Fundamental theory and cutting-edge applications of TENGs

Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and advanced materials science. The capability of TENGs to convert high-entropy energy into electrical signals has led to technological breakthroughs...

Full description

Saved in:
Bibliographic Details
Published inMaterials futures Vol. 4; no. 4; pp. 42101 - 42132
Main Authors Kang, Xilong, Li, Pengbo, Yurchenko, Daniil, Dai, Shuge, Wang, Junlei
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and advanced materials science. The capability of TENGs to convert high-entropy energy into electrical signals has led to technological breakthroughs in multiple domains. In the field of energy harvesting, TENGs have moved beyond conventional fluid energy harvesting, harvesting energy even from slow, low-frequency fluid motion. This has given them significant advantages in distributed energy scenarios. In the field of intelligent sensing, TENG-based sensors have achieved high sensitivity, driving advancements in the industrial Internet of Things and environmental monitoring. High-voltage output (tens of kilovolts) and contact electrification are two characteristics of TENGs. Based on these two characteristics, TENGs can be used to develop new high-voltage power sources and interface probe applications. This topical review introduces the working principles and theoretical foundations of TENGs and then presents four of their cutting-edge applications: fluid energy harvesting, self-adaptive sensors and systems, high-voltage power sources, and interface probes. Finally, the current challenges faced by TENGs in these fields are discussed, and some solutions are offered. This review not only provides a comprehensive overview of the latest applications of TENGs but also offers guidance for their future development.
AbstractList Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and advanced materials science. The capability of TENGs to convert high-entropy energy into electrical signals has led to technological breakthroughs in multiple domains. In the field of energy harvesting, TENGs have moved beyond conventional fluid energy harvesting, harvesting energy even from slow, low-frequency fluid motion. This has given them significant advantages in distributed energy scenarios. In the field of intelligent sensing, TENG-based sensors have achieved high sensitivity, driving advancements in the industrial Internet of Things and environmental monitoring. High-voltage output (tens of kilovolts) and contact electrification are two characteristics of TENGs. Based on these two characteristics, TENGs can be used to develop new high-voltage power sources and interface probe applications. This topical review introduces the working principles and theoretical foundations of TENGs and then presents four of their cutting-edge applications: fluid energy harvesting, self-adaptive sensors and systems, high-voltage power sources, and interface probes. Finally, the current challenges faced by TENGs in these fields are discussed, and some solutions are offered. This review not only provides a comprehensive overview of the latest applications of TENGs but also offers guidance for their future development.
Author Wang, Junlei
Yurchenko, Daniil
Kang, Xilong
Li, Pengbo
Dai, Shuge
Author_xml – sequence: 1
  givenname: Xilong
  orcidid: 0000-0002-7369-6956
  surname: Kang
  fullname: Kang, Xilong
  organization: Zhengzhou University School of Mechanical and Power Engineering, Zhengzhou 450001, People’s Republic of China
– sequence: 2
  givenname: Pengbo
  surname: Li
  fullname: Li, Pengbo
  organization: Zhengzhou University School of Mechanical and Power Engineering, Zhengzhou 450001, People’s Republic of China
– sequence: 3
  givenname: Daniil
  surname: Yurchenko
  fullname: Yurchenko, Daniil
  organization: University of Southampton Institute of Sound and Vibration Research, Southampton SO17 1BJ, United Kingdom
– sequence: 4
  givenname: Shuge
  orcidid: 0000-0003-0718-2559
  surname: Dai
  fullname: Dai, Shuge
  organization: Zhengzhou University School of Physics, Zhengzhou 450001, People’s Republic of China
– sequence: 5
  givenname: Junlei
  orcidid: 0000-0003-4453-0946
  surname: Wang
  fullname: Wang, Junlei
  organization: Zhengzhou University School of Mechanical and Power Engineering, Zhengzhou 450001, People’s Republic of China
BookMark eNp1kE1PAjEQhhuDiYjcPe4PcGXabj84GgJIQvSC56afuGRpN93lwL8XXGO8eJrJm3mfZJ57NIopeoQeMTxjkHJGBCMlE6SaaRcwJTdo_BuN_ux3aNp1BwAgQlRMiDGar07R6aOPvW6K_tOnfC50dIU99X0d96V3e1_otm1qq_s6xa5Iodgt39bdA7oNuun89GdO0MdquVu8ltv39Wbxsi0tYZKUgRpuvAuWSMqCBQcGOLOaWIaxMQxbbjmt3FxSTJygZA7W0AAgmQnBaTpBm4Hrkj6oNtdHnc8q6Vp9Bynvlc59bRuvLLbACakk17jighjusKAVEGukZwYuLBhYNqeuyz788jCoq0l1VaWuqtRg8lJ5Gip1atUhnXK8PPv_-Rc3knS1
CODEN MFAUAP
Cites_doi 10.1016/j.mattod.2017.10.006
10.1016/j.nanoen.2021.106585
10.1016/j.nanoen.2024.109517
10.1021/acsnano.6b01569
10.1021/nn506673x
10.1002/adma.201104365
10.1016/j.nanoen.2024.109387
10.1016/j.nanoen.2020.105670
10.1002/adfm.201806351
10.1126/sciadv.abj0349
10.1002/adma.202109568
10.1088/1361-6463/ac7365
10.1002/adfm.201904090
10.1002/aisy.202100228
10.1021/acsami.2c03853
10.1016/j.nanoen.2012.01.004
10.1088/1361-6633/ac0a50
10.1002/aenm.202300051
10.1039/d3ee01035j
10.1126/sciadv.abe2943
10.1021/acsnano.1c00345
10.1016/j.nanoen.2024.109917
10.1002/aenm.201501467
10.1021/acs.chemrev.1c00176
10.1016/j.nanoen.2022.106992
10.1002/adma.202110363
10.1002/adfm.202207498
10.1021/acsnano.0c07464
10.1038/ncomms9376
10.1016/j.nanoen.2022.107622
10.1038/s41467-020-19444-y
10.1126/sciadv.abi6751
10.1038/s41467-021-27789-1
10.1016/j.jechem.2022.12.024
10.1016/j.nanoen.2018.11.064
10.1088/2399-6528/ac871e
10.1016/j.bios.2022.114115
10.1039/d3nr00507k
10.1021/acsnano.8b05359
10.1016/j.nanoen.2022.107183
10.1038/s41467-022-31042-8
10.1038/s41586-020-1985-6
10.1016/j.nanoen.2018.02.022
10.1038/s41467-020-17842-w
10.1002/aenm.201802190
10.1021/acsnano.1c11321
10.1002/adfm.202306749
10.1039/c9ee03258d
10.1080/23746149.2024.2354767
10.1038/s41467-022-32745-8
10.1002/adfm.200800541
10.1002/aenm.202100065
10.1016/j.nanoen.2023.109063
10.1021/acs.jpcc.1c03483
10.1142/s021797922350159x
10.1016/j.nanoen.2020.105740
10.1016/j.nanoen.2021.106410
10.1016/j.nanoen.2020.104477
10.1021/acsnano.1c07158
10.1016/j.nanoen.2022.107901
10.1002/adfm.201606408
10.1016/j.nanoen.2022.107465
10.1002/adma.202307184
10.1002/adfm.202108580
10.1038/542159a
10.1016/j.nanoen.2023.108196
10.1016/j.nanoen.2024.109831
10.1039/d3cs00736g
10.1016/j.nanoen.2022.107509
10.1002/adma.201905696
10.1002/adma.201704077
10.1021/acssuschemeng.7b00892
10.1002/adfm.202209100
10.1002/adfm.201303799
10.1002/adma.202203073
10.1021/acsnano.2c01594
10.1016/j.nanoen.2023.108532
10.1016/j.nanoen.2022.108133
10.1126/sciadv.aay9842
10.1002/advs.202100230
10.1007/s12274-023-5674-2
10.1016/j.nanoen.2015.01.013
10.1038/s41467-019-10433-4
10.1126/sciadv.aay2840
10.1002/adma.202102765
10.1039/d1nr08203e
10.1016/j.nanoen.2023.108874
10.1021/jasms.4c00010
10.1002/adfm.202304321
10.1016/j.nanoen.2017.06.035
10.1021/acsnano.7b05626
10.1038/s41565-017-0019-5
10.1016/j.nanoen.2020.105070
10.1002/adma.202211027
10.3390/mi14051008
10.1002/adma.202209117
10.1360/SST-2022-0322
10.1002/smll.202307119
10.1021/acsnano.0c09015
10.1016/j.matt.2019.12.025
10.1021/nn506631t
10.1039/d2ta01788a
10.1021/acsenergylett.1c00704
10.1016/j.nanoen.2020.105229
10.1016/j.nanoen.2024.110471
10.1016/j.nanoen.2024.109316
10.1002/adma.202205064
10.1002/advs.202000261
10.1038/nnano.2017.17
10.1016/j.nanoen.2018.11.006
10.1016/j.nanoen.2021.106881
10.1016/j.joule.2021.03.006
10.1360/SST-2022-0226
10.1016/j.enconman.2023.117383
10.1016/j.bios.2020.112714
10.1016/j.mattod.2022.07.012
10.1002/adfm.202409422
10.1016/j.nanoen.2023.108389
10.1002/aenm.202103654
10.1007/s12274-022-4321-7
10.1021/acsnano.2c12592
10.1002/smll.202202835
10.1063/1.5133023
10.1016/j.mattod.2020.10.031
10.1002/adma.201706790
10.1016/j.nanoen.2020.104736
10.1016/j.nanoen.2022.107599
10.1002/adma.202400451
10.1002/adma.201400373
10.1039/c7ee01139c
10.1016/j.nanoen.2023.108240
10.1016/j.nanoen.2022.108106
10.1016/j.nanoen.2020.104524
10.1016/j.nanoen.2019.104272
10.1002/adma.202000928
10.1002/adfm.202204803
10.1021/acsnano.7b08674
10.1016/j.nanoen.2024.109508
10.1021/acsami.1c22457
10.1002/adfm.202306491
10.1002/adma.202207093
10.1002/advs.202104168
10.1038/s41467-019-14278-9
10.1038/s41467-024-49660-9
10.1002/anie.201300437
10.1002/adma.202313878
10.1002/adfm.201706680
10.1016/j.nanoen.2021.105833
10.1002/adfm.201800610
10.1038/s41467-018-06198-x
10.1002/adma.201901418
10.1002/advs.201801883
10.1038/s41467-021-25047-y
10.1021/acsnano.1c04903
10.1016/j.nanoen.2019.02.012
10.1016/j.nanoen.2022.107210
10.1039/d0ee01236j
10.1016/j.nanoen.2023.108329
10.1016/j.mattod.2019.05.016
10.1038/ncomms5929
10.1021/acsami.3c08052
10.1016/j.nanoen.2018.07.032
10.1016/j.mtener.2024.101529
10.1016/j.nanoen.2023.108735
10.1021/acsenergylett.2c01908
10.1016/j.nanoen.2024.109340
10.1021/acsnano.2c11633
10.1016/j.joule.2021.04.016
10.1016/j.nanoen.2021.106062
10.1016/j.nanoen.2019.03.054
10.1088/2752-5724/ad2f6a
10.1038/s41467-022-32984-9
10.1016/j.nanoen.2022.107029
10.1002/aenm.201903713
10.1016/j.jpowsour.2023.234005
10.1016/j.nanoen.2024.109431
10.1126/sciadv.abe7738
10.1038/s41467-019-12465-2
10.1038/s41467-024-48456-1
10.1002/adma.201302808
10.1016/j.joule.2024.04.013
10.1360/SST-2022-0176
10.1021/acsnano.1c09792
10.1016/j.nanoen.2022.107239
10.1016/j.bios.2022.114999
10.1016/j.nanoen.2021.106715
10.1016/j.nanoen.2019.104210
10.1021/acsnano.0c08332
10.1002/advs.202103694
10.1016/j.nanoen.2018.09.068
10.1016/j.mattod.2016.12.001
10.1016/j.nanoen.2023.108836
10.1016/j.nanoen.2022.107018
10.1016/j.nanoen.2023.109071
10.1016/j.nanoen.2023.109233
10.1007/s12274-021-3968-9
10.1021/acsnano.5b07157
10.1016/j.eng.2023.05.023
10.1039/d2ta09797d
10.23919/emsci.2023.0017
10.1002/aenm.202000137
10.1016/j.nanoen.2023.109010
10.1038/s41467-022-29083-0
10.1039/d4ee00482e
10.1002/smll.202309318
10.1021/acsnano.5b00072
10.1016/j.device.2024.100548
10.1039/d3ee01290e
10.1002/adma.201405826
10.1002/adfm.202315725
10.1016/j.matt.2019.05.003
10.1002/adfm.201903142
10.1039/c3ee42571a
10.1016/j.nanoen.2024.109886
10.1016/j.nanoen.2021.105810
10.1021/jacs.3c07445
10.1002/adfm.201909724
10.1016/j.nanoen.2020.104526
10.1016/j.nanoen.2021.106743
10.1021/acsnano.1c05127
10.1002/aenm.202103076
10.1016/j.nanoen.2019.03.072
10.1007/s40820-023-01238-8
10.1002/aenm.202303119
10.1039/d3ee04253g
10.1007/s11431-020-1604-9
10.1016/j.joule.2021.03.013
10.1016/j.nanoen.2019.02.051
10.1002/adfm.201901102
10.1016/j.nantod.2010.10.008
10.1002/advs.202307382
10.3390/nano13061036
10.1002/adfm.202213410
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the Songshan Lake Materials Laboratory
DBID O3W
TSCCA
AAYXX
CITATION
DOA
DOI 10.1088/2752-5724/adf132
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2752-5724
ExternalDocumentID oai_doaj_org_article_c1c0622486a14672b6d173402cb8e5b0
10_1088_2752_5724_adf132
mfadf132
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52277227
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID AAFWJ
ACHIP
AEINN
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
M~E
N5L
O3W
OK1
TSCCA
AAYXX
CITATION
ID FETCH-LOGICAL-c2582-f3b6bedfc2835fc0d0b065ca2c511bb51c6c634d98312d73290cb3f0085bffda3
IEDL.DBID O3W
ISSN 2752-5724
IngestDate Wed Aug 27 01:32:07 EDT 2025
Thu Aug 21 00:30:43 EDT 2025
Tue Aug 26 23:34:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2582-f3b6bedfc2835fc0d0b065ca2c511bb51c6c634d98312d73290cb3f0085bffda3
Notes MF-100720.R1
ORCID 0000-0002-7369-6956
0000-0003-0718-2559
0000-0003-4453-0946
OpenAccessLink https://iopscience.iop.org/article/10.1088/2752-5724/adf132
PageCount 32
ParticipantIDs crossref_primary_10_1088_2752_5724_adf132
iop_journals_10_1088_2752_5724_adf132
doaj_primary_oai_doaj_org_article_c1c0622486a14672b6d173402cb8e5b0
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials futures
PublicationTitleAbbrev mf
PublicationTitleAlternate Mater. Futures
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Niu (mfadf132bib84) 2013; 6
Bae (mfadf132bib117) 2014; 5
Liang (mfadf132bib11) 2020; 13
Zheng (mfadf132bib68) 2021; 83
Cheng (mfadf132bib106) 2022; 102
Yu (mfadf132bib145) 2023; 16
Guo (mfadf132bib162) 2022; 32
Gao (mfadf132bib140) 2024; 128
Zhao (mfadf132bib75) 2022; 13
Wang (mfadf132bib57) 2021; 15
Dong (mfadf132bib33) 2024; 124
Li (mfadf132bib167) 2022; 95
Lin (mfadf132bib159) 2013; 52
Nan (mfadf132bib233) 2023; 16
Lu (mfadf132bib184) 2022; 13
Du (mfadf132bib148) 2023; 33
Li (mfadf132bib206) 2022; 104
Long (mfadf132bib4) 2021; 12
Wen (mfadf132bib185) 2020; 7
Xu (mfadf132bib46) 2019; 29
Yang (mfadf132bib152) 2015; 9
Nie (mfadf132bib213) 2019; 29
Li (mfadf132bib59) 2024; 15
Tat (mfadf132bib3) 2021; 171
Wang (mfadf132bib113) 2021; 15
Wang (mfadf132bib158) 2021; 15
Yuan (mfadf132bib132) 2022; 100
Shi (mfadf132bib180) 2021; 7
Zhao (mfadf132bib165) 2022; 205
Wang (mfadf132bib51) 2024; 9
Xu (mfadf132bib48) 2018; 30
Liu (mfadf132bib66) 2018; 13
Wang (mfadf132bib80) 2022; 6
t’Lam (mfadf132bib194) 2017; 5
Chung (mfadf132bib121) 2023; 111
Wang (mfadf132bib119) 2020; 73
Liu (mfadf132bib217) 2023; 33
Bai (mfadf132bib38) 2022; 95
Wang (mfadf132bib226) 2012; 24
Lu (mfadf132bib22) 2023; 35
Pan (mfadf132bib169) 2023; 222
Fu (mfadf132bib154) 2021; 6
Li (mfadf132bib5) 2022; 34
Zhang (mfadf132bib181) 2022; 4
Li (mfadf132bib193) 2021; 90
Wong (mfadf132bib199) 2019; 29
Wang (mfadf132bib202) 2024; 121
Wang (mfadf132bib82) 2023; 1
Chen (mfadf132bib73) 2020; 11
Wang (mfadf132bib79) 2023; 53
Wu (mfadf132bib156) 2023; 13
Li (mfadf132bib126) 2023; 292
Wang (mfadf132bib17) 2022; 100
Sun (mfadf132bib29) 2021; 33
Zhang (mfadf132bib178) 2021; 9
Wu (mfadf132bib210) 2019; 29
Wang (mfadf132bib227) 2010; 5
Zhu (mfadf132bib211) 2021; 15
Liang (mfadf132bib101) 2024; 34
Asef (mfadf132bib30) 2024; 35
Wang (mfadf132bib31) 2023; 11
Sun (mfadf132bib186) 2021; 8
Sun (mfadf132bib189) 2022; 101
Song (mfadf132bib166) 2020; 6
Wang (mfadf132bib102) 2024; 2
Li (mfadf132bib141) 2024; 17
Yu (mfadf132bib109) 2024; 8
Meng (mfadf132bib177) 2020; 2
Zhou (mfadf132bib207) 2023; 35
Shao (mfadf132bib96) 2019; 59
Tang (mfadf132bib61) 2024; 36
Huang (mfadf132bib188) 2024; 123
Wang (mfadf132bib134) 2022; 97
Lin (mfadf132bib52) 2014; 26
Wang (mfadf132bib115) 2017; 39
Cheng (mfadf132bib23) 2018; 9
Zeng (mfadf132bib128) 2020; 70
Zhao (mfadf132bib122) 2016; 10
Fan (mfadf132bib45) 2012; 1
Shi (mfadf132bib187) 2023; 17
Liu (mfadf132bib149) 2024; 128
Lai (mfadf132bib168) 2019; 6
Sun (mfadf132bib123) 2020; 70
Luo (mfadf132bib215) 2023; 117
Sun (mfadf132bib25) 2024; 119
Kim (mfadf132bib136) 2022; 12
Yang (mfadf132bib198) 2023; 15
Sun (mfadf132bib179) 2022; 13
Wang (mfadf132bib100) 2017; 542
Zhang (mfadf132bib70) 2020; 10
Lin (mfadf132bib67) 2020; 76
Zhao (mfadf132bib182) 2021; 5
Liu (mfadf132bib16) 2023; 35
Gao (mfadf132bib98) 2024; 15
Liu (mfadf132bib203) 2019; 56
Niu (mfadf132bib87) 2015; 12
Chen (mfadf132bib112) 2018; 21
Yao (mfadf132bib171) 2022; 34
Sun (mfadf132bib208) 2022; 58
Zhang (mfadf132bib14) 2022; 7
Xia (mfadf132bib97) 2019; 10
Shao (mfadf132bib116) 2021; 11
Wang (mfadf132bib161) 2021; 89
Zhang (mfadf132bib34) 2021; 43
Niu (mfadf132bib85) 2013; 25
Wang (mfadf132bib43) 2019; 30
Zhang (mfadf132bib190) 2022; 14
Li (mfadf132bib153) 2024; 11
Wang (mfadf132bib58) 2021; 84
Zi (mfadf132bib94) 2015; 6
Zhu (mfadf132bib146) 2023; 13
Fu (mfadf132bib147) 2023; 33
Ning (mfadf132bib176) 2022; 16
Jiang (mfadf132bib13) 2024; 33
Li (mfadf132bib127) 2023; 13
Ruan (mfadf132bib200) 2024; 20
Zheng (mfadf132bib65) 2020; 32
Tao (mfadf132bib35) 2022; 9
Lin (mfadf132bib56) 2021; 125
Wu (mfadf132bib170) 2022; 92
Zhan (mfadf132bib214) 2020; 14
Lee (mfadf132bib142) 2021; 86
Chen (mfadf132bib28) 2024; 123
Choi (mfadf132bib150) 2024; 119
Zhu (mfadf132bib220) 2024; 122
Wang (mfadf132bib130) 2022; 15
Li (mfadf132bib39) 2020; 11
Wang (mfadf132bib138) 2025; 133
Xu (mfadf132bib160) 2022; 94
Wang (mfadf132bib81) 2023; 37
Machado (mfadf132bib143) 2023; 115
Shao (mfadf132bib41) 2019; 60
Wang (mfadf132bib228) 2008; 18
Niu (mfadf132bib86) 2014; 24
Han (mfadf132bib144) 2022; 32
Lu (mfadf132bib173) 2023; 107
Fan (mfadf132bib175) 2020; 6
Wang (mfadf132bib225) 2018; 54
Shao (mfadf132bib92) 2020; 7
Yang (mfadf132bib104) 2019; 60
Zhao (mfadf132bib201) 2020; 78
Nie (mfadf132bib54) 2020; 32
Barri (mfadf132bib155) 2023; 35
Lin (mfadf132bib49) 2020; 30
Zhang (mfadf132bib36) 2023; 17
Wang (mfadf132bib78) 2022; 52
Wang (mfadf132bib222) 2022; 13
Tan (mfadf132bib209) 2024; 36
Wu (mfadf132bib62) 2024; 594
Zi (mfadf132bib99) 2016; 10
Guo (mfadf132bib93) 2022; 55
Dharmasena (mfadf132bib89) 2018; 8
Chen (mfadf132bib69) 2022; 14
Shao (mfadf132bib91) 2020; 63
Shao (mfadf132bib95) 2018; 51
Wang (mfadf132bib77) 2022; 52
Zhang (mfadf132bib19) 2023; 108
Zhang (mfadf132bib197) 2022; 18
Li (mfadf132bib110) 2023; 16
Zhang (mfadf132bib133) 2022; 95
Zheng (mfadf132bib195) 2022; 97
Fu (mfadf132bib139) 2021; 5
Zi (mfadf132bib26) 2018; 28
Li (mfadf132bib24) 2017; 11
Yang (mfadf132bib164) 2022; 16
Wang (mfadf132bib10) 2015; 5
Han (mfadf132bib135) 2024; 119
Luo (mfadf132bib218) 2023; 113
Zhang (mfadf132bib223) 2023; 110
Jiang (mfadf132bib1) 2024; 17
Xu (mfadf132bib204) 2018; 12
Xu (mfadf132bib53) 2020; 578
Xu (mfadf132bib114) 2018; 12
Wang (mfadf132bib12) 2019; 55
Wang (mfadf132bib230) 2015; 27
Bhatta (mfadf132bib18) 2021; 81
Zou (mfadf132bib163) 2019; 10
Wang (mfadf132bib42) 2020; 10
Yu (mfadf132bib118) 2022; 32
Chen (mfadf132bib224) 2023; 145
Gao (mfadf132bib103) 2022; 16
Bai (mfadf132bib196) 2018; 28
Zhang (mfadf132bib191) 2024; 124
Sun (mfadf132bib6) 2023; 79
Lin (mfadf132bib47) 2019; 31
Cheng (mfadf132bib124) 2023; 106
Lin (mfadf132bib64) 2015; 9
Zhang (mfadf132bib216) 2021; 15
Yang (mfadf132bib27) 2020; 67
Zhang (mfadf132bib212) 2022; 98
Maity (mfadf132bib231) 2022; 92
Zheng (mfadf132bib205) 2017; 27
Luo (mfadf132bib219) 2024; 34
Zhang (mfadf132bib157) 2022; 10
Xu (mfadf132bib108) 2023; 109
Lei (mfadf132bib8) 2020; 13
Zheng (mfadf132bib7) 2022; 15
Zou (mfadf132bib111) 2024; 122
Cao (mfadf132bib72) 2018; 30
Gao (mfadf132bib50) 2023; 33
Wang (mfadf132bib9) 2019; 58
Zhang (mfadf132bib105) 2021; 5
Peng (mfadf132bib229) 2015; 9
Wang (mfadf132bib221) 2024; 53
Zheng (mfadf132bib232) 2021; 7
Zhou (mfadf132bib32) 2022; 32
Dharmasena (mfadf132bib88) 2017; 10
Xia (mfadf132bib63) 2018; 47
Cao (mfadf132bib129) 2024; 20
Ning (mfadf132bib172) 2024; 3
Zhang (mfadf132bib131) 2020; 70
Hu (mfadf132bib44) 2024; 16
Cai (mfadf132bib20) 2021; 83
Lin (mfadf132bib40) 2022; 122
Wei (mfadf132bib183) 2022; 34
Wu (mfadf132bib15) 2022; 12
Yue (mfadf132bib120) 2024; 128
Wu (mfadf132bib2) 2024; 41
Lin (mfadf132bib55) 2020; 11
Hao (mfadf132bib71) 2019; 1
Qaseem (mfadf132bib137) 2023; 14
Li (mfadf132bib192) 2017; 12
Wang (mfadf132bib151) 2021; 82
Ahmed (mfadf132bib90) 2023; 117
Deng (mfadf132bib125) 2022; 34
Li (mfadf132bib37) 2021; 7
Wang (mfadf132bib74) 2021; 7
Wang (mfadf132bib83) 2020; 68
Liu (mfadf132bib174) 2022; 14
Zhao (mfadf132bib21) 2023; 15
Wang (mfadf132bib76) 2017; 20
Liu (mfadf132bib107) 2021; 15
Lin (mfadf132bib60) 2022; 13
References_xml – volume: 21
  start-page: 88
  year: 2018
  ident: mfadf132bib112
  article-title: Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.10.006
– volume: 90
  year: 2021
  ident: mfadf132bib193
  article-title: Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106585
– volume: 124
  year: 2024
  ident: mfadf132bib191
  article-title: An ultra-high voltage (>10 kv) direct-current triboelectric nanogenerator realized by structural and material optimizations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109517
– volume: 10
  start-page: 4797
  year: 2016
  ident: mfadf132bib99
  article-title: Harvesting low-frequency (<5 hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 9
  start-page: 922
  year: 2015
  ident: mfadf132bib64
  article-title: Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%
  publication-title: ACS Nano
  doi: 10.1021/nn506673x
– volume: 24
  start-page: 4632
  year: 2012
  ident: mfadf132bib226
  article-title: Progress in piezotronics and piezo-phototronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104365
– volume: 123
  year: 2024
  ident: mfadf132bib188
  article-title: Electrohydrodynamic drying of pollens based on a dual-polarization induction mode triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109387
– volume: 81
  year: 2021
  ident: mfadf132bib18
  article-title: High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105670
– volume: 29
  year: 2019
  ident: mfadf132bib213
  article-title: Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806351
– volume: 7
  start-page: eabj0349
  year: 2021
  ident: mfadf132bib37
  article-title: Interface inter-atomic electron-transition induced photon emission in contact-electrification
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj0349
– volume: 34
  year: 2022
  ident: mfadf132bib171
  article-title: Bioinspired electron polarization of nanozymes with a human self-generated electric field for cancer catalytic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109568
– volume: 55
  year: 2022
  ident: mfadf132bib93
  article-title: Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators
  publication-title: J. Appl. Phys.
  doi: 10.1088/1361-6463/ac7365
– volume: 29
  year: 2019
  ident: mfadf132bib199
  article-title: Microplasma-discharge-based nitrogen fixation driven by triboelectric nanogenerator toward self-powered mechano-nitrogenous fertilizer supplier
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904090
– volume: 4
  year: 2022
  ident: mfadf132bib181
  article-title: Artificial intelligence‐enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202100228
– volume: 14
  start-page: 24020
  year: 2022
  ident: mfadf132bib69
  article-title: Friction-dominated carrier excitation and transport mechanism for GaN-based direct-current triboelectric nanogenerators
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c03853
– volume: 1
  start-page: 328
  year: 2012
  ident: mfadf132bib45
  article-title: Flexible triboelectric generator!
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 84
  year: 2021
  ident: mfadf132bib58
  article-title: From contact electrification to triboelectric nanogenerators
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ac0a50
– volume: 13
  year: 2023
  ident: mfadf132bib156
  article-title: All‐in‐one sensing system for online vibration monitoring via ir wireless communication as driven by high‐power TENG
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300051
– volume: 16
  start-page: 3040
  year: 2023
  ident: mfadf132bib110
  article-title: Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial’s structure
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d3ee01035j
– volume: 7
  start-page: eabe2943
  year: 2021
  ident: mfadf132bib180
  article-title: Self-powered electro-tactile system for virtual tactile experiences
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe2943
– volume: 15
  start-page: 9412
  year: 2021
  ident: mfadf132bib107
  article-title: Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00345
– volume: 128
  year: 2024
  ident: mfadf132bib149
  article-title: A bioinspired triboelectric wireless anemometer with low cut-in wind speed for meteorological UAVs
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109917
– volume: 5
  year: 2015
  ident: mfadf132bib10
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501467
– volume: 122
  start-page: 5209
  year: 2022
  ident: mfadf132bib40
  article-title: Contact electrification at the liquid-solid interface
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00176
– volume: 95
  year: 2022
  ident: mfadf132bib38
  article-title: Chemical warfare agents decontamination via air mircoplasma excited by a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106992
– volume: 34
  year: 2022
  ident: mfadf132bib5
  article-title: A self-powered dual-type signal vector sensor for smart robotics and automatic vehicles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110363
– volume: 32
  year: 2022
  ident: mfadf132bib118
  article-title: Moisture resistant and stable wireless wind speed sensing system based on triboelectric nanogenerator with charge-excitation strategy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207498
– volume: 15
  start-page: 894
  year: 2021
  ident: mfadf132bib211
  article-title: Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07464
– volume: 6
  start-page: 8376
  year: 2015
  ident: mfadf132bib94
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 102
  year: 2022
  ident: mfadf132bib106
  article-title: Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107622
– volume: 11
  start-page: 5625
  year: 2020
  ident: mfadf132bib39
  article-title: Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19444-y
– volume: 7
  start-page: eabi6751
  year: 2021
  ident: mfadf132bib74
  article-title: A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abi6751
– volume: 13
  start-page: 130
  year: 2022
  ident: mfadf132bib222
  article-title: Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27789-1
– volume: 79
  start-page: 477
  year: 2023
  ident: mfadf132bib6
  article-title: Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.12.024
– volume: 56
  start-page: 482
  year: 2019
  ident: mfadf132bib203
  article-title: Electrical analysis of triboelectric nanogenerator for high voltage applications exampled by DBD microplasma
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.064
– volume: 6
  year: 2022
  ident: mfadf132bib80
  article-title: Maxwell’s equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r,t)
  publication-title: J. Phys. Commun.
  doi: 10.1088/2399-6528/ac871e
– volume: 205
  year: 2022
  ident: mfadf132bib165
  article-title: Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114115
– volume: 15
  start-page: 6709
  year: 2023
  ident: mfadf132bib198
  article-title: A curtain purification system based on a rabbit fur-based rotating triboelectric nanogenerator for efficient photocatalytic degradation of volatile organic compounds
  publication-title: Nanoscale
  doi: 10.1039/d3nr00507k
– volume: 12
  start-page: 10262
  year: 2018
  ident: mfadf132bib204
  article-title: Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05359
– volume: 97
  year: 2022
  ident: mfadf132bib195
  article-title: Indoor air dust removal system based on high-voltage direct current triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107183
– volume: 13
  start-page: 3325
  year: 2022
  ident: mfadf132bib75
  article-title: Underwater wireless communication via TENG-generated Maxwell’s displacement current
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31042-8
– volume: 578
  start-page: 392
  year: 2020
  ident: mfadf132bib53
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 47
  start-page: 43
  year: 2018
  ident: mfadf132bib63
  article-title: Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.022
– volume: 11
  start-page: 4143
  year: 2020
  ident: mfadf132bib73
  article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17842-w
– volume: 8
  year: 2018
  ident: mfadf132bib89
  article-title: Nature of power generation and output optimization criteria for triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802190
– volume: 16
  start-page: 4654
  year: 2022
  ident: mfadf132bib164
  article-title: Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11321
– volume: 33
  year: 2023
  ident: mfadf132bib147
  article-title: Non-contact triboelectric nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306749
– volume: 13
  start-page: 277
  year: 2020
  ident: mfadf132bib11
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee03258d
– volume: 9
  year: 2024
  ident: mfadf132bib51
  article-title: The Maxwell’s equations for a mechano-driven media system (MEs-f-MDMS)
  publication-title: Adv. Phys. X
  doi: 10.1080/23746149.2024.2354767
– volume: 13
  start-page: 5224
  year: 2022
  ident: mfadf132bib179
  article-title: Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32745-8
– volume: 18
  start-page: 3553
  year: 2008
  ident: mfadf132bib228
  article-title: Towards self-powered nanosystems: from nanogenerators to nanopiezotronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200800541
– volume: 11
  year: 2021
  ident: mfadf132bib116
  article-title: Designing rules and optimization of triboelectric nanogenerator arrays
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100065
– volume: 119
  year: 2024
  ident: mfadf132bib135
  article-title: Enhance vortices vibration with y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109063
– volume: 125
  start-page: 14098
  year: 2021
  ident: mfadf132bib56
  article-title: Detecting the liquid-solid contact electrification charges in a liquid environment
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03483
– volume: 37
  year: 2023
  ident: mfadf132bib81
  article-title: The expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/s021797922350159x
– volume: 82
  year: 2021
  ident: mfadf132bib151
  article-title: Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105740
– volume: 89
  year: 2021
  ident: mfadf132bib161
  article-title: Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106410
– volume: 70
  year: 2020
  ident: mfadf132bib131
  article-title: Galloping triboelectric nanogenerator for energy harvesting under low wind speed
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104477
– volume: 15
  start-page: 18206
  year: 2021
  ident: mfadf132bib57
  article-title: Study of contact electrification at liquid-gas interface
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c07158
– volume: 104
  year: 2022
  ident: mfadf132bib206
  article-title: Honeybee-inspired electrostatic microparticle manipulation system based on triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107901
– volume: 27
  year: 2017
  ident: mfadf132bib205
  article-title: Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606408
– volume: 100
  year: 2022
  ident: mfadf132bib132
  article-title: Scavenging breeze wind energy (1-8.1 ms−1) by minimalist triboelectric nanogenerator based on the wake galloping phenomenon*
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107465
– volume: 35
  year: 2023
  ident: mfadf132bib16
  article-title: Micro-droplets parameters monitoring in a microfluidic chip via liquid-solid triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202307184
– volume: 32
  year: 2022
  ident: mfadf132bib144
  article-title: Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108580
– volume: 542
  start-page: 159
  year: 2017
  ident: mfadf132bib100
  article-title: New wave power
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 108
  year: 2023
  ident: mfadf132bib19
  article-title: Cellulose template-based triboelectric nanogenerators for self-powered sensing at high humidity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108196
– volume: 128
  year: 2024
  ident: mfadf132bib140
  article-title: Wind-driven suspended triboelectric-electromagnetic hybrid generator with vibration elimination for environmental monitoring in the high-voltage power transmission line
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109831
– volume: 53
  start-page: 4349
  year: 2024
  ident: mfadf132bib221
  article-title: Contact-electro-catalysis (CEC)
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/d3cs00736g
– volume: 100
  year: 2022
  ident: mfadf132bib17
  article-title: Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107509
– volume: 32
  year: 2020
  ident: mfadf132bib54
  article-title: Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905696
– volume: 30
  year: 2018
  ident: mfadf132bib72
  article-title: Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704077
– volume: 5
  start-page: 6046
  year: 2017
  ident: mfadf132bib194
  article-title: Mild and selective protein release of cell wall deficient microalgae with pulsed electric field
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00892
– volume: 32
  year: 2022
  ident: mfadf132bib32
  article-title: Solution-tube-based volume effect triboelectric nanogenerator with salt and pH sensitivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209100
– volume: 24
  start-page: 3332
  year: 2014
  ident: mfadf132bib86
  article-title: Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303799
– volume: 34
  year: 2022
  ident: mfadf132bib183
  article-title: An open-environment tactile sensing system: toward simple and efficient material identification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203073
– volume: 16
  start-page: 6781
  year: 2022
  ident: mfadf132bib103
  article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01594
– volume: 113
  year: 2023
  ident: mfadf132bib218
  article-title: Triboelectric charge-separable probes for quantificationally charge investigating at the liquid-solid interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108532
– volume: 107
  year: 2023
  ident: mfadf132bib173
  article-title: Sensory-motor coupling electrical stimulation driven by a bionic Z‐structured triboelectric nanogenerator improves functional recovery from spinal cord injury
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108133
– volume: 6
  start-page: eaay9842
  year: 2020
  ident: mfadf132bib166
  article-title: Wireless battery-free wearable sweat sensor powered by human motion
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay9842
– volume: 8
  year: 2021
  ident: mfadf132bib186
  article-title: Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100230
– volume: 16
  start-page: 11545
  year: 2023
  ident: mfadf132bib233
  article-title: Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfaces
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5674-2
– volume: 12
  start-page: 760
  year: 2015
  ident: mfadf132bib87
  article-title: Theory of freestanding triboelectric-layer-based nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.013
– volume: 10
  start-page: 2695
  year: 2019
  ident: mfadf132bib163
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10433-4
– volume: 6
  start-page: eaay2840
  year: 2020
  ident: mfadf132bib175
  article-title: Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay2840
– volume: 33
  year: 2021
  ident: mfadf132bib29
  article-title: A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102765
– volume: 14
  start-page: 4244
  year: 2022
  ident: mfadf132bib190
  article-title: Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators
  publication-title: Nanoscale
  doi: 10.1039/d1nr08203e
– volume: 117
  year: 2023
  ident: mfadf132bib215
  article-title: Triboelectric probes for investigating charge transfer at the colloid-solid interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108874
– volume: 35
  start-page: 943
  year: 2024
  ident: mfadf132bib30
  article-title: Triboelectric nanogenerators for the masses: a low-cost do-it-yourself pulsed ion source for sample-limited applications
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1021/jasms.4c00010
– volume: 33
  year: 2023
  ident: mfadf132bib217
  article-title: Liquid-solid triboelectric probes for real-time monitoring of sucrose fluid status
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304321
– volume: 39
  start-page: 9
  year: 2017
  ident: mfadf132bib115
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 11
  start-page: 10439
  year: 2017
  ident: mfadf132bib24
  article-title: Self-powered electrospinning system driven by a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05626
– volume: 13
  start-page: 112
  year: 2018
  ident: mfadf132bib66
  article-title: Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0019-5
– volume: 76
  year: 2020
  ident: mfadf132bib67
  article-title: The tribovoltaic effect and electron transfer at a liquid-semiconductor interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105070
– volume: 35
  year: 2023
  ident: mfadf132bib155
  article-title: Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211027
– volume: 14
  start-page: 1008
  year: 2023
  ident: mfadf132bib137
  article-title: Magnetic bistability for a wider bandwidth in vibro-impact triboelectric energy harvesters
  publication-title: Micromachines
  doi: 10.3390/mi14051008
– volume: 35
  year: 2023
  ident: mfadf132bib22
  article-title: Wearable triboelectric visual sensors for tactile perception
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209117
– volume: 53
  start-page: 430
  year: 2023
  ident: mfadf132bib79
  article-title: From faraday’s law to the expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration
  publication-title: Sci. Sin. Technol.
  doi: 10.1360/SST-2022-0322
– volume: 20
  year: 2024
  ident: mfadf132bib129
  article-title: A rolling-bead triboelectric nanogenerator for harvesting omnidirectional wind-induced energy toward shelter forests monitoring
  publication-title: Small
  doi: 10.1002/smll.202307119
– volume: 15
  start-page: 2911
  year: 2021
  ident: mfadf132bib158
  article-title: Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal-organic framework-derived CuO nanohybrid ammonia sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09015
– volume: 2
  start-page: 896
  year: 2020
  ident: mfadf132bib177
  article-title: A wireless textile-based sensor system for self-powered personalized health care
  publication-title: Matter
  doi: 10.1016/j.matt.2019.12.025
– volume: 9
  start-page: 901
  year: 2015
  ident: mfadf132bib152
  article-title: Paper-based origami triboelectric nanogenerators and self-powered pressure sensors
  publication-title: ACS Nano
  doi: 10.1021/nn506631t
– volume: 10
  start-page: 10935
  year: 2022
  ident: mfadf132bib157
  article-title: An eco-friendly gelatin based triboelectric nanogenerator for a self-powered PANI nanorod/NiCo2O4 nanosphere ammonia gas sensor
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d2ta01788a
– volume: 6
  start-page: 2343
  year: 2021
  ident: mfadf132bib154
  article-title: Breeze-wind-energy-powered autonomous wireless anemometer based on rolling contact-electrification
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00704
– volume: 78
  year: 2020
  ident: mfadf132bib201
  article-title: The triboelectric microplasma transistor of monolayer graphene with a reversible oxygen ion floating gate
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105229
– volume: 133
  year: 2025
  ident: mfadf132bib138
  article-title: Soft-soft contact TENG using nonlinear coupling galloping phenomenon for harvesting wind energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110471
– volume: 122
  year: 2024
  ident: mfadf132bib111
  article-title: Advances in self-powered triboelectric sensor toward marine IoT
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109316
– volume: 34
  year: 2022
  ident: mfadf132bib125
  article-title: Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205064
– volume: 7
  year: 2020
  ident: mfadf132bib185
  article-title: Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in vr/ar applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000261
– volume: 12
  start-page: 481
  year: 2017
  ident: mfadf132bib192
  article-title: Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.17
– volume: 55
  start-page: 541
  year: 2019
  ident: mfadf132bib12
  article-title: Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.006
– volume: 94
  year: 2022
  ident: mfadf132bib160
  article-title: Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106881
– volume: 5
  start-page: 1074
  year: 2021
  ident: mfadf132bib139
  article-title: Rotational energy harvesting for self-powered sensing
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.006
– volume: 52
  start-page: 1416
  year: 2022
  ident: mfadf132bib78
  article-title: Maxwell’s equations for a mechano-driven varying-speed-motion media system for engineering electrodynamics and their solutions
  publication-title: Sci. Sin. Technol.
  doi: 10.1360/SST-2022-0226
– volume: 292
  year: 2023
  ident: mfadf132bib126
  article-title: Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2023.117383
– volume: 171
  year: 2021
  ident: mfadf132bib3
  article-title: Advances in triboelectric nanogenerators for biomedical sensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112714
– volume: 58
  start-page: 41
  year: 2022
  ident: mfadf132bib208
  article-title: Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2022.07.012
– volume: 34
  year: 2024
  ident: mfadf132bib101
  article-title: Triboelectric nanogenerators using recycled disposable medical masks for water wave energy harvesting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202409422
– volume: 111
  year: 2023
  ident: mfadf132bib121
  article-title: Boosting power output of fluttering triboelectric nanogenerator based on charge excitation through multi-utilization of wind
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108389
– volume: 12
  year: 2022
  ident: mfadf132bib15
  article-title: Multi‐parameter optimized triboelectric nanogenerator based self‐powered sensor network for broadband aeolian vibration online‐monitoring of transmission lines
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103654
– volume: 15
  start-page: 6213
  year: 2022
  ident: mfadf132bib7
  article-title: Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4321-7
– volume: 17
  start-page: 4985
  year: 2023
  ident: mfadf132bib187
  article-title: Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12592
– volume: 18
  year: 2022
  ident: mfadf132bib197
  article-title: Self-powered high-voltage recharging system for removing noxious tobacco smoke by biomimetic hairy-contact triboelectric nanogenerator
  publication-title: Small
  doi: 10.1002/smll.202202835
– volume: 7
  year: 2020
  ident: mfadf132bib92
  article-title: Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5133023
– volume: 43
  start-page: 37
  year: 2021
  ident: mfadf132bib34
  article-title: All-in-one 3D acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.10.031
– volume: 30
  year: 2018
  ident: mfadf132bib48
  article-title: On the electron-transfer mechanism in the contact-electrification effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 73
  year: 2020
  ident: mfadf132bib119
  article-title: Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104736
– volume: 101
  year: 2022
  ident: mfadf132bib189
  article-title: High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107599
– volume: 36
  year: 2024
  ident: mfadf132bib61
  article-title: Spontaneous wetting induced by contact-electrification at liquid-solid interface
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202400451
– volume: 26
  start-page: 4690
  year: 2014
  ident: mfadf132bib52
  article-title: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400373
– volume: 10
  start-page: 1801
  year: 2017
  ident: mfadf132bib88
  article-title: Triboelectric nanogenerators: providing a fundamental framework
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c7ee01139c
– volume: 109
  year: 2023
  ident: mfadf132bib108
  article-title: A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108240
– volume: 106
  year: 2023
  ident: mfadf132bib124
  article-title: High output performance flutter-driven triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108106
– volume: 70
  year: 2020
  ident: mfadf132bib128
  article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104524
– volume: 68
  year: 2020
  ident: mfadf132bib83
  article-title: On the first principle theory of nanogenerators from Maxwell’s equations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104272
– volume: 32
  year: 2020
  ident: mfadf132bib65
  article-title: Scanning probing of the tribovoltaic effect at the sliding interface of two semiconductors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000928
– volume: 32
  year: 2022
  ident: mfadf132bib162
  article-title: Deep learning assisted body area triboelectric hydrogel sensor network for infant care
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204803
– volume: 12
  start-page: 1849
  year: 2018
  ident: mfadf132bib114
  article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 124
  year: 2024
  ident: mfadf132bib33
  article-title: Metasurface-enhanced multifunctional flag nanogenerator for efficient wind energy harvesting and environmental sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109508
– volume: 14
  start-page: 7301
  year: 2022
  ident: mfadf132bib174
  article-title: Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22457
– volume: 33
  year: 2023
  ident: mfadf132bib148
  article-title: High durable rotary triboelectric nanogenerator enabled by ferromagnetic metal particles as a friction material
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306491
– volume: 35
  year: 2023
  ident: mfadf132bib207
  article-title: A self-powered dielectrophoretic microparticle manipulation platform based on a triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207093
– volume: 9
  year: 2022
  ident: mfadf132bib35
  article-title: Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104168
– volume: 11
  start-page: 399
  year: 2020
  ident: mfadf132bib55
  article-title: Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14278-9
– volume: 15
  start-page: 6004
  year: 2024
  ident: mfadf132bib59
  article-title: Visualization and standardized quantification of surface charge density for triboelectric materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49660-9
– volume: 52
  start-page: 5065
  year: 2013
  ident: mfadf132bib159
  article-title: A self-powered triboelectric nanosensor for mercury ion detection
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201300437
– volume: 36
  year: 2024
  ident: mfadf132bib209
  article-title: Controllable manipulation of large-volume droplet on non-slippery surfaces based on triboelectric contactless charge injection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202313878
– volume: 28
  year: 2018
  ident: mfadf132bib196
  article-title: Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706680
– volume: 83
  year: 2021
  ident: mfadf132bib20
  article-title: Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105833
– volume: 28
  year: 2018
  ident: mfadf132bib26
  article-title: Field emission of electrons powered by a triboelectric nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800610
– volume: 9
  start-page: 3733
  year: 2018
  ident: mfadf132bib23
  article-title: Triboelectric microplasma powered by mechanical stimuli
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06198-x
– volume: 31
  year: 2019
  ident: mfadf132bib47
  article-title: Electron transfer in nanoscale contact electrification: photon excitation effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901418
– volume: 6
  year: 2019
  ident: mfadf132bib168
  article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801883
– volume: 12
  start-page: 4689
  year: 2021
  ident: mfadf132bib4
  article-title: High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25047-y
– volume: 15
  start-page: 14830
  year: 2021
  ident: mfadf132bib216
  article-title: Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04903
– volume: 58
  start-page: 669
  year: 2019
  ident: mfadf132bib9
  article-title: Entropy theory of distributed energy for internet of things
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.012
– volume: 97
  year: 2022
  ident: mfadf132bib134
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107210
– volume: 13
  start-page: 2178
  year: 2020
  ident: mfadf132bib8
  article-title: Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d0ee01236j
– volume: 110
  year: 2023
  ident: mfadf132bib223
  article-title: Rotation-mode liquid-solid triboelectric nanogenerator for efficient contact-electro-catalysis and adsorption
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108329
– volume: 30
  start-page: 34
  year: 2019
  ident: mfadf132bib43
  article-title: On the origin of contact-electrification
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 5
  start-page: 4929
  year: 2014
  ident: mfadf132bib117
  article-title: Flutter-driven triboelectrification for harvesting wind energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5929
– volume: 15
  start-page: 40975
  year: 2023
  ident: mfadf132bib21
  article-title: Self-healable, adhesive, anti-drying, freezing-tolerant, and transparent conductive organohydrogel as flexible strain sensor, triboelectric nanogenerator, and skin barrier
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c08052
– volume: 51
  start-page: 688
  year: 2018
  ident: mfadf132bib95
  article-title: Structural figure-of-merits of triboelectric nanogenerators at powering loads
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.032
– volume: 41
  year: 2024
  ident: mfadf132bib2
  article-title: Recent advances in nanogenerators driven by flow-induced vibrations for harvesting energy
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2024.101529
– volume: 115
  year: 2023
  ident: mfadf132bib143
  article-title: Optimisation-driven design of sliding mode triboelectric energy harvesters
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108735
– volume: 7
  start-page: 4282
  year: 2022
  ident: mfadf132bib14
  article-title: Enhancing low-velocity water flow energy harvesting of triboelectric-electromagnetic generator via biomimetic-fin strategy and swing-rotation mechanism
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01908
– volume: 122
  year: 2024
  ident: mfadf132bib220
  article-title: Triboelectric probes integrated with deep learning for real-time online monitoring of suspensions in liquid transport
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109340
– volume: 17
  start-page: 1646
  year: 2023
  ident: mfadf132bib36
  article-title: Triboelectric nanogenerator array as a probe for in situ dynamic mapping of interface charge transfer at a liquid-solid contacting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11633
– volume: 5
  start-page: 1613
  year: 2021
  ident: mfadf132bib105
  article-title: Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.016
– volume: 86
  year: 2021
  ident: mfadf132bib142
  article-title: Sliding triboelectric nanogenerator with staggered electrodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106062
– volume: 60
  start-page: 404
  year: 2019
  ident: mfadf132bib104
  article-title: Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.054
– volume: 3
  year: 2024
  ident: mfadf132bib172
  article-title: Highly stretchable kirigami-patterned nanofiber-based nanogenerators for harvesting human motion energy to power wearable electronics
  publication-title: Mater. Futures
  doi: 10.1088/2752-5724/ad2f6a
– volume: 13
  start-page: 5230
  year: 2022
  ident: mfadf132bib60
  article-title: Spin-selected electron transfer in liquid-solid contact electrification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32984-9
– volume: 95
  year: 2022
  ident: mfadf132bib133
  article-title: Vortex-induced vibration triboelectric nanogenerator for low speed wind energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107029
– volume: 10
  year: 2020
  ident: mfadf132bib70
  article-title: Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903713
– volume: 594
  year: 2024
  ident: mfadf132bib62
  article-title: Suppressing the self-discharge of high-frequency supercapacitors using electrolytes containing BaTiO3 nanoparticles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.234005
– volume: 123
  year: 2024
  ident: mfadf132bib28
  article-title: Formaldehyde degradation by soft-sliding-electrification-induced air ionization
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109431
– volume: 7
  start-page: eabe7738
  year: 2021
  ident: mfadf132bib232
  article-title: Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe7738
– volume: 10
  start-page: 4428
  year: 2019
  ident: mfadf132bib97
  article-title: A universal standardized method for output capability assessment of nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12465-2
– volume: 15
  start-page: 4167
  year: 2024
  ident: mfadf132bib98
  article-title: Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48456-1
– volume: 25
  start-page: 6184
  year: 2013
  ident: mfadf132bib85
  article-title: Theory of sliding-mode triboelectric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302808
– volume: 8
  start-page: 1855
  year: 2024
  ident: mfadf132bib109
  article-title: Substantially boosting performance of triboelectric nanogenerators via a triboelectrification enhancement effect
  publication-title: Joule
  doi: 10.1016/j.joule.2024.04.013
– volume: 52
  start-page: 1198
  year: 2022
  ident: mfadf132bib77
  article-title: Maxwell’s equations for a mechano-driven varying-speed motion media system under slow motion and nonrelativistic approximations
  publication-title: Sci. Sin. Technol.
  doi: 10.1360/SST-2022-0176
– volume: 16
  start-page: 2811
  year: 2022
  ident: mfadf132bib176
  article-title: Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09792
– volume: 98
  year: 2022
  ident: mfadf132bib212
  article-title: Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107239
– volume: 222
  year: 2023
  ident: mfadf132bib169
  article-title: Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114999
– volume: 92
  year: 2022
  ident: mfadf132bib170
  article-title: A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106715
– volume: 67
  year: 2020
  ident: mfadf132bib27
  article-title: Tuning oxygen vacancies and improving UV sensing of ZnO nanowire by micro-plasma powered by a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104210
– volume: 14
  start-page: 17565
  year: 2020
  ident: mfadf132bib214
  article-title: Electron transfer as a liquid droplet contacting a polymer surface
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08332
– volume: 9
  year: 2021
  ident: mfadf132bib178
  article-title: Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot‐based smart healthcare applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103694
– volume: 54
  start-page: 477
  year: 2018
  ident: mfadf132bib225
  article-title: Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—a recall on the original thoughts for coining these fields
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.068
– volume: 20
  start-page: 74
  year: 2017
  ident: mfadf132bib76
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 117
  year: 2023
  ident: mfadf132bib90
  article-title: An enhanced distance-dependent electric field model for contact-separation triboelectric nanogenerator: air-breakdown limit as a case study
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108836
– volume: 95
  year: 2022
  ident: mfadf132bib167
  article-title: Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107018
– volume: 119
  year: 2024
  ident: mfadf132bib150
  article-title: Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109071
– volume: 121
  year: 2024
  ident: mfadf132bib202
  article-title: Self-driven microplasma decontaminates chemical warfare agent simulant in different gas environments
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109233
– volume: 15
  start-page: 3246
  year: 2022
  ident: mfadf132bib130
  article-title: A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3968-9
– volume: 10
  start-page: 1780
  year: 2016
  ident: mfadf132bib122
  article-title: Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07157
– volume: 33
  start-page: 204
  year: 2024
  ident: mfadf132bib13
  article-title: Advances in triboelectric nanogenerators for blue energy harvesting and marine environmental monitoring
  publication-title: Engineering
  doi: 10.1016/j.eng.2023.05.023
– volume: 11
  start-page: 5696
  year: 2023
  ident: mfadf132bib31
  article-title: Studying the droplet sliding velocity and charge transfer at a liquid-solid interface
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d2ta09797d
– volume: 1
  year: 2023
  ident: mfadf132bib82
  article-title: Recent progress on the Maxwell’s equations for describing a mechano-driven medium system with multiple moving objects/media
  publication-title: Electromagn. Sci.
  doi: 10.23919/emsci.2023.0017
– volume: 10
  year: 2020
  ident: mfadf132bib42
  article-title: Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000137
– volume: 119
  year: 2024
  ident: mfadf132bib25
  article-title: Device physics and application prospect of the emerging high-voltage supply technology arising from triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109010
– volume: 13
  start-page: 1401
  year: 2022
  ident: mfadf132bib184
  article-title: Decoding lip language using triboelectric sensors with deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29083-0
– volume: 17
  start-page: 3700
  year: 2024
  ident: mfadf132bib1
  article-title: Fluid-based triboelectric nanogenerators: unveiling the prolific landscape of renewable energy harvesting and beyond
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d4ee00482e
– volume: 20
  year: 2024
  ident: mfadf132bib200
  article-title: In situ local band engineering of monolayer graphene using triboelectric plasma
  publication-title: Small
  doi: 10.1002/smll.202309318
– volume: 9
  start-page: 3143
  year: 2015
  ident: mfadf132bib229
  article-title: High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00072
– volume: 2
  year: 2024
  ident: mfadf132bib102
  article-title: Improving mechanical energy harvesters without complex fabrication using origami/kirigami
  publication-title: Device
  doi: 10.1016/j.device.2024.100548
– volume: 16
  start-page: 3932
  year: 2023
  ident: mfadf132bib145
  article-title: Contact-sliding-separation mode triboelectric nanogenerator
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d3ee01290e
– volume: 27
  start-page: 2324
  year: 2015
  ident: mfadf132bib230
  article-title: Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405826
– volume: 34
  year: 2024
  ident: mfadf132bib219
  article-title: Liquid-solid triboelectric probes for bubbles status monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202315725
– volume: 1
  start-page: 639
  year: 2019
  ident: mfadf132bib71
  article-title: Co-harvesting light and mechanical energy based on dynamic metal/perovskite Schottky junction
  publication-title: Matter
  doi: 10.1016/j.matt.2019.05.003
– volume: 29
  year: 2019
  ident: mfadf132bib46
  article-title: Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903142
– volume: 6
  start-page: 3576
  year: 2013
  ident: mfadf132bib84
  article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42571a
– volume: 128
  year: 2024
  ident: mfadf132bib120
  article-title: A bladeless wind-tunnel generator based on a flutter-driven triboelectric nanogenerator with on-demand micro-structuring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109886
– volume: 83
  year: 2021
  ident: mfadf132bib68
  article-title: Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105810
– volume: 145
  start-page: 21538
  year: 2023
  ident: mfadf132bib224
  article-title: Hydrocarbon degradation by contact with anoxic water microdroplets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c07445
– volume: 30
  year: 2020
  ident: mfadf132bib49
  article-title: The overlapped electron-cloud model for electron transfer in contact electrification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909724
– volume: 70
  year: 2020
  ident: mfadf132bib123
  article-title: Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104526
– volume: 92
  year: 2022
  ident: mfadf132bib231
  article-title: Piezo-phototronic effect in highly stable CsPbI3-PVDF composite for self-powered nanogenerator and photodetector
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106743
– volume: 15
  start-page: 15700
  year: 2021
  ident: mfadf132bib113
  article-title: Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05127
– volume: 12
  year: 2022
  ident: mfadf132bib136
  article-title: Collectively exhaustive hybrid triboelectric nanogenerator based on flow-induced impacting-sliding cylinder for ocean energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103076
– volume: 60
  start-page: 630
  year: 2019
  ident: mfadf132bib41
  article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.072
– volume: 16
  start-page: 7
  year: 2024
  ident: mfadf132bib44
  article-title: A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01238-8
– volume: 13
  year: 2023
  ident: mfadf132bib146
  article-title: Bionic blade lift-drag combination triboelectric-electromagnetic hybrid generator with enhanced aerodynamic performance for wind energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202303119
– volume: 17
  start-page: 2651
  year: 2024
  ident: mfadf132bib141
  article-title: Ultra-stability and high output performance of a sliding mode triboelectric nanogenerator achieved by an asymmetric electrode structure design
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d3ee04253g
– volume: 63
  start-page: 1087
  year: 2020
  ident: mfadf132bib91
  article-title: Theoretical foundations of triboelectric nanogenerators (TENGs)
  publication-title: Sci. China
  doi: 10.1007/s11431-020-1604-9
– volume: 5
  start-page: 1391
  year: 2021
  ident: mfadf132bib182
  article-title: Nanogenerators for smart cities in the era of 5G and internet of things
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.013
– volume: 59
  start-page: 380
  year: 2019
  ident: mfadf132bib96
  article-title: Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.051
– volume: 29
  year: 2019
  ident: mfadf132bib210
  article-title: Electrohydrodynamic jet printing driven by a triboelectric nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901102
– volume: 5
  start-page: 540
  year: 2010
  ident: mfadf132bib227
  article-title: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2010.10.008
– volume: 11
  year: 2024
  ident: mfadf132bib153
  article-title: Rotary wind-driven triboelectric nanogenerator for self-powered airflow temperature monitoring of industrial equipment
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202307382
– volume: 13
  start-page: 1036
  year: 2023
  ident: mfadf132bib127
  article-title: Solid-liquid triboelectric nanogenerator based on vortex-induced resonance
  publication-title: Nanomaterials
  doi: 10.3390/nano13061036
– volume: 33
  year: 2023
  ident: mfadf132bib50
  article-title: Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213410
SSID ssj0002774577
Score 2.3104932
SecondaryResourceType review_article
Snippet Since their birth in 2012, triboelectric nanogenerators (TENGs) have demonstrated astonishing development potential in the fields of energy, sensing, and...
SourceID doaj
crossref
iop
SourceType Open Website
Index Database
Publisher
StartPage 42101
SubjectTerms blue energy
flow-induced vibration (FIV)
interface probes
self-powered
triboelectric nanogenerators (TENGs)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6J8yQMMDFFjO7aTEVBLxdCplbpZ8dknwZBWtAz8e2wnoDAgFtYokqN3Pt273N07Qm6s4MgYYgZSuixciiKzzPvMo2auxrrULql9ztR0UTwv5bK36iv2hLXywC1wI2CQqxBnSlVHp-ZWOaZFyHrAll7alK2HmNdLpl5TOU0XUuuuLhk8acS1DFmX5sWodsgE_xGHklx_iC4vq3UvukwOyH5HC-l9-zmHZMc3R2SvJxZ4TKpJHNpotfhpmj_8oHXjKLyn1uUs_hij_Xo0XSGdj2dPmxOymIznj9OsW3yQAZeB8aKwynqHEMXQEHKX28AUoOYQ6JG1koECJQpXlYJxpwWvcrACI32yiK4Wp2TQrBp_RijmBcjCl5VTUITsyvI4H4iVBdSWOT0kd18wmHWrb2FSXbosTYTMRMhMC9mQPEScvt-LytTpQbCX6exl_rLXkNwGlE3nKZtfDzv_j8MuyC6P-3pT-8klGWzf3v1VIBFbe53uyyeDjMBZ
  priority: 102
  providerName: Directory of Open Access Journals
Title Fundamental theory and cutting-edge applications of TENGs
URI https://iopscience.iop.org/article/10.1088/2752-5724/adf132
https://doaj.org/article/c1c0622486a14672b6d173402cb8e5b0
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKWWBAPEV5VBlgYAiN7fgRMQFqqZAoSyu6WfFrTCvaDiz8ds5OqIoEEksURY4cfXZ83_nuPiN0pSnxGHufGsZsCpMiTzV2LnVeYFv6Ugob1T5HfDjJn6ds2kJ361qY2bxZ-m_hthYKriFsEuJkjwgG_pMgea-0HpypLbRNJZchn-uVvq03WAgQGyZEE5r87cUfpigq9oOBgV43DMxgH-01zDC5r7_jALVcdYh2N_QCj1AxCHUbtRx_EksQP5KysolZxezlNOyNJZsh6WTmk3F_9LQ4RpNBf_w4TJuzD1JDGJBeTzXXznoT9NC8yWymgSyYkhhgSFozbLjhNLeFpJhYQUmRGU19YFDae1vSE9SuZpU7RYnPcsNyJwvLTQ4OliahRNAX2nihsRUddPMNg5rXEhcqhqalVAEyFSBTNWQd9BBwWrcL4tTxAQyUagZKGWwyDtRA8jKsw0RziwUFR9Vo6ZjOOugaUFbNz7L4s7Ozf7Y7RzsknMobk0wuUHv5vnKXQBWWuhtdbLi-fPa7cXp8AZf6uWY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYTgMG3ARIFtPtADh9DYjuPksANb13UMFQ6ttpsXf7xjW9FVqH8V_yLPSag6CaRddosiK4l_efb7Pb8vgI9WCuQcMXFK-YSEIkssDyEJqLmvsCq0r6t9jvPRNPt6q2534PcmF2a-aLf-z3TZFApuIGwD4oq-0IrsJy2yfuWRjKn-wmMbVXkd1r_IZlueXg3oB_eEGF5MzkdJ21YgcUIRn0Rpcxs8ulhqDF3qU0t62FXCEfmwVnGXu1xmviwkF15LUabOSozkxCL6StJzn8GukqTaaAF9lzebQx1BZEpp3bpD__WxD9Rf3SWAlBrNdEupDfdhr2Wj7Esz9wPYCbNX8HKrRuFrKIcxV6RpAcDqtMc1q2aeuVUdMZ3E8zi27QZnc2STi_Hl8g1MnwSYQ-jM5rPwFhimmVNZKEqfu4yMOitiWiKW1qG23OsufPoLg1k0ZTVM7Q4vChMhMxEy00DWhbOI02ZcLIhd3yDhMK1wGMddmhMdKfIq7v3C5p5rScaxs0VQNu1Cj1A27QJd_vdl7x457gSe_xgMzber8fV7eCFiU-A6xuUDdO5_rsIRMZV7e1xLB4O7pxbHPxFs9cs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+theory+and+cutting-edge+applications+of+TENGs&rft.jtitle=Materials+futures&rft.au=Kang%2C+Xilong&rft.au=Li%2C+Pengbo&rft.au=Yurchenko%2C+Daniil&rft.au=Dai%2C+Shuge&rft.date=2025-12-01&rft.pub=IOP+Publishing&rft.eissn=2752-5724&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1088%2F2752-5724%2Fadf132&rft.externalDocID=mfadf132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2752-5724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2752-5724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2752-5724&client=summon