Simulation of Hydrogen Adsorption in Hierarchical Silicalite: Role of Electrostatics and Surface Chemistry

Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We r...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 25; no. 17; pp. e202400360 - n/a
Main Authors Gautam, S., Cole, D. R., Dudás, Z. I., Dhiman, I.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage. Incorporating mesopores in microporous silicalite enhances its hydrogen adsorption capacity
AbstractList Abstract Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage.
Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage.Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage.
Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage.
Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage. Incorporating mesopores in microporous silicalite enhances its hydrogen adsorption capacity
Author Cole, D. R.
Dudás, Z. I.
Dhiman, I.
Gautam, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-1443-5382
  surname: Gautam
  fullname: Gautam, S.
  email: gautam.25@osu.edu
  organization: The Ohio State University
– sequence: 2
  givenname: D. R.
  surname: Cole
  fullname: Cole, D. R.
  organization: The Ohio State University
– sequence: 3
  givenname: Z. I.
  surname: Dudás
  fullname: Dudás, Z. I.
  organization: HUN-REN Centre for Energy Research
– sequence: 4
  givenname: I.
  surname: Dhiman
  fullname: Dhiman, I.
  organization: HUN-REN Centre for Energy Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38780298$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LAzEQhoMoflSvHiXgxUtrstlsNt5kUSsIitXzkmYnNiXd1GQX6b83tVXBi6cZhmfe-XiP0G7rW0DolJIRJSS71MuZHmUkywlhBdlBhzRnciiKnO5u8zxj_AAdxTgnhJRE0H10wEpRkkyWh2g-sYveqc76FnuDx6sm-Ddo8XUTfVh-lW2LxxaCCnpmtXJ4Yt062g6u8LN3sO67caC74GOXlHTEqm3wpA9GacDVDBY2dmF1jPaMchFOtnGAXm9vXqrx8OHx7r66fhjqjJdkSHMjFCdMFYZrIaeNEAygKcDQghfcCDYVWclThYmGN1AayAoqCprnupxKzQboYqO7DP69h9jVab4G51QLvo81I1ymSTx9Z4DO_6Bz34c2bZcoKQUXuaSJGm0onS6MAUy9DHahwqqmpF67UK9dqH9cSA1nW9l-uoDmB_9-ewLkBviwDlb_yNXV07j6Ff8EiwCVrQ
Cites_doi 10.1038/s41557-022-01056-2
10.1063/1.1841160
10.1039/D0CP01206H
10.1080/23311916.2016.1167990
10.1063/1.466854
10.3390/nano10112274
10.1039/b517931a
10.3390/pr10020304
10.1016/S0144-2449(96)00067-X
10.1021/jp9730196
10.1107/S0021889808012016
10.1016/j.endeavour.2016.07.002
10.1038/s41467-019-09365-w
10.1016/j.cep.2014.02.010
10.1016/j.carbon.2009.09.060
10.1039/c2ee22037g
10.1039/D0CP03871G
10.1016/j.est.2023.108456
10.1016/j.carbon.2006.09.022
10.1038/386377a0
10.1080/0144235X.2014.988038
10.3390/en16135233
10.1039/C7TA08046H
10.1063/1.477109
10.1016/j.ijhydene.2007.08.009
10.1039/C4CE01711K
10.1016/j.ijhydene.2021.01.020
10.1006/jcis.1994.1023
10.1002/advs.202106117
10.1557/S0883769400053458
10.1016/0144-2449(94)90134-1
10.3390/c9040116
10.1533/9781845694944.3.223
10.1080/08927022.2013.839871
10.1016/j.egyr.2022.04.067
10.1021/jp0363287
10.1038/35104634
10.1260/0263-6174.32.1.73
10.1016/S0360-3199(01)00103-3
10.3390/molecules24010099
10.1016/j.electacta.2013.10.190
ContentType Journal Article
Copyright 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
Copyright_xml – notice: 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
DBID 24P
WIN
NPM
AAYXX
CITATION
K9.
7X8
DOI 10.1002/cphc.202400360
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage n/a
ExternalDocumentID 10_1002_cphc_202400360
38780298
CPHC202400360
Genre article
Journal Article
GrantInformation_xml – fundername: State of Ohio
  funderid: Third Frontier Ohio Researcg Scholar Program
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
24P
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
UPT
V2E
W99
WBKPD
WH7
WIN
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
NPM
AAYXX
CITATION
K9.
7X8
ID FETCH-LOGICAL-c2580-14f7a503a6f5c79bd773eed6ef16565f73b7285ed637d5de8fe26176144c8b9c3
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Tue Sep 03 17:05:18 EDT 2024
Wed Sep 04 06:37:53 EDT 2024
Wed Sep 04 12:46:01 EDT 2024
Wed Oct 02 05:26:53 EDT 2024
Tue Sep 03 09:47:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Silicalite
adsorption
Hierarchical pores
Hydrogen
GCMC simulations
Language English
License Attribution
2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2580-14f7a503a6f5c79bd773eed6ef16565f73b7285ed637d5de8fe26176144c8b9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1443-5382
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202400360
PMID 38780298
PQID 3099757491
PQPubID 986334
PageCount 8
ParticipantIDs proquest_miscellaneous_3059258514
proquest_journals_3099757491
crossref_primary_10_1002_cphc_202400360
pubmed_primary_38780298
wiley_primary_10_1002_cphc_202400360_CPHC202400360
PublicationCentury 2000
PublicationDate September 2, 2024
PublicationDateYYYYMMDD 2024-09-02
PublicationDate_xml – month: 09
  year: 2024
  text: September 2, 2024
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2021; 46
2015; 34
1990; 10
2015; 17
1996; 17
2023; 16
2019; 10
2006; 16
2023; 9
2022; , 8
1999; 24
1967; 46
2020; 10
2007; 32
2004; 108
2002; 27
2014; 128
1994; 100
2010; 48
2013; 39
2016; 3
2019; 24
1997; 386
2022; 9
1994; 162
2022; 14
2016; 40
1998; 109
2014; 79
2022; 10
2020; 22
2008; 41
1998; 102
2012; 5
2007; 45
2023; 72
2001; 414
2014; 32
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
McNaught A. D. (e_1_2_10_35_1)
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 48
  start-page: 452
  issue: 2
  year: 2010
  publication-title: Carbon
– volume: 108
  start-page: 1255
  issue: 4
  year: 2004
  end-page: 1266
  publication-title: The Journal of Physical Chemistry B
– volume: 24
  start-page: 99
  issue: 1
  year: 2019
  publication-title: Molecules
– volume: 10
  start-page: 1568
  issue: 1
  year: 2019
  publication-title: Nature communications
– volume: 10
  start-page: 235
  issue: 4
  year: 1990
  publication-title: Zeolites
– volume: 102
  start-page: 1466
  issue: 8
  year: 1998
  publication-title: The Journal of Physical Chemistry B
– volume: 79
  start-page: 1
  year: 2014
  publication-title: Chemical Engineering and Processing: Process Intensification
– volume: 32
  start-page: 4998
  issue: 18
  year: 2007
  publication-title: International Journal of Hydrogen Energy
– volume: 22
  start-page: 13951
  issue: 25
  year: 2020
  publication-title: Physical Chemistry Chemical Physics
– volume: , 8
  start-page: 6258
  year: 2022
  publication-title: Energy Reports
– volume: 128
  start-page: 368
  year: 2014
  publication-title: Electrochimica Acta
– volume: 17
  start-page: 261
  issue: 2
  year: 2015
  publication-title: CrystEngComm
– volume: 34
  start-page: 35
  issue: 1
  year: 2015
  publication-title: International Reviews in Physical Chemistry
– volume: 32
  start-page: 73
  issue: 1
  year: 2014
  publication-title: Adsorption Science & Technology
– volume: 17
  start-page: 501
  issue: 5-6
  year: 1996
  publication-title: Zeolites
– volume: 109
  start-page: 4981
  issue: 12
  year: 1998
  publication-title: The Journal of Chemical Physics
– volume: 39
  start-page: 1240
  issue: 14-15
  year: 2013
  publication-title: Molecular Simulation
– volume: 10
  start-page: 2274
  issue: 11
  year: 2020
  publication-title: Nanomaterials
– volume: 72
  year: 2023
  publication-title: Journal of Energy Storage
– volume: 22
  start-page: 24561
  issue: 42
  year: 2020
  publication-title: Physical Chemistry Chemical Physics
– volume: 24
  start-page: 45
  issue: 11
  year: 1999
  publication-title: MRS bulletin
– volume: 100
  start-page: 7610
  issue: 10
  year: 1994
  publication-title: The Journal of Chemical Physics
– volume: 3
  issue: 1
  year: 2016
  publication-title: Cogent Engineering
– volume: 46
  start-page: 2944
  issue: 8
  year: 1967
  publication-title: The Journal of Chemical Physics
– volume: 45
  start-page: 293
  issue: 2
  year: 2007
  publication-title: Carbon
– volume: 40
  start-page: 178
  issue: 3
  year: 2016
  publication-title: Endeavour
– volume: 14
  start-page: 1214
  issue: 11
  year: 2022
  publication-title: Nature Chemistry
– start-page: 1669
  publication-title: Compendium of chemical terminology
– volume: 162
  start-page: 182
  issue: 1
  year: 1994
  publication-title: Journal of Colloid and Interface Science
– volume: 16
  start-page: 5233
  issue: 13
  year: 2023
  publication-title: Energies
– volume: 386
  start-page: 377
  issue: 6623
  year: 1997
  publication-title: Nature
– volume: 5
  start-page: 24775
  issue: 47
  year: 2017
  publication-title: Journal of Materials Chemistry A
– volume: 46
  start-page: 11782
  issue: 21
  year: 2021
  publication-title: International Journal of Hydrogen Energy
– volume: 9
  start-page: 116
  issue: 4
  year: 2023
  publication-title: Carbon Res.
– volume: 10
  start-page: 304
  issue: 2
  year: 2022
  publication-title: Processes
– volume: 9
  issue: 27
  year: 2022
  publication-title: Advanced Science
– volume: 16
  start-page: 1911
  issue: 20
  year: 2006
  publication-title: Journal of Materials Chemistry
– volume: 5
  start-page: 8294
  issue: 8
  year: 2012
  publication-title: Energy & Environmental Science
– volume: 41
  start-page: 653
  issue: 3
  year: 2008
  publication-title: Journal of Applied crystallography
– volume: 414
  start-page: 353
  issue: 6861
  year: 2001
  publication-title: Nature
– volume: 27
  start-page: 193
  issue: 2
  year: 2002
  publication-title: International Journal of Hydrogen Energy
– ident: e_1_2_10_6_1
  doi: 10.1038/s41557-022-01056-2
– ident: e_1_2_10_40_1
  doi: 10.1063/1.1841160
– ident: e_1_2_10_5_1
– ident: e_1_2_10_31_1
  doi: 10.1039/D0CP01206H
– ident: e_1_2_10_3_1
  doi: 10.1080/23311916.2016.1167990
– ident: e_1_2_10_39_1
  doi: 10.1063/1.466854
– ident: e_1_2_10_44_1
  doi: 10.3390/nano10112274
– ident: e_1_2_10_36_1
  doi: 10.1039/b517931a
– ident: e_1_2_10_18_1
  doi: 10.3390/pr10020304
– ident: e_1_2_10_27_1
  doi: 10.1016/S0144-2449(96)00067-X
– ident: e_1_2_10_29_1
  doi: 10.1021/jp9730196
– ident: e_1_2_10_45_1
  doi: 10.1107/S0021889808012016
– ident: e_1_2_10_2_1
  doi: 10.1016/j.endeavour.2016.07.002
– ident: e_1_2_10_21_1
  doi: 10.1038/s41467-019-09365-w
– ident: e_1_2_10_42_1
  doi: 10.1016/j.cep.2014.02.010
– ident: e_1_2_10_13_1
  doi: 10.1016/j.carbon.2009.09.060
– ident: e_1_2_10_11_1
  doi: 10.1039/c2ee22037g
– ident: e_1_2_10_43_1
  doi: 10.1039/D0CP03871G
– ident: e_1_2_10_10_1
  doi: 10.1016/j.est.2023.108456
– ident: e_1_2_10_46_1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.carbon.2006.09.022
– ident: e_1_2_10_15_1
  doi: 10.1038/386377a0
– ident: e_1_2_10_24_1
  doi: 10.1080/0144235X.2014.988038
– ident: e_1_2_10_8_1
  doi: 10.3390/en16135233
– ident: e_1_2_10_33_1
  doi: 10.1039/C7TA08046H
– ident: e_1_2_10_38_1
  doi: 10.1063/1.477109
– ident: e_1_2_10_19_1
  doi: 10.1016/j.ijhydene.2007.08.009
– ident: e_1_2_10_23_1
  doi: 10.1039/C4CE01711K
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ijhydene.2021.01.020
– ident: e_1_2_10_26_1
  doi: 10.1006/jcis.1994.1023
– ident: e_1_2_10_9_1
– ident: e_1_2_10_1_1
– ident: e_1_2_10_34_1
  doi: 10.1002/advs.202106117
– ident: e_1_2_10_12_1
  doi: 10.1557/S0883769400053458
– start-page: 1669
  ident: e_1_2_10_35_1
  publication-title: Compendium of chemical terminology
  contributor:
    fullname: McNaught A. D.
– ident: e_1_2_10_25_1
  doi: 10.1016/0144-2449(94)90134-1
– ident: e_1_2_10_32_1
  doi: 10.3390/c9040116
– ident: e_1_2_10_17_1
  doi: 10.1533/9781845694944.3.223
– ident: e_1_2_10_41_1
  doi: 10.1080/08927022.2013.839871
– ident: e_1_2_10_7_1
  doi: 10.1016/j.egyr.2022.04.067
– ident: e_1_2_10_37_1
  doi: 10.1021/jp0363287
– ident: e_1_2_10_4_1
  doi: 10.1038/35104634
– ident: e_1_2_10_28_1
  doi: 10.1260/0263-6174.32.1.73
– ident: e_1_2_10_14_1
  doi: 10.1016/S0360-3199(01)00103-3
– ident: e_1_2_10_30_1
  doi: 10.3390/molecules24010099
– ident: e_1_2_10_20_1
  doi: 10.1016/j.electacta.2013.10.190
SSID ssj0008071
Score 2.467977
Snippet Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable....
Abstract Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202400360
SubjectTerms Adsorption
Electrostatics
GCMC Simulations
Hierarchical pores
Hydrogen
Hydrogen storage
Silicalite
Surface chemistry
Temperature dependence
Title Simulation of Hydrogen Adsorption in Hierarchical Silicalite: Role of Electrostatics and Surface Chemistry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.202400360
https://www.ncbi.nlm.nih.gov/pubmed/38780298
https://www.proquest.com/docview/3099757491/abstract/
https://www.proquest.com/docview/3059258514/abstract/
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VLuVS2kLbUIqMhNRTYGPHj_SGVqCoUivEgsQt8lMNbBO0jwP8-maSTei2h0rllsSx_JgZe8ae-QbgqNFZM8MT15ip0sapEiHWLM1iqZlQLljnAx7of_su8uv06w2_-S2Kv8OHGA7cUDLa9RoFXJv5yRNoqL3_gRCE6APJBBrtiKaHWtHlE36UGnUWV4rXnZTxHrVxRE_Wq6_vSn-pmuuaa7v1nG-D7jvdeZzcHS8X5tg-_oHn-JxRvYZXK72UnHaM9AZe-OotvBz36eB24HZS_lyl-iJ1IPmDm9UN85FTN69n7bpDyorkJQY0t_lVpmRS4okgBjl_IZf11GO9sy7tDsYxlXZOdOXIZDkL2noyNLYL1-dnV-M8XiVqiC3lahQnaZCaj5gWgVuZGScla_Ze4QNi-_AgmZFU8eYLk447r4JHIHi0Ra0ymWXvYLOqK_8BSBZMYgxLjGoMHUdFhs5aQQganDMmCRF87glV3Hd4HEWHvEwLnLtimLsI9ns6Fiu5nBcMA4W5TLMkgsOhuBkcXpPoytdL_IdnFG9L0wjed_QfmmJKKgStj4C2VPxHH4rxRT4e3vb-p9JH2MLn1q2N7sPmYrb0nxo9aGEOYIOmFwctx_8CaLkAyg
link.rule.ids 315,786,790,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4heqCX0ncDtHWlSj0FNnb8SG9oBQoUUMWC1FsUv0QKJGgfB_rr60k2QdseKpVjHFt-zdgz45lvAD4HmTXTPLFBTZUmTpXwccnSLJYlE8p6Y51Hg_7pmcgv0-MfvPcmxFiYDh9iMLghZ7TnNTI4GqT3HlBDzd0VYhCiEyQTQWt_Eniet1rV-QOClBp1OleKD56U8R63cUT3Vtuv3kt_CZursmt7-Rxugu6H3fmcXO8u5nrX_PoD0fFR83oOz5aiKdnvaOkFrLn6JWyM-4xwr-DnpLpdZvsijSf5vZ02gf7Ivp010_boIVVN8gpjmtsUKzdkUqFREOOcv5Lz5sZhu4Mu8w6GMlVmRsraksli6kvjyNDZa7g8PLgY5_EyV0NsKFejOEm9LPmIlcJzIzNtpWTh-hXOI7wP95JpSRUPJUxabp3yDrHgUR01SmeGvYH1uqndOyCZ14nWLNEq6DqWigz9tbwQ1FurdeIj-NLvVHHXQXIUHfgyLXDtimHtItjpN7JYsuasYBgrzGWaJRF8Gn6HyeFLSVm7ZoF1eEbxwTSN4G1HAENXTEmFuPUR0HYb_zGGYvw9Hw9fW__T6CNs5BenJ8XJ0dm3bXiK5a2XG92B9fl04d4HsWiuP7SE_xt6VAQV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIgEXKK8SaMFISJzSbuz4EW7VtqvwqqoulXqL4pcIlGS1jwP99fUkm5SFAxIc49jyY8b2zHjmG4A3QWbNNE9sUFOliVMlfFyyNItlyYSy3ljn0aD_-UTk5-mHC37xSxR_hw8xGNxwZ7TnNW7wmfUHN6ChZvYVIQjRB5KJoLTfTgWjyNdHZzcAUmrUqVwpvndSxnvYxhE92Gy_eS39IWtuiq7t3TN5AGU_6s7l5Pv-aqn3zdVvgI7_M61tuL8WTMlhx0kP4ZarH8HdcZ8P7jF8m1Y_1rm-SONJ_tPOm8B95NAumnl78JCqJnmFEc1tgpVLMq3QJIhRzu_IWXPpsN1xl3cHA5kqsyBlbcl0NfelcWTo7AmcT46_jPN4nakhNpSrUZykXpZ8xErhuZGZtlKycPkK5xHch3vJtKSKhxImLbdOeYdI8KiMGqUzw57CVt3U7hmQzOtEa5ZoFTQdS0WG3lpeCOqt1TrxEbztCVXMOkCOooNepgWuXTGsXQS7PR2L9cZcFAwjhblMsySC18PvMDl8Jylr16ywDs8oPpemEex09B-6YkoqRK2PgLZU_MsYivFpPh6-nv9Lo1dw5_RoUnx6f_LxBdzD4tbFje7C1nK-cntBJlrqly3bXwNongLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+Hydrogen+Adsorption+in+Hierarchical+Silicalite%3A+Role+of+Electrostatics+and+Surface+Chemistry&rft.jtitle=Chemphyschem&rft.au=Gautam%2C+S.&rft.au=Cole%2C+D.+R.&rft.au=Dud%C3%A1s%2C+Z.+I.&rft.au=Dhiman%2C+I.&rft.date=2024-09-02&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=25&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcphc.202400360&rft.externalDBID=10.1002%252Fcphc.202400360&rft.externalDocID=CPHC202400360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon