Nano Copper Sulfide-Doped nanofiber surface on polylactic acid substrate for advanced photothermal membrane distillation
[Display omitted] •An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86 kg·m−2·h−1;•CuS NPs decreased water-evaporation enthalpy in PMD process; The phase change process was simulated using CFD. Photothermal membr...
Saved in:
Published in | Separation and purification technology Vol. 370; p. 133306 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
18.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86 kg·m−2·h−1;•CuS NPs decreased water-evaporation enthalpy in PMD process; The phase change process was simulated using CFD.
Photothermal membrane distillation has been recognized as an attractive technology for freshwater generation. However, its widespread application still depends on substantial development to increase membrane flux and decrease energy consumption. Herein, we designed a electrospinning poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP) nanofiber with photothermal CuS NPs as the top layer, while agglutinating the bottom hydrophilic polylactic acid layer by polydopamine, yielding a novel photothermal asymmetric PVDF-HFP fibrous (PAPHF) membrane. Compared to tradtional filtration method for material doped, such regulatable structure gives competitive advantage in the light utilization, water evaporation and transport. Electrospun photothermal nanofibers, which possesses a 81 %-90 % light-to-heat conversion efficiency, combined with the hydrophobic pores, can efficiently convert liquid water to vapor water and prevent heat diffusion outside the phase change inerface, meanwhile, enable effective vapor transport due to hydrophilic bottom layer with macropores. The PAPHF membrane demonstrated an excellent daily flux of 1.86 kg·m−2·h−1 with 1 sun irradiation as the only energy input. Computational fluid dynamics exhibited phase change processes acrosss the membrane. This study offers prospects for optimizing material combinations to improve performance, emphasizing scalable manufacturing implementation for broader applications. |
---|---|
AbstractList | [Display omitted]
•An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86 kg·m−2·h−1;•CuS NPs decreased water-evaporation enthalpy in PMD process; The phase change process was simulated using CFD.
Photothermal membrane distillation has been recognized as an attractive technology for freshwater generation. However, its widespread application still depends on substantial development to increase membrane flux and decrease energy consumption. Herein, we designed a electrospinning poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP) nanofiber with photothermal CuS NPs as the top layer, while agglutinating the bottom hydrophilic polylactic acid layer by polydopamine, yielding a novel photothermal asymmetric PVDF-HFP fibrous (PAPHF) membrane. Compared to tradtional filtration method for material doped, such regulatable structure gives competitive advantage in the light utilization, water evaporation and transport. Electrospun photothermal nanofibers, which possesses a 81 %-90 % light-to-heat conversion efficiency, combined with the hydrophobic pores, can efficiently convert liquid water to vapor water and prevent heat diffusion outside the phase change inerface, meanwhile, enable effective vapor transport due to hydrophilic bottom layer with macropores. The PAPHF membrane demonstrated an excellent daily flux of 1.86 kg·m−2·h−1 with 1 sun irradiation as the only energy input. Computational fluid dynamics exhibited phase change processes acrosss the membrane. This study offers prospects for optimizing material combinations to improve performance, emphasizing scalable manufacturing implementation for broader applications. |
ArticleNumber | 133306 |
Author | Wang, Ao Tao, Hui Lin, Tao Ding, Mingmei Xu, Hang Ma, Jun Wang, Jingjun Hu, Tianlong |
Author_xml | – sequence: 1 givenname: Ao surname: Wang fullname: Wang, Ao organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 2 givenname: Hang surname: Xu fullname: Xu, Hang email: xuhang810826@hhu.edu.com organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 3 givenname: Jun surname: Ma fullname: Ma, Jun organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 4 givenname: Tianlong surname: Hu fullname: Hu, Tianlong organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 5 givenname: Jingjun surname: Wang fullname: Wang, Jingjun organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 6 givenname: Tao surname: Lin fullname: Lin, Tao organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 7 givenname: Hui surname: Tao fullname: Tao, Hui organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China – sequence: 8 givenname: Mingmei surname: Ding fullname: Ding, Mingmei email: dingmm2021@163.com organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China |
BookMark | eNp9kMtOwzAQRb0oEi3wByz8Awl-5LlBQuUpVbAA1tbEGauuktiy3Yr-PanKmtVIc3WuZs6KLCY3ISG3nOWc8epul0f0fh9ywUSZcyklqxZkyWUjs7KpqkuyinHHGK95I5bk5x0mR9fOewz0cz8Y22P26Dz2dJoTY7t5H_fBgEbqJurdcBxAJ6spaNvPURdTgITUuEChP8CkZ9ZvXXJpi2GEgY44dgEmpL2NyQ4DJOuma3JhYIh48zevyPfz09f6Ndt8vLytHzaZFmWdMoPQVwKgByy7oupEh8iKQkrTtghMdEY0BeOm1q0pKyOhZbXoeIkaeSWbWl6R4tyrg4sxoFE-2BHCUXGmTsbUTp2NqZMxdTY2Y_dnDOfbDhaDitri6TcbUCfVO_t_wS9qb35f |
Cites_doi | 10.1039/C8TA05738A 10.1016/j.powtec.2015.05.024 10.1039/D1TA05058C 10.1016/j.cej.2024.149005 10.1002/adma.201606762 10.1021/acsami.0c17154 10.1016/j.desal.2023.116785 10.1016/j.nanoen.2019.03.089 10.1039/b905200n 10.1016/j.desal.2019.114288 10.1073/pnas.1701835114 10.1007/s41207-021-00275-2 10.1016/j.memsci.2019.117608 10.1016/j.memsci.2016.11.069 10.1016/j.seppur.2018.07.052 10.1038/s41563-021-01052-w 10.1039/C8TA11896E 10.1016/j.cej.2007.08.025 10.1039/C9TA12703H 10.1002/9781119117018.ch17 10.1002/aenm.201970141 10.1016/j.desal.2013.06.006 10.1021/acsenergylett.9b02611 10.1038/s41467-022-31028-6 10.1002/jcc.26068 10.1016/j.scitotenv.2020.141528 10.1021/ie50469a031 10.1016/j.rser.2018.04.110 10.1038/s41560-021-00863-0 10.1016/j.rser.2023.113543 10.1016/S0376-7388(96)00236-0 10.1039/C8EE00291F 10.1016/j.desal.2019.114246 10.1016/j.watres.2022.118091 10.1016/j.seppur.2022.121282 10.1021/acs.macromol.2c00092 10.1002/adfm.202007110 10.1126/sciadv.aax0763 10.1016/j.pmatsci.2024.101309 10.1021/ie50660a008 10.1039/D0CS00097C 10.1016/j.chemosphere.2018.08.114 10.1016/j.energy.2020.118720 10.1016/j.seppur.2022.122207 10.1002/aic.13845 10.1021/acsnano.9b06180 10.1021/acsnano.1c01900 10.1039/D2CE00680D 10.1016/j.desal.2024.118124 10.1039/C7TA04555G 10.1016/j.memsci.2020.119028 10.1016/j.desal.2020.114529 10.1016/j.desal.2022.115805 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2025.133306 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_seppur_2025_133306 S1383586625019033 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNUV ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSM SSZ T5K ~G- AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ R2- RIG |
ID | FETCH-LOGICAL-c257t-fead62aadae5b46b2bee04433f99ea02bf28401f7c9f56f3a9072b15ece163873 |
IEDL.DBID | .~1 |
ISSN | 1383-5866 |
IngestDate | Sun Jul 06 05:08:48 EDT 2025 Sat Jun 28 18:15:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrospinning Photothermal Membrane distillation Evaporation Membrane distillation Desalination |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-fead62aadae5b46b2bee04433f99ea02bf28401f7c9f56f3a9072b15ece163873 |
ParticipantIDs | crossref_primary_10_1016_j_seppur_2025_133306 elsevier_sciencedirect_doi_10_1016_j_seppur_2025_133306 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-18 |
PublicationDateYYYYMMDD | 2025-10-18 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Serrano, Liu, Guo, Croft, Cao, Khan, Xu, Nouh, Cheng, Liu (b0190) 2022; 55 Xu, Hu, Xu, Li, Zhou, Zhu, Zhu (b0265) 2017; 29 Wang, Sun, Gao, Yang, Song (b0060) 2024; 592 Su, Zhang, Zhang (b0135) 2020; 476 Elsaid, Kamil, Sayed, Abdelkareem, Wilberforce, Olabi (b0025) 2020; 748 Pang, Zhang, Ma, Qu, Lee, Luo (b0050) 2020; 5 Santoro, Avci, Politano, Curcio (b0030) 2022; 51 Zhang, Liu, Li, Hou, Wang (b0100) 2018; 212 Wu, Hu, Gao (b0015) 2013; 324 Cao, Wu, Zhu, Gupta, Martinez, Zhang, Ghim, Wang, Liu, Jun, Singamaneni (b0220) 2021; 9 Yan, Chen, Bao, Chang, Liu, Fan, Wang, Fu, Qu, Liang (b0125) 2022; 303 Mielniczuk, Hueckel, El Youssoufi (b0210) 2015; 283 Fan, Yang, Shi, Liu, Li, Liang, Chen (b0260) 2020; 30 Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, S. Lin, Pathways and challenges for efficient solar-thermal desalination, Sci Adv 5 (2019) eaax0763. Sharma, Muhammad, He, Younas, Sameti, Rezakazemi, Li (b0105) 2024; 483 Liu, Zhou, Wu, Zhang, Zhu, Jin, Zhang, Zhu, Chen (b0145) 2021; 15 Farid, Kharraz, An (b0225) 2021; 13 Zhang, Yi, Fu, Yu, Chen, Quan (b0245) 2019; 13 Cao, Wu, Zhu, Gupta, Tan, Wang, Jun, Singamaneni (b0115) 2020; 8 Wang, Xu, Ma, Fu, Lin, Ding (b0170) 2023; 565 Barasa, Bogdanov, Oyewo, Breyer (b0005) 2018; 92 Huang, Hu, Bai, He, Zhu (b0110) 2020; 489 Li, Chen, Yao, Ren, Li, Deng (b0235) 2020; 478 Gu, Wang, Gao, Feng, Wu, Zhao (b0185) 2022; 24 Sun, Li, Ren, Xu, Sun, Du, Zhao, Ettelatie, Cheng (b0070) 2022; 212 Ibrahim, Alsalhy (b0205) 2013; 59 Wu, Jiang, Ghim, Singamaneni, Jun (b0215) 2018; 6 Zhao, Jiang, Fan, Hong, Mei, Yao, Liu, Zhang, Li, Zhang, Sun, Guo, Shao, Zhu, Zhang, Guo, Ma, Zhang, Feng, Wang, Wu, Wang (b0035) 2021; 20 Fowkes (b0160) 1964; 56 Li, Chang, Li, Yang, Fu, Li, Ho, Chen (b0255) 2019; 9 Sláva, Švandová, Markoš (b0090) 2008; 139 Cherp, Vinichenko, Tosun, Gordon, Jewell (b0045) 2021; 6 Zhao, Wu, Lu, Ng, Truong, Zhang, Xie (b0140) 2020; 596 Huang, Hu, Bai, He, Zhu (b0240) 2020; 211 Han, Wang, Zuo, Chen, Yuan, Liang, Li, Ajayan, Zhao, Lou (b0230) 2019; 60 Wu, Zodrow, Szemraj, Li (b0095) 2017; 5 Soukane, Lee, Ghaffour (b0085) 2019; 209 Zhang, Wong, Guo, Zhou, Wang, Sun, Jiang, Wang, An (b0120) 2022; 13 Frikha, Frikha, Gabsi (b0200) 2021; 6 Liu, Cao, Qiu, Zhang, Hong (b0130) 2022; 295 Woo, Yao, Shim, Kim, Tijing, Jung, Kim, Shon (b0180) 2021; 623 Mahmoudi, Bostani, Rashidi, Valipour (b0010) 2023; 184 Deshmukh, Boo, Karanikola, Lin, Straub, Tong, Warsinger, Elimelech (b0040) 2018; 11 Emamian, Lu, Kruse, Emamian (b0195) 2019; 40 Tan, Ucab, Dadol, Jabile, Talili, Cabaraban (b0020) 2022; 534 Rodríguez-Fernández, Funston, Pérez-Juste, Álvarez-Puebla, Liz-Marzán, Mulvaney (b0155) 2009; 11 Dongare, Alabastri, Pedersen, Zodrow, Hogan, Neumann, Wu, Wang, Deshmukh, Elimelech, Li, Nordlander, Halas (b0055) 2017; 114 Jin M, Thomsen F, Skrivanek T, Willers T, Why test inks cannot tell the whole truth about surface free energy of solids, in: advances in contact angle, wettability and adhesion, 2015, pp. 419-438. Lee, An, Hadi, Lee, Woo, Shon (b0175) 2017; 524 Lawson, Lloyd (b0065) 1997; 124 Ang, Tan, Chew (b0250) 2019; 7 Subrahmanya, Austria, Chen, Setiawan, Widakdo, Kurkuri, Hung, Hu, Lee, Lai (b0150) 2024; 145 Chu, Dmytryszyn, Moder, Overbeck (b0075) 1949; 41 Emamian (10.1016/j.seppur.2025.133306_b0195) 2019; 40 Wang (10.1016/j.seppur.2025.133306_b0170) 2023; 565 Subrahmanya (10.1016/j.seppur.2025.133306_b0150) 2024; 145 Mielniczuk (10.1016/j.seppur.2025.133306_b0210) 2015; 283 Mahmoudi (10.1016/j.seppur.2025.133306_b0010) 2023; 184 Lee (10.1016/j.seppur.2025.133306_b0175) 2017; 524 Sun (10.1016/j.seppur.2025.133306_b0070) 2022; 212 Liu (10.1016/j.seppur.2025.133306_b0130) 2022; 295 Wang (10.1016/j.seppur.2025.133306_b0060) 2024; 592 Deshmukh (10.1016/j.seppur.2025.133306_b0040) 2018; 11 Liu (10.1016/j.seppur.2025.133306_b0145) 2021; 15 Santoro (10.1016/j.seppur.2025.133306_b0030) 2022; 51 Zhao (10.1016/j.seppur.2025.133306_b0035) 2021; 20 Soukane (10.1016/j.seppur.2025.133306_b0085) 2019; 209 Ibrahim (10.1016/j.seppur.2025.133306_b0205) 2013; 59 Zhao (10.1016/j.seppur.2025.133306_b0140) 2020; 596 Huang (10.1016/j.seppur.2025.133306_b0110) 2020; 489 Wu (10.1016/j.seppur.2025.133306_b0215) 2018; 6 Wu (10.1016/j.seppur.2025.133306_b0015) 2013; 324 Barasa (10.1016/j.seppur.2025.133306_b0005) 2018; 92 Ang (10.1016/j.seppur.2025.133306_b0250) 2019; 7 Fowkes (10.1016/j.seppur.2025.133306_b0160) 1964; 56 10.1016/j.seppur.2025.133306_b0165 Tan (10.1016/j.seppur.2025.133306_b0020) 2022; 534 Rodríguez-Fernández (10.1016/j.seppur.2025.133306_b0155) 2009; 11 Huang (10.1016/j.seppur.2025.133306_b0240) 2020; 211 10.1016/j.seppur.2025.133306_b0080 Zhang (10.1016/j.seppur.2025.133306_b0100) 2018; 212 Serrano (10.1016/j.seppur.2025.133306_b0190) 2022; 55 Sharma (10.1016/j.seppur.2025.133306_b0105) 2024; 483 Elsaid (10.1016/j.seppur.2025.133306_b0025) 2020; 748 Cao (10.1016/j.seppur.2025.133306_b0115) 2020; 8 Chu (10.1016/j.seppur.2025.133306_b0075) 1949; 41 Yan (10.1016/j.seppur.2025.133306_b0125) 2022; 303 Pang (10.1016/j.seppur.2025.133306_b0050) 2020; 5 Sláva (10.1016/j.seppur.2025.133306_b0090) 2008; 139 Wu (10.1016/j.seppur.2025.133306_b0095) 2017; 5 Li (10.1016/j.seppur.2025.133306_b0235) 2020; 478 Su (10.1016/j.seppur.2025.133306_b0135) 2020; 476 Gu (10.1016/j.seppur.2025.133306_b0185) 2022; 24 Woo (10.1016/j.seppur.2025.133306_b0180) 2021; 623 Frikha (10.1016/j.seppur.2025.133306_b0200) 2021; 6 Dongare (10.1016/j.seppur.2025.133306_b0055) 2017; 114 Li (10.1016/j.seppur.2025.133306_b0255) 2019; 9 Cao (10.1016/j.seppur.2025.133306_b0220) 2021; 9 Zhang (10.1016/j.seppur.2025.133306_b0120) 2022; 13 Zhang (10.1016/j.seppur.2025.133306_b0245) 2019; 13 Han (10.1016/j.seppur.2025.133306_b0230) 2019; 60 Farid (10.1016/j.seppur.2025.133306_b0225) 2021; 13 Lawson (10.1016/j.seppur.2025.133306_b0065) 1997; 124 Fan (10.1016/j.seppur.2025.133306_b0260) 2020; 30 Cherp (10.1016/j.seppur.2025.133306_b0045) 2021; 6 Xu (10.1016/j.seppur.2025.133306_b0265) 2017; 29 |
References_xml | – volume: 8 start-page: 5147 year: 2020 end-page: 5156 ident: b0115 article-title: Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation publication-title: J. Mater. Chem. A – volume: 13 start-page: 13196 year: 2019 end-page: 13207 ident: b0245 article-title: Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance publication-title: ACS Nano – volume: 114 start-page: 6936 year: 2017 end-page: 6941 ident: b0055 article-title: Nanophotonics-enabled solar membrane distillation for off-grid water purification publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 66 year: 2021 ident: b0200 article-title: Modeling of the flow inside a pore in vacuum membrane distillation publication-title: Euro-Mediterranean J. Environm. Integr. – volume: 212 year: 2022 ident: b0070 article-title: Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces publication-title: Water Res. – volume: 145 year: 2024 ident: b0150 article-title: Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview publication-title: Prog. Mater Sci. – volume: 6 start-page: 18799 year: 2018 end-page: 18807 ident: b0215 article-title: Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process publication-title: J. Mater. Chem. A – volume: 5 start-page: 437 year: 2020 end-page: 456 ident: b0050 article-title: Solar–thermal water evaporation: a review publication-title: ACS Energy Lett. – volume: 483 year: 2024 ident: b0105 article-title: Understanding the phenomena of negative vapor flux in Nanophotonics-Enabled solar membrane distillation publication-title: Chem. Eng. J. – volume: 30 year: 2020 ident: b0260 article-title: A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance publication-title: Adv. Funct. Mater. – volume: 748 year: 2020 ident: b0025 article-title: Environmental impact of desalination technologies: A review publication-title: Sci. Total Environ. – volume: 92 start-page: 440 year: 2018 end-page: 457 ident: b0005 article-title: A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030 publication-title: Renew. Sustain. Energy Rev. – volume: 11 start-page: 1177 year: 2018 end-page: 1196 ident: b0040 article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges publication-title: Energ. Environ. Sci. – volume: 295 year: 2022 ident: b0130 article-title: Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation publication-title: Sep. Purif. Technol. – volume: 55 start-page: 4803 year: 2022 end-page: 4811 ident: b0190 article-title: Utilization of block copolymers to understand water vaporization enthalpy reduction in uniform pores publication-title: Macromolecules – volume: 7 start-page: 10206 year: 2019 end-page: 10211 ident: b0250 article-title: A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater publication-title: J. Mater. Chem. A – volume: 565 year: 2023 ident: b0170 article-title: Thermodynamic and kinetic analyses of Janus membrane scaling in membrane distillation for zero liquid discharge engineering publication-title: Desalination – volume: 534 year: 2022 ident: b0020 article-title: A review of desalination technologies and its impact in the Philippines publication-title: Desalination – volume: 184 year: 2023 ident: b0010 article-title: Challenges and opportunities of desalination with renewable energy resources in Middle East countries publication-title: Renew. Sustain. Energy Rev. – volume: 5 start-page: 23712 year: 2017 end-page: 23719 ident: b0095 article-title: Photothermal nanocomposite membranes for direct solar membrane distillation publication-title: J. Mater. Chem. A – volume: 596 year: 2020 ident: b0140 article-title: Theoretical guidance for fabricating higher flux hydrophobic/hydrophilic dual-layer membranes for direct contact membrane distillation publication-title: J. Membr. Sci. – volume: 303 year: 2022 ident: b0125 article-title: Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane publication-title: Sep. Purif. Technol. – volume: 40 start-page: 2868 year: 2019 end-page: 2881 ident: b0195 article-title: Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory publication-title: J. Comput. Chem. – volume: 9 year: 2019 ident: b0255 article-title: Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management publication-title: Adv. Energy Mater. – volume: 29 year: 2017 ident: b0265 article-title: Mushrooms as efficient solar steam-generation devices publication-title: Adv. Mater. – volume: 283 start-page: 137 year: 2015 end-page: 151 ident: b0210 article-title: Laplace pressure evolution and four instabilities in evaporating two-grain liquid bridges publication-title: Powder Technol. – volume: 209 start-page: 279 year: 2019 end-page: 292 ident: b0085 article-title: Direct contact membrane distillation module scale-up calculations: Choosing between convective and conjugate approaches publication-title: Sep. Purif. Technol. – volume: 139 start-page: 517 year: 2008 end-page: 522 ident: b0090 article-title: Modelling of reactive separations including fast chemical reactions in CSTR publication-title: Chem. Eng. J. – volume: 9 start-page: 22585 year: 2021 end-page: 22596 ident: b0220 article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability publication-title: J. Mater. Chem. A – volume: 60 start-page: 567 year: 2019 end-page: 575 ident: b0230 article-title: Bio-derived ultrathin membrane for solar driven water purification publication-title: Nano Energy – volume: 6 start-page: 742 year: 2021 end-page: 754 ident: b0045 article-title: National growth dynamics of wind and solar power compared to the growth required for global climate targets publication-title: Nat. Energy – volume: 476 year: 2020 ident: b0135 article-title: Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination publication-title: Desalination – volume: 11 start-page: 5909 year: 2009 end-page: 5914 ident: b0155 article-title: The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres publication-title: PCCP – volume: 24 start-page: 4955 year: 2022 end-page: 4961 ident: b0185 article-title: Chiral CuS nanoparticles and their photothermal properties publication-title: CrstEngComm – volume: 56 start-page: 40 year: 1964 end-page: 52 ident: b0160 article-title: Attractive forces at interfaces publication-title: Ind. Eng. Chem. – reference: Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, S. Lin, Pathways and challenges for efficient solar-thermal desalination, Sci Adv 5 (2019) eaax0763. – volume: 478 year: 2020 ident: b0235 article-title: Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation publication-title: Desalination – volume: 489 year: 2020 ident: b0110 article-title: Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating publication-title: Desalination – volume: 13 start-page: 3805 year: 2021 end-page: 3815 ident: b0225 article-title: Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination publication-title: ACS Appl. Mater. Interfaces – volume: 124 start-page: 1 year: 1997 end-page: 25 ident: b0065 article-title: Membrane distillation publication-title: J. Membr. Sci. – volume: 623 year: 2021 ident: b0180 article-title: Co-axially electrospun superhydrophobic nanofiber membranes with 3D-hierarchically structured surface for desalination by long-term membrane distillation publication-title: J. Membr. Sci. – volume: 59 start-page: 589 year: 2013 end-page: 603 ident: b0205 article-title: Modeling and simulation for direct contact membrane distillation in hollow fiber modules publication-title: AIChE J – volume: 41 start-page: 131 year: 1949 end-page: 135 ident: b0075 article-title: Latent Heat of Vaporization publication-title: Ind. Eng. Chem. – volume: 15 start-page: 13007 year: 2021 end-page: 13018 ident: b0145 article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination publication-title: ACS Nano – volume: 524 start-page: 712 year: 2017 end-page: 720 ident: b0175 article-title: Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation publication-title: J. Membr. Sci. – volume: 324 start-page: 111 year: 2013 end-page: 117 ident: b0015 article-title: Optimum design of cogeneration for power and desalination to satisfy the demand of water and power publication-title: Desalination – volume: 212 start-page: 554 year: 2018 end-page: 562 ident: b0100 article-title: Enhancement of energy utilization using nanofluid in solar powered membrane distillation publication-title: Chemosphere – volume: 51 start-page: 6087 year: 2022 end-page: 6125 ident: b0030 article-title: The advent of thermoplasmonic membrane distillation publication-title: Chem. Soc. Rev. – volume: 20 start-page: 1551 year: 2021 end-page: 1558 ident: b0035 article-title: Hydrophilicity gradient in covalent organic frameworks for membrane distillation publication-title: Nat. Mater. – volume: 13 start-page: 3315 year: 2022 ident: b0120 article-title: Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination publication-title: Nat. Commun. – volume: 211 year: 2020 ident: b0240 article-title: Solar membrane distillation enhancement through thermal concentration publication-title: Energy – reference: Jin M, Thomsen F, Skrivanek T, Willers T, Why test inks cannot tell the whole truth about surface free energy of solids, in: advances in contact angle, wettability and adhesion, 2015, pp. 419-438. – volume: 592 year: 2024 ident: b0060 article-title: Solar membrane distillation: an emerging technology for reverse osmosis concentrated brine treatment publication-title: Desalination – volume: 6 start-page: 18799 year: 2018 ident: 10.1016/j.seppur.2025.133306_b0215 article-title: Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05738A – volume: 283 start-page: 137 year: 2015 ident: 10.1016/j.seppur.2025.133306_b0210 article-title: Laplace pressure evolution and four instabilities in evaporating two-grain liquid bridges publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.05.024 – volume: 9 start-page: 22585 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0220 article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05058C – volume: 483 year: 2024 ident: 10.1016/j.seppur.2025.133306_b0105 article-title: Understanding the phenomena of negative vapor flux in Nanophotonics-Enabled solar membrane distillation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.149005 – volume: 29 year: 2017 ident: 10.1016/j.seppur.2025.133306_b0265 article-title: Mushrooms as efficient solar steam-generation devices publication-title: Adv. Mater. doi: 10.1002/adma.201606762 – volume: 13 start-page: 3805 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0225 article-title: Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17154 – volume: 565 year: 2023 ident: 10.1016/j.seppur.2025.133306_b0170 article-title: Thermodynamic and kinetic analyses of Janus membrane scaling in membrane distillation for zero liquid discharge engineering publication-title: Desalination doi: 10.1016/j.desal.2023.116785 – volume: 60 start-page: 567 year: 2019 ident: 10.1016/j.seppur.2025.133306_b0230 article-title: Bio-derived ultrathin membrane for solar driven water purification publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.089 – volume: 11 start-page: 5909 year: 2009 ident: 10.1016/j.seppur.2025.133306_b0155 article-title: The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres publication-title: PCCP doi: 10.1039/b905200n – volume: 478 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0235 article-title: Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation publication-title: Desalination doi: 10.1016/j.desal.2019.114288 – volume: 114 start-page: 6936 year: 2017 ident: 10.1016/j.seppur.2025.133306_b0055 article-title: Nanophotonics-enabled solar membrane distillation for off-grid water purification publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1701835114 – volume: 6 start-page: 66 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0200 article-title: Modeling of the flow inside a pore in vacuum membrane distillation publication-title: Euro-Mediterranean J. Environm. Integr. doi: 10.1007/s41207-021-00275-2 – volume: 596 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0140 article-title: Theoretical guidance for fabricating higher flux hydrophobic/hydrophilic dual-layer membranes for direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117608 – volume: 524 start-page: 712 year: 2017 ident: 10.1016/j.seppur.2025.133306_b0175 article-title: Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.11.069 – volume: 209 start-page: 279 year: 2019 ident: 10.1016/j.seppur.2025.133306_b0085 article-title: Direct contact membrane distillation module scale-up calculations: Choosing between convective and conjugate approaches publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.052 – volume: 20 start-page: 1551 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0035 article-title: Hydrophilicity gradient in covalent organic frameworks for membrane distillation publication-title: Nat. Mater. doi: 10.1038/s41563-021-01052-w – volume: 7 start-page: 10206 year: 2019 ident: 10.1016/j.seppur.2025.133306_b0250 article-title: A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11896E – volume: 139 start-page: 517 year: 2008 ident: 10.1016/j.seppur.2025.133306_b0090 article-title: Modelling of reactive separations including fast chemical reactions in CSTR publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.08.025 – volume: 8 start-page: 5147 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0115 article-title: Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12703H – ident: 10.1016/j.seppur.2025.133306_b0165 doi: 10.1002/9781119117018.ch17 – volume: 9 year: 2019 ident: 10.1016/j.seppur.2025.133306_b0255 article-title: Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201970141 – volume: 324 start-page: 111 year: 2013 ident: 10.1016/j.seppur.2025.133306_b0015 article-title: Optimum design of cogeneration for power and desalination to satisfy the demand of water and power publication-title: Desalination doi: 10.1016/j.desal.2013.06.006 – volume: 5 start-page: 437 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0050 article-title: Solar–thermal water evaporation: a review publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02611 – volume: 13 start-page: 3315 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0120 article-title: Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination publication-title: Nat. Commun. doi: 10.1038/s41467-022-31028-6 – volume: 40 start-page: 2868 year: 2019 ident: 10.1016/j.seppur.2025.133306_b0195 article-title: Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.26068 – volume: 748 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0025 article-title: Environmental impact of desalination technologies: A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141528 – volume: 41 start-page: 131 year: 1949 ident: 10.1016/j.seppur.2025.133306_b0075 article-title: Latent Heat of Vaporization publication-title: Ind. Eng. Chem. doi: 10.1021/ie50469a031 – volume: 92 start-page: 440 year: 2018 ident: 10.1016/j.seppur.2025.133306_b0005 article-title: A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.110 – volume: 6 start-page: 742 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0045 article-title: National growth dynamics of wind and solar power compared to the growth required for global climate targets publication-title: Nat. Energy doi: 10.1038/s41560-021-00863-0 – volume: 184 year: 2023 ident: 10.1016/j.seppur.2025.133306_b0010 article-title: Challenges and opportunities of desalination with renewable energy resources in Middle East countries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113543 – volume: 124 start-page: 1 year: 1997 ident: 10.1016/j.seppur.2025.133306_b0065 article-title: Membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00236-0 – volume: 11 start-page: 1177 year: 2018 ident: 10.1016/j.seppur.2025.133306_b0040 article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE00291F – volume: 476 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0135 article-title: Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2019.114246 – volume: 212 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0070 article-title: Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces publication-title: Water Res. doi: 10.1016/j.watres.2022.118091 – volume: 295 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0130 article-title: Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121282 – volume: 55 start-page: 4803 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0190 article-title: Utilization of block copolymers to understand water vaporization enthalpy reduction in uniform pores publication-title: Macromolecules doi: 10.1021/acs.macromol.2c00092 – volume: 30 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0260 article-title: A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007110 – ident: 10.1016/j.seppur.2025.133306_b0080 doi: 10.1126/sciadv.aax0763 – volume: 145 year: 2024 ident: 10.1016/j.seppur.2025.133306_b0150 article-title: Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2024.101309 – volume: 56 start-page: 40 year: 1964 ident: 10.1016/j.seppur.2025.133306_b0160 article-title: Attractive forces at interfaces publication-title: Ind. Eng. Chem. doi: 10.1021/ie50660a008 – volume: 51 start-page: 6087 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0030 article-title: The advent of thermoplasmonic membrane distillation publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00097C – volume: 212 start-page: 554 year: 2018 ident: 10.1016/j.seppur.2025.133306_b0100 article-title: Enhancement of energy utilization using nanofluid in solar powered membrane distillation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.114 – volume: 211 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0240 article-title: Solar membrane distillation enhancement through thermal concentration publication-title: Energy doi: 10.1016/j.energy.2020.118720 – volume: 303 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0125 article-title: Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122207 – volume: 59 start-page: 589 year: 2013 ident: 10.1016/j.seppur.2025.133306_b0205 article-title: Modeling and simulation for direct contact membrane distillation in hollow fiber modules publication-title: AIChE J doi: 10.1002/aic.13845 – volume: 13 start-page: 13196 year: 2019 ident: 10.1016/j.seppur.2025.133306_b0245 article-title: Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance publication-title: ACS Nano doi: 10.1021/acsnano.9b06180 – volume: 15 start-page: 13007 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0145 article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination publication-title: ACS Nano doi: 10.1021/acsnano.1c01900 – volume: 24 start-page: 4955 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0185 article-title: Chiral CuS nanoparticles and their photothermal properties publication-title: CrstEngComm doi: 10.1039/D2CE00680D – volume: 592 year: 2024 ident: 10.1016/j.seppur.2025.133306_b0060 article-title: Solar membrane distillation: an emerging technology for reverse osmosis concentrated brine treatment publication-title: Desalination doi: 10.1016/j.desal.2024.118124 – volume: 5 start-page: 23712 year: 2017 ident: 10.1016/j.seppur.2025.133306_b0095 article-title: Photothermal nanocomposite membranes for direct solar membrane distillation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04555G – volume: 623 year: 2021 ident: 10.1016/j.seppur.2025.133306_b0180 article-title: Co-axially electrospun superhydrophobic nanofiber membranes with 3D-hierarchically structured surface for desalination by long-term membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.119028 – volume: 489 year: 2020 ident: 10.1016/j.seppur.2025.133306_b0110 article-title: Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating publication-title: Desalination doi: 10.1016/j.desal.2020.114529 – volume: 534 year: 2022 ident: 10.1016/j.seppur.2025.133306_b0020 article-title: A review of desalination technologies and its impact in the Philippines publication-title: Desalination doi: 10.1016/j.desal.2022.115805 |
SSID | ssj0017182 |
Score | 2.4694233 |
Snippet | [Display omitted]
•An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 133306 |
SubjectTerms | Desalination Electrospinning Evaporation Membrane distillation Photothermal Membrane distillation |
Title | Nano Copper Sulfide-Doped nanofiber surface on polylactic acid substrate for advanced photothermal membrane distillation |
URI | https://dx.doi.org/10.1016/j.seppur.2025.133306 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB5YTRvHcZqxKlQFRBdAYovs-CyK2sTqQ4KF3845DwQSYmBMbCfRl8t3d8p3Z0IuYqNFAoFiwGXCRKZilggNjBuly624Vc8XCt9P5PhJ3D5Hzy0ybGphvKyy5v6K00u2rs90azS7bjrtPgSYXEV9iQG8r4cOfcdPIWJv5ZcfXzKPALm3_OOJk5mf3ZTPlRqvJTi39l1BeXSJyVro9z36zT19czmjXbJTx4p0UD3OHmlBvk-2v3UQPCBvyI4FHRbOwYI-rGd2aoBdFQ4MzXHEej0IXa4XVmVAi5y6YvY-K-uiqMqmBod02TgXKAavtBEEUPdSrMrSrDnefw5zTKlzoMbzwawSzx2Sp9H143DM6s0UWIZf5YpZNBnJlTIKIi2k5hqgJ0QY2iQB1ePaoqPqBTbOEhtJGyrMmrkOIsjAh2xxeEQ28iKHY0K5NEihmDurRAvgoQZuhEgkXkFqqWSbsAbD1FU9M9JGTPaaVpinHvO0wrxN4gbo9Me7T5HW_1x58u-Vp2TLH3kvFPTPyMZqsYZzDC9WulPaT4dsDm7uxpNPmLHTEg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQLAP8cYHrt42juOQIyqg8uoFkLhFdjzWFrWJVVoJ_j3jPFYgrThwzWSSaOx8MyPPNwNwnFojM4w0R6EyLgud8kwa5MJqU4_i1oNAFL4dq9GDvHpMHldg2HFhQllli_0Nptdo3V7pt9bs-8mkfxdRcpWcKArgAx86jr_BauhOlfRg9fTyejT-d5hA8FsfetL9PCh0DLq6zOsZvV-GxqAi-UP5WhxGH_3PQ73zOhebsNGGi-y0-aItWMHyB6y_ayL4E14IICs2rLzHObtbTt3EIj-rPFpWksSFkhD2vJw7XSCrSuar6eu0pkYxXUwsiUzdOxcZxa-sqwlg_m-1qNlZM3r_DGeUVZfIbICEaVM_9wseLs7vhyPezlPgBf2YC-5o1yihtdWYGKmMMIgDKePYZRnqgTCOfNUgcmmRuUS5WFPiLEyUYIEhakvj39ArqxK3gQllCUUpfdaZkShig8JKmSl6gjJKqx3gnQ1z37TNyLt6sqe8sXkebJ43Nt-BtDN0_mH5c0L2TzV3v6x5BGuj-9ub_OZyfL0H34MkOKXoZB96i_kSDyjaWJjDdje9AdvD1cM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano+Copper+Sulfide-Doped+nanofiber+surface+on+polylactic+acid+substrate+for+advanced+photothermal+membrane+distillation&rft.jtitle=Separation+and+purification+technology&rft.au=Wang%2C+Ao&rft.au=Xu%2C+Hang&rft.au=Ma%2C+Jun&rft.au=Hu%2C+Tianlong&rft.date=2025-10-18&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.volume=370&rft_id=info:doi/10.1016%2Fj.seppur.2025.133306&rft.externalDocID=S1383586625019033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |