page: 540 year: 2010 ident: mfadf132bib227 article-title: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics publication-title: Nano Today doi: 10.1016/j.nantod.2010.10.008 – volume: 11 year: 2024 ident: mfadf132bib153 article-title: Rotary wind-driven triboelectric nanogenerator for self-powered airflow temperature monitoring of industrial equipment publication-title: Adv. Sci. doi: 10.1002/advs.202307382 – volume: 13 start-page: 1036 year: 2023 ident: mfadf132bib127 article-title: Solid-liquid triboelectric nanogenerator based on vortex-induced resonance publication-title: Nanomaterials doi: 10.3390/nano13061036 – volume: 33 year: 2023 ident: mfadf132bib50 article-title: Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213410 |
SSID | ssj0002774577 |
Score | 2.3104932 |
SecondaryResourceType | review_article |
Snippet | Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and... |
SourceID | doaj crossref iop |
SourceType | Open Website Index Database Publisher |
StartPage | 42101 |
SubjectTerms | blue energy flow-induced vibration (FIV) interface probes self-powered triboelectric nanogenerators (TENGs) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6J8yQMMDFFjO7aTEVBLxdCplbpZ8dknwZBWtAz8e2wnoDAgFtYokqN3Pt273N07Qm6s4MgYYgZSuixciiKzzPvMo2auxrrULql9ztR0UTwv5bK36iv2hLXywC1wI2CQqxBnSlVHp-ZWOaZFyHrAll7alK2HmNdLpl5TOU0XUuuuLhk8acS1DFmX5sWodsgE_xGHklx_iC4vq3UvukwOyH5HC-l9-zmHZMc3R2SvJxZ4TKpJHNpotfhpmj_8oHXjKLyn1uUs_hij_Xo0XSGdj2dPmxOymIznj9OsW3yQAZeB8aKwynqHEMXQEHKX28AUoOYQ6JG1koECJQpXlYJxpwWvcrACI32yiK4Wp2TQrBp_RijmBcjCl5VTUITsyvI4H4iVBdSWOT0kd18wmHWrb2FSXbosTYTMRMhMC9mQPEScvt-LytTpQbCX6exl_rLXkNwGlE3nKZtfDzv_j8MuyC6P-3pT-8klGWzf3v1VIBFbe53uyyeDjMBZ priority: 102 providerName: Directory of Open Access Journals |
Title | Fundamental theory and cutting-edge applications of TENGs |
URI | https://iopscience.iop.org/article/10.1088/2752-5724/adf132 https://doaj.org/article/c1c0622486a14672b6d173402cb8e5b0 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKWWBAPEV5VBlgYAiN7fgRMQFqqZAoSyu6WfFrTCvaDiz8ds5OqIoEEksURY4cfXZ83_nuPiN0pSnxGHufGsZsCpMiTzV2LnVeYFv6Ugob1T5HfDjJn6ds2kJ361qY2bxZ-m_hthYKriFsEuJkjwgG_pMgea-0HpypLbRNJZchn-uVvq03WAgQGyZEE5r87cUfpigq9oOBgV43DMxgH-01zDC5r7_jALVcdYh2N_QCj1AxCHUbtRx_EksQP5KysolZxezlNOyNJZsh6WTmk3F_9LQ4RpNBf_w4TJuzD1JDGJBeTzXXznoT9NC8yWymgSyYkhhgSFozbLjhNLeFpJhYQUmRGU19YFDae1vSE9SuZpU7RYnPcsNyJwvLTQ4OliahRNAX2nihsRUddPMNg5rXEhcqhqalVAEyFSBTNWQd9BBwWrcL4tTxAQyUagZKGWwyDtRA8jKsw0RziwUFR9Vo6ZjOOugaUFbNz7L4s7Ozf7Y7RzsknMobk0wuUHv5vnKXQBWWuhtdbLi-fPa7cXp8AZf6uWY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYTgMG3ARIFtPtADh9DYjuPksANb13UMFQ6ttpsXf7xjW9FVqH8V_yLPSag6CaRddosiK4l_efb7Pb8vgI9WCuQcMXFK-YSEIkssDyEJqLmvsCq0r6t9jvPRNPt6q2534PcmF2a-aLf-z3TZFApuIGwD4oq-0IrsJy2yfuWRjKn-wmMbVXkd1r_IZlueXg3oB_eEGF5MzkdJ21YgcUIRn0Rpcxs8ulhqDF3qU0t62FXCEfmwVnGXu1xmviwkF15LUabOSozkxCL6StJzn8GukqTaaAF9lzebQx1BZEpp3bpD__WxD9Rf3SWAlBrNdEupDfdhr2Wj7Esz9wPYCbNX8HKrRuFrKIcxV6RpAcDqtMc1q2aeuVUdMZ3E8zi27QZnc2STi_Hl8g1MnwSYQ-jM5rPwFhimmVNZKEqfu4yMOitiWiKW1qG23OsufPoLg1k0ZTVM7Q4vChMhMxEy00DWhbOI02ZcLIhd3yDhMK1wGMddmhMdKfIq7v3C5p5rScaxs0VQNu1Cj1A27QJd_vdl7x457gSe_xgMzber8fV7eCFiU-A6xuUDdO5_rsIRMZV7e1xLB4O7pxbHPxFs9cs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+theory+and+cutting-edge+applications+of+TENGs&rft.jtitle=Materials+futures&rft.au=Kang%2C+Xilong&rft.au=Li%2C+Pengbo&rft.au=Yurchenko%2C+Daniil&rft.au=Dai%2C+Shuge&rft.date=2025-12-01&rft.pub=IOP+Publishing&rft.eissn=2752-5724&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1088%2F2752-5724%2Fadf132&rft.externalDocID=mfadf132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5724&client=summon |