Data-driven modeling of transonic unsteady flows and efficient analysis of fluid–structure stability
The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the fluid–structure coupling system because the state variables of the reduced-order model do not explicitly represent fluidic properties. In this s...
Saved in:
Published in | Journal of fluids and structures Vol. 111; p. 103549 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the fluid–structure coupling system because the state variables of the reduced-order model do not explicitly represent fluidic properties. In this study, a data-driven modeling procedure is proposed to reconstruct a physics-based, reduced-order aerodynamic model. In the procedure, the transonic unsteady flows of concern are projected onto low-dimensional base vectors first via the proper orthogonal decomposition of pressure snapshots subject to a specific structural excitation. Then a state-space representation of the temporal coefficients of proper orthogonal decomposition modes subject to the structural excitation is established by using the dynamic mode decomposition with control. Finally, for the fluid–structure stability analysis, pressure snapshots are recovered from the coefficients of proper orthogonal decomposition, and aerodynamic forces are derived by integrating the pressure coefficients around the wing surface. The state vector in above-mentioned data-driven model has a clear sense in physics with regard to pressure distribution. To demonstrate the accuracy of the proposed procedure, a two-dimensional, transonic aeroelastic wing with an NACA0012 profile is studied. The unsteady aerodynamic forces, frequency responses of the reduced-order aerodynamic model, transonic flutter boundary, and flow characteristics at the flutter condition are predicted and compared with direct computational fluid dynamic simulations. The results show that the modeling procedure can accurately predict the transonic flutter boundary and flow characteristics. |
---|---|
AbstractList | The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the fluid–structure coupling system because the state variables of the reduced-order model do not explicitly represent fluidic properties. In this study, a data-driven modeling procedure is proposed to reconstruct a physics-based, reduced-order aerodynamic model. In the procedure, the transonic unsteady flows of concern are projected onto low-dimensional base vectors first via the proper orthogonal decomposition of pressure snapshots subject to a specific structural excitation. Then a state-space representation of the temporal coefficients of proper orthogonal decomposition modes subject to the structural excitation is established by using the dynamic mode decomposition with control. Finally, for the fluid–structure stability analysis, pressure snapshots are recovered from the coefficients of proper orthogonal decomposition, and aerodynamic forces are derived by integrating the pressure coefficients around the wing surface. The state vector in above-mentioned data-driven model has a clear sense in physics with regard to pressure distribution. To demonstrate the accuracy of the proposed procedure, a two-dimensional, transonic aeroelastic wing with an NACA0012 profile is studied. The unsteady aerodynamic forces, frequency responses of the reduced-order aerodynamic model, transonic flutter boundary, and flow characteristics at the flutter condition are predicted and compared with direct computational fluid dynamic simulations. The results show that the modeling procedure can accurately predict the transonic flutter boundary and flow characteristics. |
ArticleNumber | 103549 |
Author | Huang, Rui Hu, Haiyan Yao, Xiangjie |
Author_xml | – sequence: 1 givenname: Xiangjie orcidid: 0000-0002-6094-9360 surname: Yao fullname: Yao, Xiangjie – sequence: 2 givenname: Rui surname: Huang fullname: Huang, Rui – sequence: 3 givenname: Haiyan surname: Hu fullname: Hu, Haiyan email: hhyae@nuaa.edu.cn |
BookMark | eNqNkE1OwzAQRi1UJErhDpFYpziOnThiVZXyI1ViA2vLsT3IUeog2y3KjjtwQ05CQtjAqqvRaPQ9ffPO0cx1ziB0leFlhrPiulk20O6tDtHvVQxLggkZLjmj1QmaZ7hiKS8ImaE55rxKq5IWZ-g8hAZjXNE8myO4lVGm2tuDccmu06a17jXpIIleutA5q5K9C9FI3SfQdu8hkU4nBsAqa1wcNtn2wYYx8lPl6-NzarP3JglR1ra1sb9ApyDbYC5_5wK93G2e1w_p9un-cb3apoqwMqZgKDBS5FwWVEtCWZUVvKYlgOKkhFJmzKjhP5mrHHgFDBQtasIZUFMrXeQLdDNxle9C8AbEm7c76XuRYTEqE434o0yMysSkbEiv_qWVjTLazg02bHskYzMxzPDmwRovwmhKGW29UVHozh7F-QaS9Zok |
CitedBy_id | crossref_primary_10_1016_j_jfluidstructs_2023_104023 crossref_primary_10_1063_5_0204152 crossref_primary_10_1016_j_ijmecsci_2024_109414 crossref_primary_10_1007_s11071_025_10953_3 crossref_primary_10_1016_j_jsv_2023_117847 crossref_primary_10_1109_ACCESS_2023_3306410 crossref_primary_10_1007_s11431_023_2622_x crossref_primary_10_1016_j_eswa_2023_121324 crossref_primary_10_2514_1_C037409 crossref_primary_10_2514_1_J063360 |
Cites_doi | 10.1016/j.paerosci.2019.100596 10.1017/jfm.2013.249 10.2514/1.J052323 10.2514/1.J056710 10.2514/1.J056060 10.2514/1.J052725 10.1137/15M1013857 10.1016/j.ijheatfluidflow.2011.09.008 10.1146/annurev.fl.25.010193.002543 10.1146/annurev-fluid-010719-060214 10.1073/pnas.1517384113 10.1017/S0022112009992059 10.1016/j.jfluidstructs.2014.06.015 10.2514/2.1570 10.1016/j.physd.2003.03.001 10.2514/2.867 10.2514/1.J056760 10.2514/1.J050471 10.1016/j.jfluidstructs.2016.05.006 10.2514/1.C031236 10.2514/1.J058462 10.1007/s00348-016-2127-7 10.2514/1.J050802 10.2514/1.J051989 10.2514/1.J055143 10.1063/1.5093507 10.1017/S0022112004002149 10.2514/1.J050581 10.1017/S0022112010001217 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfluidstructs.2022.103549 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1095-8622 |
ExternalDocumentID | 10_1016_j_jfluidstructs_2022_103549 S0889974622000299 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c257t-fe4f52638a64da2459168b47ffc827f7a15ec103a3c3f89f5fc46b285f4ebcd63 |
IEDL.DBID | .~1 |
ISSN | 0889-9746 |
IngestDate | Tue Jul 01 00:47:23 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Fri Feb 23 02:39:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data-driven modeling Fluid–structure interaction Stability analysis Transonic unsteady flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-fe4f52638a64da2459168b47ffc827f7a15ec103a3c3f89f5fc46b285f4ebcd63 |
ORCID | 0000-0002-6094-9360 |
ParticipantIDs | crossref_primary_10_1016_j_jfluidstructs_2022_103549 crossref_citationtrail_10_1016_j_jfluidstructs_2022_103549 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2022_103549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Holmes, Connel (b11) 1989 Rowley, Mezić, Bagheri, Schlatter, Henningson (b23) 2009; 641 Zhang, Wang, Ye, Quan (b31) 2012; 50 Huang, Liu, Yang, Zhao, Hu (b13) 2018; 56 Willcox, Peraire (b28) 2002; 40 Taira, Hemati, Brunton, Sun, Duraisamy, Bagheri, Dawson, Yeh (b27) 2020; 58 Yao, Marques (b30) 2017; 55 Berkooz, Holmes, Lumley (b2) 1993; 25 Hall, Thomas, Dowell (b10) 2000; 38 Brunton, Proctor, Kutz (b4) 2016; 113 Xie, Xu, Dowell (b29) 2014; 52 Chen, Sun, Li (b5) 2012; 49 Dawson, Hemati, Williams, Rowley (b6) 2016; 57 Kou, Zhang (b15) 2019; 31 Rowley, Colonius, Murray (b22) 2004; 189 Lindhorst, Haupt, Horst (b16) 2014; 52 Seena, Sung (b25) 2011; 32 Huang, Hu, Zhao (b12) 2014; 52 Opgenoord, Drela, Willcox (b19) 2018; 56 Glaz, Friedmann, Liu, Cajigas, Bain, Sankar (b9) 2010; 48 Liu, Hu, Zhao, Huang (b17) 2014; 49 Gao, Zhang (b8) 2020; 113 Schmid (b24) 2010; 656 Proctor, Brunton, Kutz (b21) 2016; 15 Kim (b14) 2016; 65 Noack, Papas, Monkewitz (b18) 2005; 523 Bagheri (b1) 2013; 726 Taira, Brunton, Dawson, Rowley, Colonius, Mckeon, Schmidt, Gordeyev, Theofilis, Ukeiley (b26) 2017; 55 Perret, Collin, Delville (b20) 2006; 7 Brunton, Noack, Koumoutsakos (b3) 2020; 52 Falkiewicz, Cesnik, Crowell, Mcnamara (b7) 2010; 49 Liu (10.1016/j.jfluidstructs.2022.103549_b17) 2014; 49 Xie (10.1016/j.jfluidstructs.2022.103549_b29) 2014; 52 Kou (10.1016/j.jfluidstructs.2022.103549_b15) 2019; 31 Brunton (10.1016/j.jfluidstructs.2022.103549_b4) 2016; 113 Rowley (10.1016/j.jfluidstructs.2022.103549_b22) 2004; 189 Chen (10.1016/j.jfluidstructs.2022.103549_b5) 2012; 49 Seena (10.1016/j.jfluidstructs.2022.103549_b25) 2011; 32 Gao (10.1016/j.jfluidstructs.2022.103549_b8) 2020; 113 Proctor (10.1016/j.jfluidstructs.2022.103549_b21) 2016; 15 Glaz (10.1016/j.jfluidstructs.2022.103549_b9) 2010; 48 Falkiewicz (10.1016/j.jfluidstructs.2022.103549_b7) 2010; 49 Huang (10.1016/j.jfluidstructs.2022.103549_b12) 2014; 52 Rowley (10.1016/j.jfluidstructs.2022.103549_b23) 2009; 641 Taira (10.1016/j.jfluidstructs.2022.103549_b27) 2020; 58 Berkooz (10.1016/j.jfluidstructs.2022.103549_b2) 1993; 25 Opgenoord (10.1016/j.jfluidstructs.2022.103549_b19) 2018; 56 Willcox (10.1016/j.jfluidstructs.2022.103549_b28) 2002; 40 Brunton (10.1016/j.jfluidstructs.2022.103549_b3) 2020; 52 Holmes (10.1016/j.jfluidstructs.2022.103549_b11) 1989 Hall (10.1016/j.jfluidstructs.2022.103549_b10) 2000; 38 Taira (10.1016/j.jfluidstructs.2022.103549_b26) 2017; 55 Kim (10.1016/j.jfluidstructs.2022.103549_b14) 2016; 65 Schmid (10.1016/j.jfluidstructs.2022.103549_b24) 2010; 656 Yao (10.1016/j.jfluidstructs.2022.103549_b30) 2017; 55 Dawson (10.1016/j.jfluidstructs.2022.103549_b6) 2016; 57 Bagheri (10.1016/j.jfluidstructs.2022.103549_b1) 2013; 726 Huang (10.1016/j.jfluidstructs.2022.103549_b13) 2018; 56 Zhang (10.1016/j.jfluidstructs.2022.103549_b31) 2012; 50 Perret (10.1016/j.jfluidstructs.2022.103549_b20) 2006; 7 Lindhorst (10.1016/j.jfluidstructs.2022.103549_b16) 2014; 52 Noack (10.1016/j.jfluidstructs.2022.103549_b18) 2005; 523 |
References_xml | – volume: 113 year: 2020 ident: b8 article-title: Transonic aeroelasticity: A new perspective from the fluid mode publication-title: Prog. Aerosp. Sci. – volume: 7 year: 2006 ident: b20 article-title: Polynomial identification of POD based low-order dynamical system publication-title: J. Turbul. – volume: 52 start-page: 1952 year: 2014 end-page: 1966 ident: b16 article-title: Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes publication-title: AIAA J. – volume: 726 start-page: 596 year: 2013 end-page: 623 ident: b1 article-title: Koopman-mode decomposition of the cylinder wake publication-title: J. Fluid Mech. – volume: 49 start-page: 973 year: 2012 end-page: 980 ident: b5 article-title: Adaptive reduced-order-model-based control-law design for active flutter suppression publication-title: J. Aircr. – volume: 40 start-page: 2323 year: 2002 end-page: 2330 ident: b28 article-title: Balanced model reduction via the proper orthogonal decomposition publication-title: AIAA J. – volume: 58 start-page: 998 year: 2020 end-page: 1022 ident: b27 article-title: Modal analysis of fluid flows: applications and outlook publication-title: AIAA J. – volume: 523 start-page: 339 year: 2005 end-page: 365 ident: b18 article-title: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows publication-title: J. Fluid Mech. – volume: 52 start-page: 477 year: 2020 end-page: 508 ident: b3 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 49 start-page: 1625 year: 2010 end-page: 1646 ident: b7 article-title: Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation publication-title: AIAA J. – volume: 641 start-page: 115 year: 2009 end-page: 127 ident: b23 article-title: Spectral analysis of nonlinear flows publication-title: J. Fluid Mech. – year: 1989 ident: b11 article-title: Solution of the 2D Navier–Stokes equations on unstructured adaptive grids publication-title: 9th Computational Fluid Dynamics Conference – volume: 55 start-page: 4013 year: 2017 end-page: 4041 ident: b26 article-title: Modal analysis of fluid flows: an overview publication-title: AIAA J. – volume: 15 start-page: 142 year: 2016 end-page: 161 ident: b21 article-title: Dynamic mode decomposition with control publication-title: SIAM J. Appl. Dyn. Syst. – volume: 56 start-page: 3718 year: 2018 end-page: 3731 ident: b13 article-title: Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems publication-title: AIAA J. – volume: 55 start-page: 624 year: 2017 end-page: 637 ident: b30 article-title: Nonlinear aerodynamic and aeroelastic model reduction using a discrete empirical interpolation method publication-title: AIAA J. – volume: 32 start-page: 1098 year: 2011 end-page: 1110 ident: b25 article-title: Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations publication-title: Int. J. Heat Fluid Flow – volume: 57 start-page: 42 year: 2016 ident: b6 article-title: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition publication-title: Exp. Fluids – volume: 48 start-page: 2418 year: 2010 end-page: 2429 ident: b9 article-title: Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework publication-title: AIAA J. – volume: 38 start-page: 1853 year: 2000 end-page: 1862 ident: b10 article-title: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows publication-title: AIAA J. – volume: 25 start-page: 539 year: 1993 end-page: 575 ident: b2 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. – volume: 65 start-page: 196 year: 2016 end-page: 216 ident: b14 article-title: Parametric model reduction for aeroelastic systems: invariant aeroelastic modes publication-title: J. Fluids Struct. – volume: 56 start-page: 1519 year: 2018 end-page: 1531 ident: b19 article-title: Physics-based low-order model for transonic flutter prediction publication-title: AIAA J. – volume: 49 start-page: 728 year: 2014 end-page: 741 ident: b17 article-title: Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations publication-title: J. Fluids Struct. – volume: 52 start-page: 1219 year: 2014 end-page: 1231 ident: b12 article-title: Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems publication-title: AIAA J. – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: b24 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: b4 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 year: 2019 ident: b15 article-title: Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows publication-title: Phys. Fluids – volume: 189 start-page: 115 year: 2004 end-page: 129 ident: b22 article-title: Model reduction for compressible flows using POD and Galerkin projection publication-title: Physica D – volume: 50 start-page: 1019 year: 2012 end-page: 1028 ident: b31 article-title: Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models publication-title: AIAA J. – volume: 52 start-page: 229 year: 2014 end-page: 241 ident: b29 article-title: Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations publication-title: AIAA J. – year: 1989 ident: 10.1016/j.jfluidstructs.2022.103549_b11 article-title: Solution of the 2D Navier–Stokes equations on unstructured adaptive grids – volume: 7 issue: N17 year: 2006 ident: 10.1016/j.jfluidstructs.2022.103549_b20 article-title: Polynomial identification of POD based low-order dynamical system publication-title: J. Turbul. – volume: 113 year: 2020 ident: 10.1016/j.jfluidstructs.2022.103549_b8 article-title: Transonic aeroelasticity: A new perspective from the fluid mode publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2019.100596 – volume: 726 start-page: 596 year: 2013 ident: 10.1016/j.jfluidstructs.2022.103549_b1 article-title: Koopman-mode decomposition of the cylinder wake publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.249 – volume: 52 start-page: 1219 issue: 6 year: 2014 ident: 10.1016/j.jfluidstructs.2022.103549_b12 article-title: Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems publication-title: AIAA J. doi: 10.2514/1.J052323 – volume: 56 start-page: 1519 issue: 4 year: 2018 ident: 10.1016/j.jfluidstructs.2022.103549_b19 article-title: Physics-based low-order model for transonic flutter prediction publication-title: AIAA J. doi: 10.2514/1.J056710 – volume: 55 start-page: 4013 issue: 12 year: 2017 ident: 10.1016/j.jfluidstructs.2022.103549_b26 article-title: Modal analysis of fluid flows: an overview publication-title: AIAA J. doi: 10.2514/1.J056060 – volume: 52 start-page: 1952 issue: 9 year: 2014 ident: 10.1016/j.jfluidstructs.2022.103549_b16 article-title: Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes publication-title: AIAA J. doi: 10.2514/1.J052725 – volume: 15 start-page: 142 issue: 1 year: 2016 ident: 10.1016/j.jfluidstructs.2022.103549_b21 article-title: Dynamic mode decomposition with control publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/15M1013857 – volume: 32 start-page: 1098 issue: 6 year: 2011 ident: 10.1016/j.jfluidstructs.2022.103549_b25 article-title: Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2011.09.008 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 10.1016/j.jfluidstructs.2022.103549_b2 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.25.010193.002543 – volume: 52 start-page: 477 year: 2020 ident: 10.1016/j.jfluidstructs.2022.103549_b3 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10.1016/j.jfluidstructs.2022.103549_b4 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517384113 – volume: 641 start-page: 115 year: 2009 ident: 10.1016/j.jfluidstructs.2022.103549_b23 article-title: Spectral analysis of nonlinear flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112009992059 – volume: 49 start-page: 728 year: 2014 ident: 10.1016/j.jfluidstructs.2022.103549_b17 article-title: Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.06.015 – volume: 40 start-page: 2323 issue: 11 year: 2002 ident: 10.1016/j.jfluidstructs.2022.103549_b28 article-title: Balanced model reduction via the proper orthogonal decomposition publication-title: AIAA J. doi: 10.2514/2.1570 – volume: 189 start-page: 115 issue: 1–2 year: 2004 ident: 10.1016/j.jfluidstructs.2022.103549_b22 article-title: Model reduction for compressible flows using POD and Galerkin projection publication-title: Physica D doi: 10.1016/j.physd.2003.03.001 – volume: 38 start-page: 1853 issue: 10 year: 2000 ident: 10.1016/j.jfluidstructs.2022.103549_b10 article-title: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows publication-title: AIAA J. doi: 10.2514/2.867 – volume: 56 start-page: 3718 issue: 9 year: 2018 ident: 10.1016/j.jfluidstructs.2022.103549_b13 article-title: Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems publication-title: AIAA J. doi: 10.2514/1.J056760 – volume: 48 start-page: 2418 issue: 10 year: 2010 ident: 10.1016/j.jfluidstructs.2022.103549_b9 article-title: Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework publication-title: AIAA J. doi: 10.2514/1.J050471 – volume: 65 start-page: 196 year: 2016 ident: 10.1016/j.jfluidstructs.2022.103549_b14 article-title: Parametric model reduction for aeroelastic systems: invariant aeroelastic modes publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2016.05.006 – volume: 49 start-page: 973 year: 2012 ident: 10.1016/j.jfluidstructs.2022.103549_b5 article-title: Adaptive reduced-order-model-based control-law design for active flutter suppression publication-title: J. Aircr. doi: 10.2514/1.C031236 – volume: 58 start-page: 998 issue: 3 year: 2020 ident: 10.1016/j.jfluidstructs.2022.103549_b27 article-title: Modal analysis of fluid flows: applications and outlook publication-title: AIAA J. doi: 10.2514/1.J058462 – volume: 57 start-page: 42 issue: 3 year: 2016 ident: 10.1016/j.jfluidstructs.2022.103549_b6 article-title: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition publication-title: Exp. Fluids doi: 10.1007/s00348-016-2127-7 – volume: 49 start-page: 1625 issue: 8 year: 2010 ident: 10.1016/j.jfluidstructs.2022.103549_b7 article-title: Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation publication-title: AIAA J. doi: 10.2514/1.J050802 – volume: 52 start-page: 229 issue: 2 year: 2014 ident: 10.1016/j.jfluidstructs.2022.103549_b29 article-title: Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations publication-title: AIAA J. doi: 10.2514/1.J051989 – volume: 55 start-page: 624 issue: 2 year: 2017 ident: 10.1016/j.jfluidstructs.2022.103549_b30 article-title: Nonlinear aerodynamic and aeroelastic model reduction using a discrete empirical interpolation method publication-title: AIAA J. doi: 10.2514/1.J055143 – volume: 31 issue: 5 year: 2019 ident: 10.1016/j.jfluidstructs.2022.103549_b15 article-title: Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows publication-title: Phys. Fluids doi: 10.1063/1.5093507 – volume: 523 start-page: 339 year: 2005 ident: 10.1016/j.jfluidstructs.2022.103549_b18 article-title: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112004002149 – volume: 50 start-page: 1019 issue: 5 year: 2012 ident: 10.1016/j.jfluidstructs.2022.103549_b31 article-title: Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models publication-title: AIAA J. doi: 10.2514/1.J050581 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.jfluidstructs.2022.103549_b24 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 |
SSID | ssj0009431 |
Score | 2.3990526 |
Snippet | The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103549 |
SubjectTerms | Data-driven modeling Fluid–structure interaction Stability analysis Transonic unsteady flow |
Title | Data-driven modeling of transonic unsteady flows and efficient analysis of fluid–structure stability |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2022.103549 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrE-SkCva9ls9lEPQqmWqtiLFnpb8oSWsi21RXoR_4P_0F_izGZrW_BQ8JiQhMlkMjOHb74h5Eppo630jQf-V3k84NpLhBSe78e-xFLGJMRq5Od21Orwx27YLZHGvBYGYZWF73c-PffWxUy10GZ11OtVXxCgA9lwxLDaBLwqVrDzGK38-mMB86hx15MQ0Ty4eotcLjBefTuY9rRjakXubsawCD1EYs2_otRS5Gnukd0iZaR1J9U-KZnsgOwsEQkeEnsnJsLTY3RdNG9uA9N0aOkEQxGy39Jplr_njNrB8P2NikxTk9NHQNSBkaMmwS25sN-fX07e6dhQSCBzCO3siHSa96-Nlld0UPAUfMWJZw23IYMvJiKuBeMhJIOJ5LG1KmGxjYUfGgU3FoEKbFKzoVU8kiwJLTdS6Sg4JhvZMDMnhPrwpjqSEPKk5L4KhGVMJEj9A0ma9GWZ3Mw1lqqCXhy7XAzSOY6sn66oO0V1p07dZcJ_N48cy8Z6227nT5OuGE0K8WCdA07_e8AZ2caRQ0Cekw1YYS4gS5nISm6GFbJZf3hqtX8A4ZTvLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qCz4O4hPfLug1lGx20-hBkKq0PnpRwVvYJ1RKKtoi3vwP_kN_iTPZ1Ad4EDxmk1kmM7szc_jmG4B9Y531OnYRxl8TiUTYKFNaRXHcijW1MmaSupGvemnnVpzfybsatCe9MASrrGJ_iOlltK5WmpU1mw_9fvOaADpYDaecuk0wqk5Bg9ipZB0ax92LTu-Le1eEsYQE6CGBadj7gnnd-8G4bwNZK9F3c0596JK4NX9LVN-Sz9kCzFdVIzsOii1CzRVLMPeNS3AZ_Ikaqcg-UvRi5XwbXGZDz0aUjYgAl42L0qUvzA-Gz09MFZa5kkECEw8-BXYSEimVfX99C_qOHx3DGrJE0b6swO3Z6U27E1VDFCKDt3EUeSe85HjLVCqs4kJiPZhp0fLeZLzlWyqWzuAfq8QkPjvw0huRap5JL5w2Nk1WoV4MC7cGLEa32lRj1tNaxCZRnnOVEfsP1mk61utwOLFYbiqGcRp0McgnULL7_Ie5czJ3Hsy9DuJT-CEQbfxN7GjimvzHuckxJfxlg43_brALM52bq8v8stu72IRZehMAkVtQx6_dNhYtI71THcoPBhnx3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+modeling+of+transonic+unsteady+flows+and+efficient+analysis+of+fluid%E2%80%93structure+stability&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Yao%2C+Xiangjie&rft.au=Huang%2C+Rui&rft.au=Hu%2C+Haiyan&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=111&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2022.103549&rft.externalDocID=S0889974622000299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |