Nano Copper Sulfide-Doped nanofiber surface on polylactic acid substrate for advanced photothermal membrane distillation

[Display omitted] •An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86 kg·m−2·h−1;•CuS NPs decreased water-evaporation enthalpy in PMD process; The phase change process was simulated using CFD. Photothermal membr...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 370; p. 133306
Main Authors Wang, Ao, Xu, Hang, Ma, Jun, Hu, Tianlong, Wang, Jingjun, Lin, Tao, Tao, Hui, Ding, Mingmei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 18.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86 kg·m−2·h−1;•CuS NPs decreased water-evaporation enthalpy in PMD process; The phase change process was simulated using CFD. Photothermal membrane distillation has been recognized as an attractive technology for freshwater generation. However, its widespread application still depends on substantial development to increase membrane flux and decrease energy consumption. Herein, we designed a electrospinning poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP) nanofiber with photothermal CuS NPs as the top layer, while agglutinating the bottom hydrophilic polylactic acid layer by polydopamine, yielding a novel photothermal asymmetric PVDF-HFP fibrous (PAPHF) membrane. Compared to tradtional filtration method for material doped, such regulatable structure gives competitive advantage in the light utilization, water evaporation and transport. Electrospun photothermal nanofibers, which possesses a 81 %-90 % light-to-heat conversion efficiency, combined with the hydrophobic pores, can efficiently convert liquid water to vapor water and prevent heat diffusion outside the phase change inerface, meanwhile, enable effective vapor transport due to hydrophilic bottom layer with macropores. The PAPHF membrane demonstrated an excellent daily flux of 1.86 kg·m−2·h−1 with 1 sun irradiation as the only energy input. Computational fluid dynamics exhibited phase change processes acrosss the membrane. This study offers prospects for optimizing material combinations to improve performance, emphasizing scalable manufacturing implementation for broader applications.
AbstractList [Display omitted] •An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86 kg·m−2·h−1;•CuS NPs decreased water-evaporation enthalpy in PMD process; The phase change process was simulated using CFD. Photothermal membrane distillation has been recognized as an attractive technology for freshwater generation. However, its widespread application still depends on substantial development to increase membrane flux and decrease energy consumption. Herein, we designed a electrospinning poly(vinylidene fluoride)–co-hexafluoropropylene (PVDF-HFP) nanofiber with photothermal CuS NPs as the top layer, while agglutinating the bottom hydrophilic polylactic acid layer by polydopamine, yielding a novel photothermal asymmetric PVDF-HFP fibrous (PAPHF) membrane. Compared to tradtional filtration method for material doped, such regulatable structure gives competitive advantage in the light utilization, water evaporation and transport. Electrospun photothermal nanofibers, which possesses a 81 %-90 % light-to-heat conversion efficiency, combined with the hydrophobic pores, can efficiently convert liquid water to vapor water and prevent heat diffusion outside the phase change inerface, meanwhile, enable effective vapor transport due to hydrophilic bottom layer with macropores. The PAPHF membrane demonstrated an excellent daily flux of 1.86 kg·m−2·h−1 with 1 sun irradiation as the only energy input. Computational fluid dynamics exhibited phase change processes acrosss the membrane. This study offers prospects for optimizing material combinations to improve performance, emphasizing scalable manufacturing implementation for broader applications.
ArticleNumber 133306
Author Wang, Ao
Tao, Hui
Lin, Tao
Ding, Mingmei
Xu, Hang
Ma, Jun
Wang, Jingjun
Hu, Tianlong
Author_xml – sequence: 1
  givenname: Ao
  surname: Wang
  fullname: Wang, Ao
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 2
  givenname: Hang
  surname: Xu
  fullname: Xu, Hang
  email: xuhang810826@hhu.edu.com
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 3
  givenname: Jun
  surname: Ma
  fullname: Ma, Jun
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 4
  givenname: Tianlong
  surname: Hu
  fullname: Hu, Tianlong
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 5
  givenname: Jingjun
  surname: Wang
  fullname: Wang, Jingjun
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 6
  givenname: Tao
  surname: Lin
  fullname: Lin, Tao
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 7
  givenname: Hui
  surname: Tao
  fullname: Tao, Hui
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
– sequence: 8
  givenname: Mingmei
  surname: Ding
  fullname: Ding, Mingmei
  email: dingmm2021@163.com
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing 210098, China
BookMark eNp9kMtOwzAQRb0oEi3wByz8Awl-5LlBQuUpVbAA1tbEGauuktiy3Yr-PanKmtVIc3WuZs6KLCY3ISG3nOWc8epul0f0fh9ywUSZcyklqxZkyWUjs7KpqkuyinHHGK95I5bk5x0mR9fOewz0cz8Y22P26Dz2dJoTY7t5H_fBgEbqJurdcBxAJ6spaNvPURdTgITUuEChP8CkZ9ZvXXJpi2GEgY44dgEmpL2NyQ4DJOuma3JhYIh48zevyPfz09f6Ndt8vLytHzaZFmWdMoPQVwKgByy7oupEh8iKQkrTtghMdEY0BeOm1q0pKyOhZbXoeIkaeSWbWl6R4tyrg4sxoFE-2BHCUXGmTsbUTp2NqZMxdTY2Y_dnDOfbDhaDitri6TcbUCfVO_t_wS9qb35f
Cites_doi 10.1039/C8TA05738A
10.1016/j.powtec.2015.05.024
10.1039/D1TA05058C
10.1016/j.cej.2024.149005
10.1002/adma.201606762
10.1021/acsami.0c17154
10.1016/j.desal.2023.116785
10.1016/j.nanoen.2019.03.089
10.1039/b905200n
10.1016/j.desal.2019.114288
10.1073/pnas.1701835114
10.1007/s41207-021-00275-2
10.1016/j.memsci.2019.117608
10.1016/j.memsci.2016.11.069
10.1016/j.seppur.2018.07.052
10.1038/s41563-021-01052-w
10.1039/C8TA11896E
10.1016/j.cej.2007.08.025
10.1039/C9TA12703H
10.1002/9781119117018.ch17
10.1002/aenm.201970141
10.1016/j.desal.2013.06.006
10.1021/acsenergylett.9b02611
10.1038/s41467-022-31028-6
10.1002/jcc.26068
10.1016/j.scitotenv.2020.141528
10.1021/ie50469a031
10.1016/j.rser.2018.04.110
10.1038/s41560-021-00863-0
10.1016/j.rser.2023.113543
10.1016/S0376-7388(96)00236-0
10.1039/C8EE00291F
10.1016/j.desal.2019.114246
10.1016/j.watres.2022.118091
10.1016/j.seppur.2022.121282
10.1021/acs.macromol.2c00092
10.1002/adfm.202007110
10.1126/sciadv.aax0763
10.1016/j.pmatsci.2024.101309
10.1021/ie50660a008
10.1039/D0CS00097C
10.1016/j.chemosphere.2018.08.114
10.1016/j.energy.2020.118720
10.1016/j.seppur.2022.122207
10.1002/aic.13845
10.1021/acsnano.9b06180
10.1021/acsnano.1c01900
10.1039/D2CE00680D
10.1016/j.desal.2024.118124
10.1039/C7TA04555G
10.1016/j.memsci.2020.119028
10.1016/j.desal.2020.114529
10.1016/j.desal.2022.115805
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2025.133306
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_seppur_2025_133306
S1383586625019033
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNUV
ABXRA
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSH
SSM
SSZ
T5K
~G-
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
R2-
RIG
ID FETCH-LOGICAL-c257t-fead62aadae5b46b2bee04433f99ea02bf28401f7c9f56f3a9072b15ece163873
IEDL.DBID .~1
ISSN 1383-5866
IngestDate Sun Jul 06 05:08:48 EDT 2025
Sat Jun 28 18:15:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electrospinning
Photothermal Membrane distillation
Evaporation
Membrane distillation
Desalination
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-fead62aadae5b46b2bee04433f99ea02bf28401f7c9f56f3a9072b15ece163873
ParticipantIDs crossref_primary_10_1016_j_seppur_2025_133306
elsevier_sciencedirect_doi_10_1016_j_seppur_2025_133306
PublicationCentury 2000
PublicationDate 2025-10-18
PublicationDateYYYYMMDD 2025-10-18
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-18
  day: 18
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Serrano, Liu, Guo, Croft, Cao, Khan, Xu, Nouh, Cheng, Liu (b0190) 2022; 55
Xu, Hu, Xu, Li, Zhou, Zhu, Zhu (b0265) 2017; 29
Wang, Sun, Gao, Yang, Song (b0060) 2024; 592
Su, Zhang, Zhang (b0135) 2020; 476
Elsaid, Kamil, Sayed, Abdelkareem, Wilberforce, Olabi (b0025) 2020; 748
Pang, Zhang, Ma, Qu, Lee, Luo (b0050) 2020; 5
Santoro, Avci, Politano, Curcio (b0030) 2022; 51
Zhang, Liu, Li, Hou, Wang (b0100) 2018; 212
Wu, Hu, Gao (b0015) 2013; 324
Cao, Wu, Zhu, Gupta, Martinez, Zhang, Ghim, Wang, Liu, Jun, Singamaneni (b0220) 2021; 9
Yan, Chen, Bao, Chang, Liu, Fan, Wang, Fu, Qu, Liang (b0125) 2022; 303
Mielniczuk, Hueckel, El Youssoufi (b0210) 2015; 283
Fan, Yang, Shi, Liu, Li, Liang, Chen (b0260) 2020; 30
Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, S. Lin, Pathways and challenges for efficient solar-thermal desalination, Sci Adv 5 (2019) eaax0763.
Sharma, Muhammad, He, Younas, Sameti, Rezakazemi, Li (b0105) 2024; 483
Liu, Zhou, Wu, Zhang, Zhu, Jin, Zhang, Zhu, Chen (b0145) 2021; 15
Farid, Kharraz, An (b0225) 2021; 13
Zhang, Yi, Fu, Yu, Chen, Quan (b0245) 2019; 13
Cao, Wu, Zhu, Gupta, Tan, Wang, Jun, Singamaneni (b0115) 2020; 8
Wang, Xu, Ma, Fu, Lin, Ding (b0170) 2023; 565
Barasa, Bogdanov, Oyewo, Breyer (b0005) 2018; 92
Huang, Hu, Bai, He, Zhu (b0110) 2020; 489
Li, Chen, Yao, Ren, Li, Deng (b0235) 2020; 478
Gu, Wang, Gao, Feng, Wu, Zhao (b0185) 2022; 24
Sun, Li, Ren, Xu, Sun, Du, Zhao, Ettelatie, Cheng (b0070) 2022; 212
Ibrahim, Alsalhy (b0205) 2013; 59
Wu, Jiang, Ghim, Singamaneni, Jun (b0215) 2018; 6
Zhao, Jiang, Fan, Hong, Mei, Yao, Liu, Zhang, Li, Zhang, Sun, Guo, Shao, Zhu, Zhang, Guo, Ma, Zhang, Feng, Wang, Wu, Wang (b0035) 2021; 20
Fowkes (b0160) 1964; 56
Li, Chang, Li, Yang, Fu, Li, Ho, Chen (b0255) 2019; 9
Sláva, Švandová, Markoš (b0090) 2008; 139
Cherp, Vinichenko, Tosun, Gordon, Jewell (b0045) 2021; 6
Zhao, Wu, Lu, Ng, Truong, Zhang, Xie (b0140) 2020; 596
Huang, Hu, Bai, He, Zhu (b0240) 2020; 211
Han, Wang, Zuo, Chen, Yuan, Liang, Li, Ajayan, Zhao, Lou (b0230) 2019; 60
Wu, Zodrow, Szemraj, Li (b0095) 2017; 5
Soukane, Lee, Ghaffour (b0085) 2019; 209
Zhang, Wong, Guo, Zhou, Wang, Sun, Jiang, Wang, An (b0120) 2022; 13
Frikha, Frikha, Gabsi (b0200) 2021; 6
Liu, Cao, Qiu, Zhang, Hong (b0130) 2022; 295
Woo, Yao, Shim, Kim, Tijing, Jung, Kim, Shon (b0180) 2021; 623
Mahmoudi, Bostani, Rashidi, Valipour (b0010) 2023; 184
Deshmukh, Boo, Karanikola, Lin, Straub, Tong, Warsinger, Elimelech (b0040) 2018; 11
Emamian, Lu, Kruse, Emamian (b0195) 2019; 40
Tan, Ucab, Dadol, Jabile, Talili, Cabaraban (b0020) 2022; 534
Rodríguez-Fernández, Funston, Pérez-Juste, Álvarez-Puebla, Liz-Marzán, Mulvaney (b0155) 2009; 11
Dongare, Alabastri, Pedersen, Zodrow, Hogan, Neumann, Wu, Wang, Deshmukh, Elimelech, Li, Nordlander, Halas (b0055) 2017; 114
Jin M, Thomsen F, Skrivanek T, Willers T, Why test inks cannot tell the whole truth about surface free energy of solids, in: advances in contact angle, wettability and adhesion, 2015, pp. 419-438.
Lee, An, Hadi, Lee, Woo, Shon (b0175) 2017; 524
Lawson, Lloyd (b0065) 1997; 124
Ang, Tan, Chew (b0250) 2019; 7
Subrahmanya, Austria, Chen, Setiawan, Widakdo, Kurkuri, Hung, Hu, Lee, Lai (b0150) 2024; 145
Chu, Dmytryszyn, Moder, Overbeck (b0075) 1949; 41
Emamian (10.1016/j.seppur.2025.133306_b0195) 2019; 40
Wang (10.1016/j.seppur.2025.133306_b0170) 2023; 565
Subrahmanya (10.1016/j.seppur.2025.133306_b0150) 2024; 145
Mielniczuk (10.1016/j.seppur.2025.133306_b0210) 2015; 283
Mahmoudi (10.1016/j.seppur.2025.133306_b0010) 2023; 184
Lee (10.1016/j.seppur.2025.133306_b0175) 2017; 524
Sun (10.1016/j.seppur.2025.133306_b0070) 2022; 212
Liu (10.1016/j.seppur.2025.133306_b0130) 2022; 295
Wang (10.1016/j.seppur.2025.133306_b0060) 2024; 592
Deshmukh (10.1016/j.seppur.2025.133306_b0040) 2018; 11
Liu (10.1016/j.seppur.2025.133306_b0145) 2021; 15
Santoro (10.1016/j.seppur.2025.133306_b0030) 2022; 51
Zhao (10.1016/j.seppur.2025.133306_b0035) 2021; 20
Soukane (10.1016/j.seppur.2025.133306_b0085) 2019; 209
Ibrahim (10.1016/j.seppur.2025.133306_b0205) 2013; 59
Zhao (10.1016/j.seppur.2025.133306_b0140) 2020; 596
Huang (10.1016/j.seppur.2025.133306_b0110) 2020; 489
Wu (10.1016/j.seppur.2025.133306_b0215) 2018; 6
Wu (10.1016/j.seppur.2025.133306_b0015) 2013; 324
Barasa (10.1016/j.seppur.2025.133306_b0005) 2018; 92
Ang (10.1016/j.seppur.2025.133306_b0250) 2019; 7
Fowkes (10.1016/j.seppur.2025.133306_b0160) 1964; 56
10.1016/j.seppur.2025.133306_b0165
Tan (10.1016/j.seppur.2025.133306_b0020) 2022; 534
Rodríguez-Fernández (10.1016/j.seppur.2025.133306_b0155) 2009; 11
Huang (10.1016/j.seppur.2025.133306_b0240) 2020; 211
10.1016/j.seppur.2025.133306_b0080
Zhang (10.1016/j.seppur.2025.133306_b0100) 2018; 212
Serrano (10.1016/j.seppur.2025.133306_b0190) 2022; 55
Sharma (10.1016/j.seppur.2025.133306_b0105) 2024; 483
Elsaid (10.1016/j.seppur.2025.133306_b0025) 2020; 748
Cao (10.1016/j.seppur.2025.133306_b0115) 2020; 8
Chu (10.1016/j.seppur.2025.133306_b0075) 1949; 41
Yan (10.1016/j.seppur.2025.133306_b0125) 2022; 303
Pang (10.1016/j.seppur.2025.133306_b0050) 2020; 5
Sláva (10.1016/j.seppur.2025.133306_b0090) 2008; 139
Wu (10.1016/j.seppur.2025.133306_b0095) 2017; 5
Li (10.1016/j.seppur.2025.133306_b0235) 2020; 478
Su (10.1016/j.seppur.2025.133306_b0135) 2020; 476
Gu (10.1016/j.seppur.2025.133306_b0185) 2022; 24
Woo (10.1016/j.seppur.2025.133306_b0180) 2021; 623
Frikha (10.1016/j.seppur.2025.133306_b0200) 2021; 6
Dongare (10.1016/j.seppur.2025.133306_b0055) 2017; 114
Li (10.1016/j.seppur.2025.133306_b0255) 2019; 9
Cao (10.1016/j.seppur.2025.133306_b0220) 2021; 9
Zhang (10.1016/j.seppur.2025.133306_b0120) 2022; 13
Zhang (10.1016/j.seppur.2025.133306_b0245) 2019; 13
Han (10.1016/j.seppur.2025.133306_b0230) 2019; 60
Farid (10.1016/j.seppur.2025.133306_b0225) 2021; 13
Lawson (10.1016/j.seppur.2025.133306_b0065) 1997; 124
Fan (10.1016/j.seppur.2025.133306_b0260) 2020; 30
Cherp (10.1016/j.seppur.2025.133306_b0045) 2021; 6
Xu (10.1016/j.seppur.2025.133306_b0265) 2017; 29
References_xml – volume: 8
  start-page: 5147
  year: 2020
  end-page: 5156
  ident: b0115
  article-title: Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 13196
  year: 2019
  end-page: 13207
  ident: b0245
  article-title: Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance
  publication-title: ACS Nano
– volume: 114
  start-page: 6936
  year: 2017
  end-page: 6941
  ident: b0055
  article-title: Nanophotonics-enabled solar membrane distillation for off-grid water purification
  publication-title: Proc. Natl. Acad. Sci.
– volume: 6
  start-page: 66
  year: 2021
  ident: b0200
  article-title: Modeling of the flow inside a pore in vacuum membrane distillation
  publication-title: Euro-Mediterranean J. Environm. Integr.
– volume: 212
  year: 2022
  ident: b0070
  article-title: Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces
  publication-title: Water Res.
– volume: 145
  year: 2024
  ident: b0150
  article-title: Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview
  publication-title: Prog. Mater Sci.
– volume: 6
  start-page: 18799
  year: 2018
  end-page: 18807
  ident: b0215
  article-title: Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 437
  year: 2020
  end-page: 456
  ident: b0050
  article-title: Solar–thermal water evaporation: a review
  publication-title: ACS Energy Lett.
– volume: 483
  year: 2024
  ident: b0105
  article-title: Understanding the phenomena of negative vapor flux in Nanophotonics-Enabled solar membrane distillation
  publication-title: Chem. Eng. J.
– volume: 30
  year: 2020
  ident: b0260
  article-title: A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance
  publication-title: Adv. Funct. Mater.
– volume: 748
  year: 2020
  ident: b0025
  article-title: Environmental impact of desalination technologies: A review
  publication-title: Sci. Total Environ.
– volume: 92
  start-page: 440
  year: 2018
  end-page: 457
  ident: b0005
  article-title: A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030
  publication-title: Renew. Sustain. Energy Rev.
– volume: 11
  start-page: 1177
  year: 2018
  end-page: 1196
  ident: b0040
  article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges
  publication-title: Energ. Environ. Sci.
– volume: 295
  year: 2022
  ident: b0130
  article-title: Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation
  publication-title: Sep. Purif. Technol.
– volume: 55
  start-page: 4803
  year: 2022
  end-page: 4811
  ident: b0190
  article-title: Utilization of block copolymers to understand water vaporization enthalpy reduction in uniform pores
  publication-title: Macromolecules
– volume: 7
  start-page: 10206
  year: 2019
  end-page: 10211
  ident: b0250
  article-title: A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater
  publication-title: J. Mater. Chem. A
– volume: 565
  year: 2023
  ident: b0170
  article-title: Thermodynamic and kinetic analyses of Janus membrane scaling in membrane distillation for zero liquid discharge engineering
  publication-title: Desalination
– volume: 534
  year: 2022
  ident: b0020
  article-title: A review of desalination technologies and its impact in the Philippines
  publication-title: Desalination
– volume: 184
  year: 2023
  ident: b0010
  article-title: Challenges and opportunities of desalination with renewable energy resources in Middle East countries
  publication-title: Renew. Sustain. Energy Rev.
– volume: 5
  start-page: 23712
  year: 2017
  end-page: 23719
  ident: b0095
  article-title: Photothermal nanocomposite membranes for direct solar membrane distillation
  publication-title: J. Mater. Chem. A
– volume: 596
  year: 2020
  ident: b0140
  article-title: Theoretical guidance for fabricating higher flux hydrophobic/hydrophilic dual-layer membranes for direct contact membrane distillation
  publication-title: J. Membr. Sci.
– volume: 303
  year: 2022
  ident: b0125
  article-title: Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane
  publication-title: Sep. Purif. Technol.
– volume: 40
  start-page: 2868
  year: 2019
  end-page: 2881
  ident: b0195
  article-title: Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory
  publication-title: J. Comput. Chem.
– volume: 9
  year: 2019
  ident: b0255
  article-title: Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  ident: b0265
  article-title: Mushrooms as efficient solar steam-generation devices
  publication-title: Adv. Mater.
– volume: 283
  start-page: 137
  year: 2015
  end-page: 151
  ident: b0210
  article-title: Laplace pressure evolution and four instabilities in evaporating two-grain liquid bridges
  publication-title: Powder Technol.
– volume: 209
  start-page: 279
  year: 2019
  end-page: 292
  ident: b0085
  article-title: Direct contact membrane distillation module scale-up calculations: Choosing between convective and conjugate approaches
  publication-title: Sep. Purif. Technol.
– volume: 139
  start-page: 517
  year: 2008
  end-page: 522
  ident: b0090
  article-title: Modelling of reactive separations including fast chemical reactions in CSTR
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 22585
  year: 2021
  end-page: 22596
  ident: b0220
  article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 567
  year: 2019
  end-page: 575
  ident: b0230
  article-title: Bio-derived ultrathin membrane for solar driven water purification
  publication-title: Nano Energy
– volume: 6
  start-page: 742
  year: 2021
  end-page: 754
  ident: b0045
  article-title: National growth dynamics of wind and solar power compared to the growth required for global climate targets
  publication-title: Nat. Energy
– volume: 476
  year: 2020
  ident: b0135
  article-title: Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination
  publication-title: Desalination
– volume: 11
  start-page: 5909
  year: 2009
  end-page: 5914
  ident: b0155
  article-title: The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres
  publication-title: PCCP
– volume: 24
  start-page: 4955
  year: 2022
  end-page: 4961
  ident: b0185
  article-title: Chiral CuS nanoparticles and their photothermal properties
  publication-title: CrstEngComm
– volume: 56
  start-page: 40
  year: 1964
  end-page: 52
  ident: b0160
  article-title: Attractive forces at interfaces
  publication-title: Ind. Eng. Chem.
– reference: Wang Z, Horseman T, Straub AP, Yip NY, Li D, Elimelech M, S. Lin, Pathways and challenges for efficient solar-thermal desalination, Sci Adv 5 (2019) eaax0763.
– volume: 478
  year: 2020
  ident: b0235
  article-title: Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation
  publication-title: Desalination
– volume: 489
  year: 2020
  ident: b0110
  article-title: Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating
  publication-title: Desalination
– volume: 13
  start-page: 3805
  year: 2021
  end-page: 3815
  ident: b0225
  article-title: Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  start-page: 1
  year: 1997
  end-page: 25
  ident: b0065
  article-title: Membrane distillation
  publication-title: J. Membr. Sci.
– volume: 623
  year: 2021
  ident: b0180
  article-title: Co-axially electrospun superhydrophobic nanofiber membranes with 3D-hierarchically structured surface for desalination by long-term membrane distillation
  publication-title: J. Membr. Sci.
– volume: 59
  start-page: 589
  year: 2013
  end-page: 603
  ident: b0205
  article-title: Modeling and simulation for direct contact membrane distillation in hollow fiber modules
  publication-title: AIChE J
– volume: 41
  start-page: 131
  year: 1949
  end-page: 135
  ident: b0075
  article-title: Latent Heat of Vaporization
  publication-title: Ind. Eng. Chem.
– volume: 15
  start-page: 13007
  year: 2021
  end-page: 13018
  ident: b0145
  article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination
  publication-title: ACS Nano
– volume: 524
  start-page: 712
  year: 2017
  end-page: 720
  ident: b0175
  article-title: Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation
  publication-title: J. Membr. Sci.
– volume: 324
  start-page: 111
  year: 2013
  end-page: 117
  ident: b0015
  article-title: Optimum design of cogeneration for power and desalination to satisfy the demand of water and power
  publication-title: Desalination
– volume: 212
  start-page: 554
  year: 2018
  end-page: 562
  ident: b0100
  article-title: Enhancement of energy utilization using nanofluid in solar powered membrane distillation
  publication-title: Chemosphere
– volume: 51
  start-page: 6087
  year: 2022
  end-page: 6125
  ident: b0030
  article-title: The advent of thermoplasmonic membrane distillation
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 1551
  year: 2021
  end-page: 1558
  ident: b0035
  article-title: Hydrophilicity gradient in covalent organic frameworks for membrane distillation
  publication-title: Nat. Mater.
– volume: 13
  start-page: 3315
  year: 2022
  ident: b0120
  article-title: Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination
  publication-title: Nat. Commun.
– volume: 211
  year: 2020
  ident: b0240
  article-title: Solar membrane distillation enhancement through thermal concentration
  publication-title: Energy
– reference: Jin M, Thomsen F, Skrivanek T, Willers T, Why test inks cannot tell the whole truth about surface free energy of solids, in: advances in contact angle, wettability and adhesion, 2015, pp. 419-438.
– volume: 592
  year: 2024
  ident: b0060
  article-title: Solar membrane distillation: an emerging technology for reverse osmosis concentrated brine treatment
  publication-title: Desalination
– volume: 6
  start-page: 18799
  year: 2018
  ident: 10.1016/j.seppur.2025.133306_b0215
  article-title: Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05738A
– volume: 283
  start-page: 137
  year: 2015
  ident: 10.1016/j.seppur.2025.133306_b0210
  article-title: Laplace pressure evolution and four instabilities in evaporating two-grain liquid bridges
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.05.024
– volume: 9
  start-page: 22585
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0220
  article-title: MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05058C
– volume: 483
  year: 2024
  ident: 10.1016/j.seppur.2025.133306_b0105
  article-title: Understanding the phenomena of negative vapor flux in Nanophotonics-Enabled solar membrane distillation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.149005
– volume: 29
  year: 2017
  ident: 10.1016/j.seppur.2025.133306_b0265
  article-title: Mushrooms as efficient solar steam-generation devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606762
– volume: 13
  start-page: 3805
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0225
  article-title: Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17154
– volume: 565
  year: 2023
  ident: 10.1016/j.seppur.2025.133306_b0170
  article-title: Thermodynamic and kinetic analyses of Janus membrane scaling in membrane distillation for zero liquid discharge engineering
  publication-title: Desalination
  doi: 10.1016/j.desal.2023.116785
– volume: 60
  start-page: 567
  year: 2019
  ident: 10.1016/j.seppur.2025.133306_b0230
  article-title: Bio-derived ultrathin membrane for solar driven water purification
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.089
– volume: 11
  start-page: 5909
  year: 2009
  ident: 10.1016/j.seppur.2025.133306_b0155
  article-title: The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres
  publication-title: PCCP
  doi: 10.1039/b905200n
– volume: 478
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0235
  article-title: Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.114288
– volume: 114
  start-page: 6936
  year: 2017
  ident: 10.1016/j.seppur.2025.133306_b0055
  article-title: Nanophotonics-enabled solar membrane distillation for off-grid water purification
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1701835114
– volume: 6
  start-page: 66
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0200
  article-title: Modeling of the flow inside a pore in vacuum membrane distillation
  publication-title: Euro-Mediterranean J. Environm. Integr.
  doi: 10.1007/s41207-021-00275-2
– volume: 596
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0140
  article-title: Theoretical guidance for fabricating higher flux hydrophobic/hydrophilic dual-layer membranes for direct contact membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117608
– volume: 524
  start-page: 712
  year: 2017
  ident: 10.1016/j.seppur.2025.133306_b0175
  article-title: Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.11.069
– volume: 209
  start-page: 279
  year: 2019
  ident: 10.1016/j.seppur.2025.133306_b0085
  article-title: Direct contact membrane distillation module scale-up calculations: Choosing between convective and conjugate approaches
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.07.052
– volume: 20
  start-page: 1551
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0035
  article-title: Hydrophilicity gradient in covalent organic frameworks for membrane distillation
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01052-w
– volume: 7
  start-page: 10206
  year: 2019
  ident: 10.1016/j.seppur.2025.133306_b0250
  article-title: A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11896E
– volume: 139
  start-page: 517
  year: 2008
  ident: 10.1016/j.seppur.2025.133306_b0090
  article-title: Modelling of reactive separations including fast chemical reactions in CSTR
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.08.025
– volume: 8
  start-page: 5147
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0115
  article-title: Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12703H
– ident: 10.1016/j.seppur.2025.133306_b0165
  doi: 10.1002/9781119117018.ch17
– volume: 9
  year: 2019
  ident: 10.1016/j.seppur.2025.133306_b0255
  article-title: Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201970141
– volume: 324
  start-page: 111
  year: 2013
  ident: 10.1016/j.seppur.2025.133306_b0015
  article-title: Optimum design of cogeneration for power and desalination to satisfy the demand of water and power
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.06.006
– volume: 5
  start-page: 437
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0050
  article-title: Solar–thermal water evaporation: a review
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02611
– volume: 13
  start-page: 3315
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0120
  article-title: Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31028-6
– volume: 40
  start-page: 2868
  year: 2019
  ident: 10.1016/j.seppur.2025.133306_b0195
  article-title: Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26068
– volume: 748
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0025
  article-title: Environmental impact of desalination technologies: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141528
– volume: 41
  start-page: 131
  year: 1949
  ident: 10.1016/j.seppur.2025.133306_b0075
  article-title: Latent Heat of Vaporization
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50469a031
– volume: 92
  start-page: 440
  year: 2018
  ident: 10.1016/j.seppur.2025.133306_b0005
  article-title: A cost optimal resolution for Sub-Saharan Africa powered by 100% renewables in 2030
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.110
– volume: 6
  start-page: 742
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0045
  article-title: National growth dynamics of wind and solar power compared to the growth required for global climate targets
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00863-0
– volume: 184
  year: 2023
  ident: 10.1016/j.seppur.2025.133306_b0010
  article-title: Challenges and opportunities of desalination with renewable energy resources in Middle East countries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113543
– volume: 124
  start-page: 1
  year: 1997
  ident: 10.1016/j.seppur.2025.133306_b0065
  article-title: Membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(96)00236-0
– volume: 11
  start-page: 1177
  year: 2018
  ident: 10.1016/j.seppur.2025.133306_b0040
  article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE00291F
– volume: 476
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0135
  article-title: Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2019.114246
– volume: 212
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0070
  article-title: Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118091
– volume: 295
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0130
  article-title: Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121282
– volume: 55
  start-page: 4803
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0190
  article-title: Utilization of block copolymers to understand water vaporization enthalpy reduction in uniform pores
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c00092
– volume: 30
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0260
  article-title: A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007110
– ident: 10.1016/j.seppur.2025.133306_b0080
  doi: 10.1126/sciadv.aax0763
– volume: 145
  year: 2024
  ident: 10.1016/j.seppur.2025.133306_b0150
  article-title: Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2024.101309
– volume: 56
  start-page: 40
  year: 1964
  ident: 10.1016/j.seppur.2025.133306_b0160
  article-title: Attractive forces at interfaces
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50660a008
– volume: 51
  start-page: 6087
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0030
  article-title: The advent of thermoplasmonic membrane distillation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00097C
– volume: 212
  start-page: 554
  year: 2018
  ident: 10.1016/j.seppur.2025.133306_b0100
  article-title: Enhancement of energy utilization using nanofluid in solar powered membrane distillation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.114
– volume: 211
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0240
  article-title: Solar membrane distillation enhancement through thermal concentration
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118720
– volume: 303
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0125
  article-title: Integration of in situ Fenton-like self-cleaning and photothermal membrane distillation for wastewater treatment via Co-MoS2/CNT catalytic membrane
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122207
– volume: 59
  start-page: 589
  year: 2013
  ident: 10.1016/j.seppur.2025.133306_b0205
  article-title: Modeling and simulation for direct contact membrane distillation in hollow fiber modules
  publication-title: AIChE J
  doi: 10.1002/aic.13845
– volume: 13
  start-page: 13196
  year: 2019
  ident: 10.1016/j.seppur.2025.133306_b0245
  article-title: Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06180
– volume: 15
  start-page: 13007
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0145
  article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01900
– volume: 24
  start-page: 4955
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0185
  article-title: Chiral CuS nanoparticles and their photothermal properties
  publication-title: CrstEngComm
  doi: 10.1039/D2CE00680D
– volume: 592
  year: 2024
  ident: 10.1016/j.seppur.2025.133306_b0060
  article-title: Solar membrane distillation: an emerging technology for reverse osmosis concentrated brine treatment
  publication-title: Desalination
  doi: 10.1016/j.desal.2024.118124
– volume: 5
  start-page: 23712
  year: 2017
  ident: 10.1016/j.seppur.2025.133306_b0095
  article-title: Photothermal nanocomposite membranes for direct solar membrane distillation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04555G
– volume: 623
  year: 2021
  ident: 10.1016/j.seppur.2025.133306_b0180
  article-title: Co-axially electrospun superhydrophobic nanofiber membranes with 3D-hierarchically structured surface for desalination by long-term membrane distillation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.119028
– volume: 489
  year: 2020
  ident: 10.1016/j.seppur.2025.133306_b0110
  article-title: Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114529
– volume: 534
  year: 2022
  ident: 10.1016/j.seppur.2025.133306_b0020
  article-title: A review of desalination technologies and its impact in the Philippines
  publication-title: Desalination
  doi: 10.1016/j.desal.2022.115805
SSID ssj0017182
Score 2.4694233
Snippet [Display omitted] •An asymmetric construction for efficient PMD was proposed;•The PAPHF membrane maintained desalination efficiency with an daily flux of 1.86...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 133306
SubjectTerms Desalination
Electrospinning
Evaporation
Membrane distillation
Photothermal Membrane distillation
Title Nano Copper Sulfide-Doped nanofiber surface on polylactic acid substrate for advanced photothermal membrane distillation
URI https://dx.doi.org/10.1016/j.seppur.2025.133306
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB5YTRvHcZqxKlQFRBdAYovs-CyK2sTqQ4KF3845DwQSYmBMbCfRl8t3d8p3Z0IuYqNFAoFiwGXCRKZilggNjBuly624Vc8XCt9P5PhJ3D5Hzy0ybGphvKyy5v6K00u2rs90azS7bjrtPgSYXEV9iQG8r4cOfcdPIWJv5ZcfXzKPALm3_OOJk5mf3ZTPlRqvJTi39l1BeXSJyVro9z36zT19czmjXbJTx4p0UD3OHmlBvk-2v3UQPCBvyI4FHRbOwYI-rGd2aoBdFQ4MzXHEej0IXa4XVmVAi5y6YvY-K-uiqMqmBod02TgXKAavtBEEUPdSrMrSrDnefw5zTKlzoMbzwawSzx2Sp9H143DM6s0UWIZf5YpZNBnJlTIKIi2k5hqgJ0QY2iQB1ePaoqPqBTbOEhtJGyrMmrkOIsjAh2xxeEQ28iKHY0K5NEihmDurRAvgoQZuhEgkXkFqqWSbsAbD1FU9M9JGTPaaVpinHvO0wrxN4gbo9Me7T5HW_1x58u-Vp2TLH3kvFPTPyMZqsYZzDC9WulPaT4dsDm7uxpNPmLHTEg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQLAP8cYHrt42juOQIyqg8uoFkLhFdjzWFrWJVVoJ_j3jPFYgrThwzWSSaOx8MyPPNwNwnFojM4w0R6EyLgud8kwa5MJqU4_i1oNAFL4dq9GDvHpMHldg2HFhQllli_0Nptdo3V7pt9bs-8mkfxdRcpWcKArgAx86jr_BauhOlfRg9fTyejT-d5hA8FsfetL9PCh0DLq6zOsZvV-GxqAi-UP5WhxGH_3PQ73zOhebsNGGi-y0-aItWMHyB6y_ayL4E14IICs2rLzHObtbTt3EIj-rPFpWksSFkhD2vJw7XSCrSuar6eu0pkYxXUwsiUzdOxcZxa-sqwlg_m-1qNlZM3r_DGeUVZfIbICEaVM_9wseLs7vhyPezlPgBf2YC-5o1yihtdWYGKmMMIgDKePYZRnqgTCOfNUgcmmRuUS5WFPiLEyUYIEhakvj39ArqxK3gQllCUUpfdaZkShig8JKmSl6gjJKqx3gnQ1z37TNyLt6sqe8sXkebJ43Nt-BtDN0_mH5c0L2TzV3v6x5BGuj-9ub_OZyfL0H34MkOKXoZB96i_kSDyjaWJjDdje9AdvD1cM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano+Copper+Sulfide-Doped+nanofiber+surface+on+polylactic+acid+substrate+for+advanced+photothermal+membrane+distillation&rft.jtitle=Separation+and+purification+technology&rft.au=Wang%2C+Ao&rft.au=Xu%2C+Hang&rft.au=Ma%2C+Jun&rft.au=Hu%2C+Tianlong&rft.date=2025-10-18&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.volume=370&rft_id=info:doi/10.1016%2Fj.seppur.2025.133306&rft.externalDocID=S1383586625019033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon