Balancing Polarization and Breakdown for High Capacitive Energy Storage by Microstructure Design

The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline state...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 32; pp. e2403400 - n/a
Main Authors Yang, Bingbing, Liu, Yiqian, Li, Wei, Lan, Shun, Dou, Lvye, Zhu, Xuebin, Li, Qian, Nan, Ce‐Wen, Lin, Yuan‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm−3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. Balancing polarization and breakdown by microstructure control—amorphous for breakdown, crystalline for polarization—is key to energy storage. Phase‐field simulations reveal that small grains with moderate crystallinity optimize both, leading to high energy density. This approach yielded a 131 J cm−3 energy density with 81.6% efficiency in Bi3NdTi4O12 films, offering a strategy for advanced dielectric energy storage through microstructure design.
AbstractList The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm−3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.
Abstract The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm −3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi 3 NdTi 4 O 12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.
The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi NdTi O films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.
The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade‐off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase‐field simulations. The results indicate small grain size (≈10–35 nm) with moderate crystallinity (≈60–80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm−3 is achieved with a high efficiency of 81.6% in the microcrystal‐amorphous dual‐phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design. Balancing polarization and breakdown by microstructure control—amorphous for breakdown, crystalline for polarization—is key to energy storage. Phase‐field simulations reveal that small grains with moderate crystallinity optimize both, leading to high energy density. This approach yielded a 131 J cm−3 energy density with 81.6% efficiency in Bi3NdTi4O12 films, offering a strategy for advanced dielectric energy storage through microstructure design.
The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.
Author Li, Qian
Dou, Lvye
Liu, Yiqian
Zhu, Xuebin
Yang, Bingbing
Lan, Shun
Li, Wei
Nan, Ce‐Wen
Lin, Yuan‐Hua
Author_xml – sequence: 1
  givenname: Bingbing
  orcidid: 0000-0001-5196-9995
  surname: Yang
  fullname: Yang, Bingbing
  organization: Tsinghua University
– sequence: 2
  givenname: Yiqian
  surname: Liu
  fullname: Liu, Yiqian
  organization: Tsinghua University
– sequence: 3
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Tsinghua University
– sequence: 4
  givenname: Shun
  surname: Lan
  fullname: Lan, Shun
  organization: Tsinghua University
– sequence: 5
  givenname: Lvye
  surname: Dou
  fullname: Dou, Lvye
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Xuebin
  surname: Zhu
  fullname: Zhu, Xuebin
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Tsinghua University
– sequence: 8
  givenname: Ce‐Wen
  surname: Nan
  fullname: Nan, Ce‐Wen
  organization: Tsinghua University
– sequence: 9
  givenname: Yuan‐Hua
  surname: Lin
  fullname: Lin, Yuan‐Hua
  email: linyh@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38806163$$D View this record in MEDLINE/PubMed
BookMark eNqFkLFv1DAUhy1URK-FlRFZYmHJ8WzHjj1er6VFagUSMAfHeQ4uOfvqJFTHX9-crhSJhcnL50_v952Qo5giEvKawZIB8Pe23dglB16CKAGekQWTnBUlGHlEFmCELIwq9TE5GYZbADAK1AtyLLQGxZRYkO9ntrfRhdjRz6m3Ofy2Y0iR2tjSs4z2Z5vuI_Up06vQ_aBru7UujOEX0ouIudvRL2PKtkPa7OhNcDkNY57cOGWk5ziELr4kz73tB3z1-J6Sbx8uvq6viutPlx_Xq-vCcamhUOgFt41X0tsGwXtT6VYrj8qpRjspy6rSKLwBpRl6KSrRtKxhHFonGNfilLw7eLc53U04jPUmDA77eR2maajFPLjSHCo1o2__QW_TlON83UwZ4ExKI2dqeaD2o4aMvt7msLF5VzOo9-3rffv6qf384c2jdmo22D7hf2LPgDkA96HH3X909er8ZvVX_gC8-ZHc
Cites_doi 10.1002/aenm.201904229
10.1038/44352
10.1016/j.actamat.2005.07.040
10.1038/s41467-022-30821-7
10.1016/j.cej.2021.129601
10.1063/5.0024307
10.1126/science.aaw8109
10.1143/JJAP.35.1246
10.1016/j.jnoncrysol.2009.08.030
10.1126/science.abi7687
10.1038/s41563-022-01274-6
10.1016/j.actamat.2006.09.048
10.1038/s41563-020-0704-x
10.1146/annurev.matsci.32.112001.132041
10.1111/jace.15371
10.1021/acsnano.0c00791
10.1002/smtd.202100787
10.1038/s41560-023-01300-0
10.1016/j.jmst.2022.10.053
10.1002/aenm.202001778
10.1016/j.cej.2021.133579
10.1111/jace.12811
10.1016/j.jeurceramsoc.2023.06.051
10.1002/adma.201704380
10.1002/aenm.202001536
10.1063/1.3514170
10.1016/S1359-6454(96)00200-5
10.1016/j.actamat.2013.08.055
10.1016/j.ensm.2020.05.026
10.1016/j.scriptamat.2024.115968
10.1039/C9TA05446D
10.1021/acssuschemeng.1c08121
10.1021/acs.chemrev.0c01264
10.1111/j.1551-2916.2011.04952.x
10.1016/S1359-6454(99)00367-5
10.1016/j.pmatsci.2018.12.005
10.1016/j.cej.2021.133447
10.1126/science.abb0631
10.1002/adma.201604427
10.1016/j.ensm.2021.08.027
10.1103/PhysRevLett.89.087601
10.1063/1.4997351
10.1016/j.scriptamat.2007.06.045
10.1111/j.1551-2916.2011.04920.x
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202403400
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202403400
38806163
ADMA202403400
Genre article
Journal Article
GrantInformation_xml – fundername: Hundred‐Talent Program of Chinese Academy of Sciences
  funderid: 2023000641
– fundername: National Natural Science Foundation of China
  funderid: 523B2021; 52073155
– fundername: Basic Science Center Project of NSFC
  funderid: 52388201
– fundername: National Key Research Program of China
  funderid: 2021YFB3800601
– fundername: National Natural Science Foundation of China
  grantid: 52073155
– fundername: Basic Science Center Project of NSFC
  grantid: 52388201
– fundername: National Natural Science Foundation of China
  grantid: 523B2021
– fundername: National Key Research Program of China
  grantid: 2021YFB3800601
– fundername: Hundred-Talent Program of Chinese Academy of Sciences
  grantid: 2023000641
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LH4
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c2580-6ef32abf65fabe0ff978d86fe6c6b8c554778e3f90681ef5373bd1b120dc31283
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Sat Oct 26 04:25:21 EDT 2024
Thu Oct 10 22:26:25 EDT 2024
Thu Sep 26 20:38:25 EDT 2024
Sat Nov 02 12:27:38 EDT 2024
Sat Aug 24 00:55:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords polarization
microstructure
phase‐field simulation
energy storage
breakdown
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2580-6ef32abf65fabe0ff978d86fe6c6b8c554778e3f90681ef5373bd1b120dc31283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5196-9995
PMID 38806163
PQID 3090215595
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_3061782076
proquest_journals_3090215595
crossref_primary_10_1002_adma_202403400
pubmed_primary_38806163
wiley_primary_10_1002_adma_202403400_ADMA202403400
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 431
2019; 7
2021; 5
2021; 42
2000; 48
2010; 108
2023; 8
2023; 145
2023; 9
2018; 101
2013; 61
2002; 32
1997; 45
2020; 369
2019; 102
2020; 14
2009; 355
2024; 243
2017; 29
2022; 21
2021; 121
2020; 10
2017; 111
2006; 313
1996; 35
2013; 183
1999; 401
2007; 55
2007; 57
2019; 365
2020; 19
2022; 433
2012; 95
2023; 43
2021; 419
2020; 30
2002; 89
2022; 13
2020; 117
2005; 53
2018; 30
2022; 10
2021; 374
2014; 97
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Li W. (e_1_2_9_32_1) 2023; 9
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
Chu B. (e_1_2_9_1_1) 2006; 313
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Nasyrov K. A. (e_1_2_9_20_1) 2013; 183
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 401
  start-page: 682
  year: 1999
  publication-title: Nature
– volume: 374
  start-page: 100
  year: 2021
  publication-title: Science
– volume: 9
  start-page: 395
  year: 2023
  publication-title: J. Mater.
– volume: 5
  year: 2021
  publication-title: Small
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 836
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 35
  start-page: 1246
  year: 1996
  publication-title: Jpn. J. Appl. Phys.
– volume: 32
  start-page: 113
  year: 2002
  publication-title: Annu. Rev. Mater. Res.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3089
  year: 2022
  publication-title: Nat. Commun.
– volume: 95
  start-page: 1
  year: 2012
  publication-title: J. Am. Ceram. Soc.
– volume: 53
  start-page: 5313
  year: 2005
  publication-title: Acta Mater.
– volume: 43
  start-page: 6021
  year: 2023
  publication-title: J. Eur. Ceram. Soc.
– volume: 145
  start-page: 66
  year: 2023
  publication-title: J. Mater. Sci. Technol.
– volume: 45
  start-page: 611
  year: 1997
  publication-title: Acta Mater.
– volume: 365
  start-page: 578
  year: 2019
  publication-title: Science
– volume: 14
  start-page: 6857
  year: 2020
  publication-title: ACS Nano
– volume: 61
  start-page: 7591
  year: 2013
  publication-title: Acta Mater.
– volume: 101
  start-page: 1999
  year: 2018
  publication-title: J. Am. Ceram. Soc.
– volume: 30
  start-page: 392
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 313
  start-page: 334
  year: 2006
  publication-title: Nature
– volume: 8
  start-page: 956
  year: 2023
  publication-title: Nat. Energy
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 355
  start-page: 50
  year: 2009
  publication-title: J. Non‐Cryst. Solids
– volume: 21
  start-page: 1074
  year: 2022
  publication-title: Nat. Mater.
– volume: 243
  year: 2024
  publication-title: Scr. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 108
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 19
  start-page: 999
  year: 2020
  publication-title: Nat. Mater.
– volume: 369
  start-page: 81
  year: 2020
  publication-title: Science
– volume: 57
  start-page: 657
  year: 2007
  publication-title: Scr. Mater.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 48
  start-page: 797
  year: 2000
  publication-title: Acta Mater.
– volume: 97
  start-page: 665
  year: 2014
  publication-title: J. Am. Ceram. Soc.
– volume: 55
  start-page: 1415
  year: 2007
  publication-title: Acta Mater.
– volume: 10
  start-page: 1731
  year: 2022
  publication-title: ACS Sustainable Chem. Eng.
– volume: 121
  start-page: 6124
  year: 2021
  publication-title: Chem. Rev.
– volume: 95
  start-page: 538
  year: 2012
  publication-title: J. Am. Ceram. Soc.
– volume: 183
  start-page: 1099
  year: 2013
  publication-title: Phys.‐Uspekhi
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 102
  start-page: 72
  year: 2019
  publication-title: Prog. Mater. Sci.
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 419
  year: 2021
  publication-title: Chem. Eng. J.
– ident: e_1_2_9_10_1
  doi: 10.1002/aenm.201904229
– ident: e_1_2_9_25_1
  doi: 10.1038/44352
– ident: e_1_2_9_43_1
  doi: 10.1016/j.actamat.2005.07.040
– volume: 313
  start-page: 334
  year: 2006
  ident: e_1_2_9_1_1
  publication-title: Nature
  contributor:
    fullname: Chu B.
– ident: e_1_2_9_7_1
  doi: 10.1038/s41467-022-30821-7
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cej.2021.129601
– ident: e_1_2_9_40_1
  doi: 10.1063/5.0024307
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aaw8109
– ident: e_1_2_9_24_1
  doi: 10.1143/JJAP.35.1246
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jnoncrysol.2009.08.030
– ident: e_1_2_9_33_1
  doi: 10.1126/science.abi7687
– ident: e_1_2_9_8_1
  doi: 10.1038/s41563-022-01274-6
– ident: e_1_2_9_34_1
  doi: 10.1016/j.actamat.2006.09.048
– ident: e_1_2_9_5_1
  doi: 10.1038/s41563-020-0704-x
– ident: e_1_2_9_44_1
  doi: 10.1146/annurev.matsci.32.112001.132041
– ident: e_1_2_9_36_1
  doi: 10.1111/jace.15371
– ident: e_1_2_9_18_1
  doi: 10.1021/acsnano.0c00791
– ident: e_1_2_9_38_1
  doi: 10.1002/smtd.202100787
– ident: e_1_2_9_6_1
  doi: 10.1038/s41560-023-01300-0
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jmst.2022.10.053
– volume: 9
  start-page: 395
  year: 2023
  ident: e_1_2_9_32_1
  publication-title: J. Mater.
  contributor:
    fullname: Li W.
– ident: e_1_2_9_16_1
  doi: 10.1002/aenm.202001778
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cej.2021.133579
– ident: e_1_2_9_39_1
  doi: 10.1111/jace.12811
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jeurceramsoc.2023.06.051
– ident: e_1_2_9_46_1
  doi: 10.1002/adma.201704380
– ident: e_1_2_9_45_1
  doi: 10.1002/aenm.202001536
– volume: 183
  start-page: 1099
  year: 2013
  ident: e_1_2_9_20_1
  publication-title: Phys.‐Uspekhi
  contributor:
    fullname: Nasyrov K. A.
– ident: e_1_2_9_28_1
  doi: 10.1063/1.3514170
– ident: e_1_2_9_42_1
  doi: 10.1016/S1359-6454(96)00200-5
– ident: e_1_2_9_47_1
  doi: 10.1016/j.actamat.2013.08.055
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ensm.2020.05.026
– ident: e_1_2_9_12_1
  doi: 10.1016/j.scriptamat.2024.115968
– ident: e_1_2_9_21_1
  doi: 10.1039/C9TA05446D
– ident: e_1_2_9_35_1
  doi: 10.1021/acssuschemeng.1c08121
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.chemrev.0c01264
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1551-2916.2011.04952.x
– ident: e_1_2_9_22_1
  doi: 10.1016/S1359-6454(99)00367-5
– ident: e_1_2_9_3_1
  doi: 10.1016/j.pmatsci.2018.12.005
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cej.2021.133447
– ident: e_1_2_9_14_1
  doi: 10.1126/science.abb0631
– ident: e_1_2_9_11_1
  doi: 10.1002/adma.201604427
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ensm.2021.08.027
– ident: e_1_2_9_26_1
  doi: 10.1103/PhysRevLett.89.087601
– ident: e_1_2_9_30_1
  doi: 10.1063/1.4997351
– ident: e_1_2_9_27_1
  doi: 10.1016/j.scriptamat.2007.06.045
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1551-2916.2011.04920.x
SSID ssj0009606
Score 2.5088103
Snippet The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be...
Abstract The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2403400
SubjectTerms Amorphous materials
Breakdown
Crystallinity
Design parameters
Energy storage
Grain size
Microcrystals
Microstructure
phase‐field simulation
Polarization
Title Balancing Polarization and Breakdown for High Capacitive Energy Storage by Microstructure Design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202403400
https://www.ncbi.nlm.nih.gov/pubmed/38806163
https://www.proquest.com/docview/3090215595
https://www.proquest.com/docview/3061782076
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKnajdp0_S4D0WEFfEB3mqSJhehiroH_fXOpLvV1YOgp6a0pWkmk3zTfPMF4MCIqrC0rO4VF3Gaax2bQrrY6RyN7Atrwq4lwwt5dpue32V3X7L4G32I9ocbeUYYr8nBtXk5_hQN1VXQDSI9OeyHOAh3RE6crsHVp34UwfMgtieyuJCpmqg2Jvx4-vHpWekH1JxGrmHqOV0EPal0wzh5OBq9miP7_k3P8T9ftQQLY1zKuk1HWoYZV6_A_Be1wlW47xEN0mKZXVJAPM7gZLquWA-x50OFET1DEMyIPML6OA3bwExiJyHBkF1jfI_DFzNvbEg8wEa7dvTs2CDwSNbg9vTkpn8WjzdoiC3PFIadzguujZeZ18Yl3mNIWinpnbTSKItIJc-VE75IpOo4n4lcmKpjOjyprMCJUazDbP1Yu01gViinU20kdya13GqtUzx6nljvlHcRHE4MVD41Ohxlo7jMS2qzsm2zCHYm9ivH_vhSCqKf0gpsFsF-exk9iZZHdO0eR3QPpUvyJJcRbDR2b19FkjkSoWsEPFjvlzqU3cGw255t_eWhbZijcsM13IFZtIjbRfzzavZCH_8AtN39Rw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOACHAm2B8KorIfUUyNqJ4xwXFrQUFiEKUm-p7dgXpIBa9kB_PTPOJrD0gFROeVpxPB77G_vzZ4A9I6rC0rS6V1zEaa51bArpYqdzNLIvrAm7lowu5PAm_f4za9mEtBam0YfoBtzIM0J7TQ5OA9IHz6qhugrCQSQohxVxFubR5wXt3jC4elaQIoAe5PZEFhcyVa1uY8IPptNP90v_gM1p7Bo6n5NlMG22G87J7f74wezbv68UHd_1XyvwYQJNWb-pS6sw4-qPsPRCsPAT_DokJqTFc3ZJMfFkESfTdcUOEX7eVhjUM8TBjPgj7Ah7YhvISew4rDFkPzDExxaMmUc2IipgI187_u3YIFBJPsPNyfH10TCe7NEQW54pjDydF1wbLzOvjUu8x6i0UtI7aaVRFsFKnisnfJFI1XM-E7kwVc_0eFJZgX2jWIO5-q52G8CsUE6n2kjuTGq51VqnePQ8sd4p7yL41lqovG-kOMpGdJmXVGZlV2YRbLcGLCcu-acUxEClSdgsgq_dY3QmmiHRtbsb0zu0YpInuYxgvTF89ylSzZGIXiPgwXxv5KHsD0b97mrzfxJ9gYXh9ei8PD-9ONuCRbrfUA-3YQ6t43YQDj2Y3VDhnwCCAwFu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRarKoUBbILxqJKSeAlk7cZzjwrKCwiLEQ-KW2o59QQoIdg_tr--MsxtYekAqp7wVx2N7vom_-Qywa0RVWJpW94qLOM21jk0hXex0jkb2hTVh1ZLhuTy-SX_eZrcvsvgbfYj2hxv1jDBeUwd_qPz-s2ioroJuEOnJYTv8APOpRPhLsOjyWUCK8HlQ2xNZXMhUTWUbE74_-_ysW_oHa85C1-B7Bougp6VuKCd3e-OR2bN_Xgk6vuezluDzBJiyXtOSlmHO1V9g4YVc4Vf4dUA8SIv77IIi4kkKJ9N1xQ4QfN5VGNIzRMGM2CPsEP2wDdQkdhQyDNkVBvg4fjHzmw2JCNiI144fHesHIsk3uBkcXR8ex5MVGmLLM4Vxp_OCa-Nl5rVxifcYk1ZKeietNMoiVMlz5YQvEqm6zmciF6bqmi5PKivQM4oV6NT3tVsDZoVyOtVGcmdSy63WOsWt54n1TnkXwY-pgcqHRoijbCSXeUl1VrZ1FsHm1H7lpEM-lYL4pzQFm0Ww017GrkTzI7p292O6h_IleZLLCFYbu7evIs0cidg1Ah6s90YZyl5_2GuP1v_noe_w8aI_KM9Ozk834BOdbniHm9BB47gtxEIjsx2a-195_wAd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Polarization+and+Breakdown+for+High+Capacitive+Energy+Storage+by+Microstructure+Design&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Bingbing&rft.au=Liu%2C+Yiqian&rft.au=Li%2C+Wei&rft.au=Lan%2C+Shun&rft.date=2024-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=36&rft.issue=32&rft.spage=e2403400&rft_id=info:doi/10.1002%2Fadma.202403400&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon