Balancing Polarization and Breakdown for High Capacitive Energy Storage by Microstructure Design
The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline state...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 32; pp. e2403400 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm−3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.
Balancing polarization and breakdown by microstructure control—amorphous for breakdown, crystalline for polarization—is key to energy storage. Phase‐field simulations reveal that small grains with moderate crystallinity optimize both, leading to high energy density. This approach yielded a 131 J cm−3 energy density with 81.6% efficiency in Bi3NdTi4O12 films, offering a strategy for advanced dielectric energy storage through microstructure design. |
---|---|
AbstractList | The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm−3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. Abstract The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm −3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi 3 NdTi 4 O 12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi NdTi O films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm−3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. Balancing polarization and breakdown by microstructure control—amorphous for breakdown, crystalline for polarization—is key to energy storage. Phase‐field simulations reveal that small grains with moderate crystallinity optimize both, leading to high energy density. This approach yielded a 131 J cm−3 energy density with 81.6% efficiency in Bi3NdTi4O12 films, offering a strategy for advanced dielectric energy storage through microstructure design. The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. |
Author | Li, Qian Dou, Lvye Liu, Yiqian Zhu, Xuebin Yang, Bingbing Lan, Shun Li, Wei Nan, Ce‐Wen Lin, Yuan‐Hua |
Author_xml | – sequence: 1 givenname: Bingbing orcidid: 0000-0001-5196-9995 surname: Yang fullname: Yang, Bingbing organization: Tsinghua University – sequence: 2 givenname: Yiqian surname: Liu fullname: Liu, Yiqian organization: Tsinghua University – sequence: 3 givenname: Wei surname: Li fullname: Li, Wei organization: Tsinghua University – sequence: 4 givenname: Shun surname: Lan fullname: Lan, Shun organization: Tsinghua University – sequence: 5 givenname: Lvye surname: Dou fullname: Dou, Lvye organization: University of Science and Technology Beijing – sequence: 6 givenname: Xuebin surname: Zhu fullname: Zhu, Xuebin organization: Chinese Academy of Sciences – sequence: 7 givenname: Qian surname: Li fullname: Li, Qian organization: Tsinghua University – sequence: 8 givenname: Ce‐Wen surname: Nan fullname: Nan, Ce‐Wen organization: Tsinghua University – sequence: 9 givenname: Yuan‐Hua surname: Lin fullname: Lin, Yuan‐Hua email: linyh@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38806163$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLFv1DAUhy1URK-FlRFZYmHJ8WzHjj1er6VFagUSMAfHeQ4uOfvqJFTHX9-crhSJhcnL50_v952Qo5giEvKawZIB8Pe23dglB16CKAGekQWTnBUlGHlEFmCELIwq9TE5GYZbADAK1AtyLLQGxZRYkO9ntrfRhdjRz6m3Ofy2Y0iR2tjSs4z2Z5vuI_Up06vQ_aBru7UujOEX0ouIudvRL2PKtkPa7OhNcDkNY57cOGWk5ziELr4kz73tB3z1-J6Sbx8uvq6viutPlx_Xq-vCcamhUOgFt41X0tsGwXtT6VYrj8qpRjspy6rSKLwBpRl6KSrRtKxhHFonGNfilLw7eLc53U04jPUmDA77eR2maajFPLjSHCo1o2__QW_TlON83UwZ4ExKI2dqeaD2o4aMvt7msLF5VzOo9-3rffv6qf384c2jdmo22D7hf2LPgDkA96HH3X909er8ZvVX_gC8-ZHc |
Cites_doi | 10.1002/aenm.201904229 10.1038/44352 10.1016/j.actamat.2005.07.040 10.1038/s41467-022-30821-7 10.1016/j.cej.2021.129601 10.1063/5.0024307 10.1126/science.aaw8109 10.1143/JJAP.35.1246 10.1016/j.jnoncrysol.2009.08.030 10.1126/science.abi7687 10.1038/s41563-022-01274-6 10.1016/j.actamat.2006.09.048 10.1038/s41563-020-0704-x 10.1146/annurev.matsci.32.112001.132041 10.1111/jace.15371 10.1021/acsnano.0c00791 10.1002/smtd.202100787 10.1038/s41560-023-01300-0 10.1016/j.jmst.2022.10.053 10.1002/aenm.202001778 10.1016/j.cej.2021.133579 10.1111/jace.12811 10.1016/j.jeurceramsoc.2023.06.051 10.1002/adma.201704380 10.1002/aenm.202001536 10.1063/1.3514170 10.1016/S1359-6454(96)00200-5 10.1016/j.actamat.2013.08.055 10.1016/j.ensm.2020.05.026 10.1016/j.scriptamat.2024.115968 10.1039/C9TA05446D 10.1021/acssuschemeng.1c08121 10.1021/acs.chemrev.0c01264 10.1111/j.1551-2916.2011.04952.x 10.1016/S1359-6454(99)00367-5 10.1016/j.pmatsci.2018.12.005 10.1016/j.cej.2021.133447 10.1126/science.abb0631 10.1002/adma.201604427 10.1016/j.ensm.2021.08.027 10.1103/PhysRevLett.89.087601 10.1063/1.4997351 10.1016/j.scriptamat.2007.06.045 10.1111/j.1551-2916.2011.04920.x |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202403400 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202403400 38806163 ADMA202403400 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Hundred‐Talent Program of Chinese Academy of Sciences funderid: 2023000641 – fundername: National Natural Science Foundation of China funderid: 523B2021; 52073155 – fundername: Basic Science Center Project of NSFC funderid: 52388201 – fundername: National Key Research Program of China funderid: 2021YFB3800601 – fundername: National Natural Science Foundation of China grantid: 52073155 – fundername: Basic Science Center Project of NSFC grantid: 52388201 – fundername: National Natural Science Foundation of China grantid: 523B2021 – fundername: National Key Research Program of China grantid: 2021YFB3800601 – fundername: Hundred-Talent Program of Chinese Academy of Sciences grantid: 2023000641 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LH4 LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c2580-6ef32abf65fabe0ff978d86fe6c6b8c554778e3f90681ef5373bd1b120dc31283 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Sat Oct 26 04:25:21 EDT 2024 Thu Oct 10 22:26:25 EDT 2024 Thu Sep 26 20:38:25 EDT 2024 Sat Nov 02 12:27:38 EDT 2024 Sat Aug 24 00:55:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | polarization microstructure phase‐field simulation energy storage breakdown |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2580-6ef32abf65fabe0ff978d86fe6c6b8c554778e3f90681ef5373bd1b120dc31283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5196-9995 |
PMID | 38806163 |
PQID | 3090215595 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3061782076 proquest_journals_3090215595 crossref_primary_10_1002_adma_202403400 pubmed_primary_38806163 wiley_primary_10_1002_adma_202403400_ADMA202403400 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 431 2019; 7 2021; 5 2021; 42 2000; 48 2010; 108 2023; 8 2023; 145 2023; 9 2018; 101 2013; 61 2002; 32 1997; 45 2020; 369 2019; 102 2020; 14 2009; 355 2024; 243 2017; 29 2022; 21 2021; 121 2020; 10 2017; 111 2006; 313 1996; 35 2013; 183 1999; 401 2007; 55 2007; 57 2019; 365 2020; 19 2022; 433 2012; 95 2023; 43 2021; 419 2020; 30 2002; 89 2022; 13 2020; 117 2005; 53 2018; 30 2022; 10 2021; 374 2014; 97 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Li W. (e_1_2_9_32_1) 2023; 9 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 Chu B. (e_1_2_9_1_1) 2006; 313 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Nasyrov K. A. (e_1_2_9_20_1) 2013; 183 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 401 start-page: 682 year: 1999 publication-title: Nature – volume: 374 start-page: 100 year: 2021 publication-title: Science – volume: 9 start-page: 395 year: 2023 publication-title: J. Mater. – volume: 5 year: 2021 publication-title: Small – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 42 start-page: 836 year: 2021 publication-title: Energy Storage Mater. – volume: 35 start-page: 1246 year: 1996 publication-title: Jpn. J. Appl. Phys. – volume: 32 start-page: 113 year: 2002 publication-title: Annu. Rev. Mater. Res. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 3089 year: 2022 publication-title: Nat. Commun. – volume: 95 start-page: 1 year: 2012 publication-title: J. Am. Ceram. Soc. – volume: 53 start-page: 5313 year: 2005 publication-title: Acta Mater. – volume: 43 start-page: 6021 year: 2023 publication-title: J. Eur. Ceram. Soc. – volume: 145 start-page: 66 year: 2023 publication-title: J. Mater. Sci. Technol. – volume: 45 start-page: 611 year: 1997 publication-title: Acta Mater. – volume: 365 start-page: 578 year: 2019 publication-title: Science – volume: 14 start-page: 6857 year: 2020 publication-title: ACS Nano – volume: 61 start-page: 7591 year: 2013 publication-title: Acta Mater. – volume: 101 start-page: 1999 year: 2018 publication-title: J. Am. Ceram. Soc. – volume: 30 start-page: 392 year: 2020 publication-title: Energy Storage Mater. – volume: 313 start-page: 334 year: 2006 publication-title: Nature – volume: 8 start-page: 956 year: 2023 publication-title: Nat. Energy – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 355 start-page: 50 year: 2009 publication-title: J. Non‐Cryst. Solids – volume: 21 start-page: 1074 year: 2022 publication-title: Nat. Mater. – volume: 243 year: 2024 publication-title: Scr. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 108 year: 2010 publication-title: J. Appl. Phys. – volume: 19 start-page: 999 year: 2020 publication-title: Nat. Mater. – volume: 369 start-page: 81 year: 2020 publication-title: Science – volume: 57 start-page: 657 year: 2007 publication-title: Scr. Mater. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 48 start-page: 797 year: 2000 publication-title: Acta Mater. – volume: 97 start-page: 665 year: 2014 publication-title: J. Am. Ceram. Soc. – volume: 55 start-page: 1415 year: 2007 publication-title: Acta Mater. – volume: 10 start-page: 1731 year: 2022 publication-title: ACS Sustainable Chem. Eng. – volume: 121 start-page: 6124 year: 2021 publication-title: Chem. Rev. – volume: 95 start-page: 538 year: 2012 publication-title: J. Am. Ceram. Soc. – volume: 183 start-page: 1099 year: 2013 publication-title: Phys.‐Uspekhi – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 102 start-page: 72 year: 2019 publication-title: Prog. Mater. Sci. – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 419 year: 2021 publication-title: Chem. Eng. J. – ident: e_1_2_9_10_1 doi: 10.1002/aenm.201904229 – ident: e_1_2_9_25_1 doi: 10.1038/44352 – ident: e_1_2_9_43_1 doi: 10.1016/j.actamat.2005.07.040 – volume: 313 start-page: 334 year: 2006 ident: e_1_2_9_1_1 publication-title: Nature contributor: fullname: Chu B. – ident: e_1_2_9_7_1 doi: 10.1038/s41467-022-30821-7 – ident: e_1_2_9_23_1 doi: 10.1016/j.cej.2021.129601 – ident: e_1_2_9_40_1 doi: 10.1063/5.0024307 – ident: e_1_2_9_2_1 doi: 10.1126/science.aaw8109 – ident: e_1_2_9_24_1 doi: 10.1143/JJAP.35.1246 – ident: e_1_2_9_31_1 doi: 10.1016/j.jnoncrysol.2009.08.030 – ident: e_1_2_9_33_1 doi: 10.1126/science.abi7687 – ident: e_1_2_9_8_1 doi: 10.1038/s41563-022-01274-6 – ident: e_1_2_9_34_1 doi: 10.1016/j.actamat.2006.09.048 – ident: e_1_2_9_5_1 doi: 10.1038/s41563-020-0704-x – ident: e_1_2_9_44_1 doi: 10.1146/annurev.matsci.32.112001.132041 – ident: e_1_2_9_36_1 doi: 10.1111/jace.15371 – ident: e_1_2_9_18_1 doi: 10.1021/acsnano.0c00791 – ident: e_1_2_9_38_1 doi: 10.1002/smtd.202100787 – ident: e_1_2_9_6_1 doi: 10.1038/s41560-023-01300-0 – ident: e_1_2_9_9_1 doi: 10.1016/j.jmst.2022.10.053 – volume: 9 start-page: 395 year: 2023 ident: e_1_2_9_32_1 publication-title: J. Mater. contributor: fullname: Li W. – ident: e_1_2_9_16_1 doi: 10.1002/aenm.202001778 – ident: e_1_2_9_17_1 doi: 10.1016/j.cej.2021.133579 – ident: e_1_2_9_39_1 doi: 10.1111/jace.12811 – ident: e_1_2_9_37_1 doi: 10.1016/j.jeurceramsoc.2023.06.051 – ident: e_1_2_9_46_1 doi: 10.1002/adma.201704380 – ident: e_1_2_9_45_1 doi: 10.1002/aenm.202001536 – volume: 183 start-page: 1099 year: 2013 ident: e_1_2_9_20_1 publication-title: Phys.‐Uspekhi contributor: fullname: Nasyrov K. A. – ident: e_1_2_9_28_1 doi: 10.1063/1.3514170 – ident: e_1_2_9_42_1 doi: 10.1016/S1359-6454(96)00200-5 – ident: e_1_2_9_47_1 doi: 10.1016/j.actamat.2013.08.055 – ident: e_1_2_9_15_1 doi: 10.1016/j.ensm.2020.05.026 – ident: e_1_2_9_12_1 doi: 10.1016/j.scriptamat.2024.115968 – ident: e_1_2_9_21_1 doi: 10.1039/C9TA05446D – ident: e_1_2_9_35_1 doi: 10.1021/acssuschemeng.1c08121 – ident: e_1_2_9_4_1 doi: 10.1021/acs.chemrev.0c01264 – ident: e_1_2_9_41_1 doi: 10.1111/j.1551-2916.2011.04952.x – ident: e_1_2_9_22_1 doi: 10.1016/S1359-6454(99)00367-5 – ident: e_1_2_9_3_1 doi: 10.1016/j.pmatsci.2018.12.005 – ident: e_1_2_9_19_1 doi: 10.1016/j.cej.2021.133447 – ident: e_1_2_9_14_1 doi: 10.1126/science.abb0631 – ident: e_1_2_9_11_1 doi: 10.1002/adma.201604427 – ident: e_1_2_9_13_1 doi: 10.1016/j.ensm.2021.08.027 – ident: e_1_2_9_26_1 doi: 10.1103/PhysRevLett.89.087601 – ident: e_1_2_9_30_1 doi: 10.1063/1.4997351 – ident: e_1_2_9_27_1 doi: 10.1016/j.scriptamat.2007.06.045 – ident: e_1_2_9_29_1 doi: 10.1111/j.1551-2916.2011.04920.x |
SSID | ssj0009606 |
Score | 2.5088103 |
Snippet | The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be... Abstract The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2403400 |
SubjectTerms | Amorphous materials Breakdown Crystallinity Design parameters Energy storage Grain size Microcrystals Microstructure phase‐field simulation Polarization |
Title | Balancing Polarization and Breakdown for High Capacitive Energy Storage by Microstructure Design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202403400 https://www.ncbi.nlm.nih.gov/pubmed/38806163 https://www.proquest.com/docview/3090215595 https://www.proquest.com/docview/3061782076 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnajdp0_S4D0WEFfEB3mqSJhehiroH_fXOpLvV1YOgp6a0pWkmk3zTfPMF4MCIqrC0rO4VF3Gaax2bQrrY6RyN7Atrwq4lwwt5dpue32V3X7L4G32I9ocbeUYYr8nBtXk5_hQN1VXQDSI9OeyHOAh3RE6crsHVp34UwfMgtieyuJCpmqg2Jvx4-vHpWekH1JxGrmHqOV0EPal0wzh5OBq9miP7_k3P8T9ftQQLY1zKuk1HWoYZV6_A_Be1wlW47xEN0mKZXVJAPM7gZLquWA-x50OFET1DEMyIPML6OA3bwExiJyHBkF1jfI_DFzNvbEg8wEa7dvTs2CDwSNbg9vTkpn8WjzdoiC3PFIadzguujZeZ18Yl3mNIWinpnbTSKItIJc-VE75IpOo4n4lcmKpjOjyprMCJUazDbP1Yu01gViinU20kdya13GqtUzx6nljvlHcRHE4MVD41Ohxlo7jMS2qzsm2zCHYm9ivH_vhSCqKf0gpsFsF-exk9iZZHdO0eR3QPpUvyJJcRbDR2b19FkjkSoWsEPFjvlzqU3cGw255t_eWhbZijcsM13IFZtIjbRfzzavZCH_8AtN39Rw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOACHAm2B8KorIfUUyNqJ4xwXFrQUFiEKUm-p7dgXpIBa9kB_PTPOJrD0gFROeVpxPB77G_vzZ4A9I6rC0rS6V1zEaa51bArpYqdzNLIvrAm7lowu5PAm_f4za9mEtBam0YfoBtzIM0J7TQ5OA9IHz6qhugrCQSQohxVxFubR5wXt3jC4elaQIoAe5PZEFhcyVa1uY8IPptNP90v_gM1p7Bo6n5NlMG22G87J7f74wezbv68UHd_1XyvwYQJNWb-pS6sw4-qPsPRCsPAT_DokJqTFc3ZJMfFkESfTdcUOEX7eVhjUM8TBjPgj7Ah7YhvISew4rDFkPzDExxaMmUc2IipgI187_u3YIFBJPsPNyfH10TCe7NEQW54pjDydF1wbLzOvjUu8x6i0UtI7aaVRFsFKnisnfJFI1XM-E7kwVc_0eFJZgX2jWIO5-q52G8CsUE6n2kjuTGq51VqnePQ8sd4p7yL41lqovG-kOMpGdJmXVGZlV2YRbLcGLCcu-acUxEClSdgsgq_dY3QmmiHRtbsb0zu0YpInuYxgvTF89ylSzZGIXiPgwXxv5KHsD0b97mrzfxJ9gYXh9ei8PD-9ONuCRbrfUA-3YQ6t43YQDj2Y3VDhnwCCAwFu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRarKoUBbILxqJKSeAlk7cZzjwrKCwiLEQ-KW2o59QQoIdg_tr--MsxtYekAqp7wVx2N7vom_-Qywa0RVWJpW94qLOM21jk0hXex0jkb2hTVh1ZLhuTy-SX_eZrcvsvgbfYj2hxv1jDBeUwd_qPz-s2ioroJuEOnJYTv8APOpRPhLsOjyWUCK8HlQ2xNZXMhUTWUbE74_-_ysW_oHa85C1-B7Bougp6VuKCd3e-OR2bN_Xgk6vuezluDzBJiyXtOSlmHO1V9g4YVc4Vf4dUA8SIv77IIi4kkKJ9N1xQ4QfN5VGNIzRMGM2CPsEP2wDdQkdhQyDNkVBvg4fjHzmw2JCNiI144fHesHIsk3uBkcXR8ex5MVGmLLM4Vxp_OCa-Nl5rVxifcYk1ZKeietNMoiVMlz5YQvEqm6zmciF6bqmi5PKivQM4oV6NT3tVsDZoVyOtVGcmdSy63WOsWt54n1TnkXwY-pgcqHRoijbCSXeUl1VrZ1FsHm1H7lpEM-lYL4pzQFm0Ww017GrkTzI7p292O6h_IleZLLCFYbu7evIs0cidg1Ah6s90YZyl5_2GuP1v_noe_w8aI_KM9Ozk834BOdbniHm9BB47gtxEIjsx2a-195_wAd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Polarization+and+Breakdown+for+High+Capacitive+Energy+Storage+by+Microstructure+Design&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Bingbing&rft.au=Liu%2C+Yiqian&rft.au=Li%2C+Wei&rft.au=Lan%2C+Shun&rft.date=2024-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=36&rft.issue=32&rft.spage=e2403400&rft_id=info:doi/10.1002%2Fadma.202403400&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |