Data-driven modeling of transonic unsteady flows and efficient analysis of fluid–structure stability

The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the fluid–structure coupling system because the state variables of the reduced-order model do not explicitly represent fluidic properties. In this s...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluids and structures Vol. 111; p. 103549
Main Authors Yao, Xiangjie, Huang, Rui, Hu, Haiyan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the fluid–structure coupling system because the state variables of the reduced-order model do not explicitly represent fluidic properties. In this study, a data-driven modeling procedure is proposed to reconstruct a physics-based, reduced-order aerodynamic model. In the procedure, the transonic unsteady flows of concern are projected onto low-dimensional base vectors first via the proper orthogonal decomposition of pressure snapshots subject to a specific structural excitation. Then a state-space representation of the temporal coefficients of proper orthogonal decomposition modes subject to the structural excitation is established by using the dynamic mode decomposition with control. Finally, for the fluid–structure stability analysis, pressure snapshots are recovered from the coefficients of proper orthogonal decomposition, and aerodynamic forces are derived by integrating the pressure coefficients around the wing surface. The state vector in above-mentioned data-driven model has a clear sense in physics with regard to pressure distribution. To demonstrate the accuracy of the proposed procedure, a two-dimensional, transonic aeroelastic wing with an NACA0012 profile is studied. The unsteady aerodynamic forces, frequency responses of the reduced-order aerodynamic model, transonic flutter boundary, and flow characteristics at the flutter condition are predicted and compared with direct computational fluid dynamic simulations. The results show that the modeling procedure can accurately predict the transonic flutter boundary and flow characteristics.
AbstractList The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the fluid–structure coupling system because the state variables of the reduced-order model do not explicitly represent fluidic properties. In this study, a data-driven modeling procedure is proposed to reconstruct a physics-based, reduced-order aerodynamic model. In the procedure, the transonic unsteady flows of concern are projected onto low-dimensional base vectors first via the proper orthogonal decomposition of pressure snapshots subject to a specific structural excitation. Then a state-space representation of the temporal coefficients of proper orthogonal decomposition modes subject to the structural excitation is established by using the dynamic mode decomposition with control. Finally, for the fluid–structure stability analysis, pressure snapshots are recovered from the coefficients of proper orthogonal decomposition, and aerodynamic forces are derived by integrating the pressure coefficients around the wing surface. The state vector in above-mentioned data-driven model has a clear sense in physics with regard to pressure distribution. To demonstrate the accuracy of the proposed procedure, a two-dimensional, transonic aeroelastic wing with an NACA0012 profile is studied. The unsteady aerodynamic forces, frequency responses of the reduced-order aerodynamic model, transonic flutter boundary, and flow characteristics at the flutter condition are predicted and compared with direct computational fluid dynamic simulations. The results show that the modeling procedure can accurately predict the transonic flutter boundary and flow characteristics.
ArticleNumber 103549
Author Huang, Rui
Hu, Haiyan
Yao, Xiangjie
Author_xml – sequence: 1
  givenname: Xiangjie
  orcidid: 0000-0002-6094-9360
  surname: Yao
  fullname: Yao, Xiangjie
– sequence: 2
  givenname: Rui
  surname: Huang
  fullname: Huang, Rui
– sequence: 3
  givenname: Haiyan
  surname: Hu
  fullname: Hu, Haiyan
  email: hhyae@nuaa.edu.cn
BookMark eNqNkE1OwzAQRi1UJErhDpFYpziOnThiVZXyI1ViA2vLsT3IUeog2y3KjjtwQ05CQtjAqqvRaPQ9ffPO0cx1ziB0leFlhrPiulk20O6tDtHvVQxLggkZLjmj1QmaZ7hiKS8ImaE55rxKq5IWZ-g8hAZjXNE8myO4lVGm2tuDccmu06a17jXpIIleutA5q5K9C9FI3SfQdu8hkU4nBsAqa1wcNtn2wYYx8lPl6-NzarP3JglR1ra1sb9ApyDbYC5_5wK93G2e1w_p9un-cb3apoqwMqZgKDBS5FwWVEtCWZUVvKYlgOKkhFJmzKjhP5mrHHgFDBQtasIZUFMrXeQLdDNxle9C8AbEm7c76XuRYTEqE434o0yMysSkbEiv_qWVjTLazg02bHskYzMxzPDmwRovwmhKGW29UVHozh7F-QaS9Zok
CitedBy_id crossref_primary_10_1016_j_jfluidstructs_2023_104023
crossref_primary_10_1063_5_0204152
crossref_primary_10_1016_j_ijmecsci_2024_109414
crossref_primary_10_1007_s11071_025_10953_3
crossref_primary_10_1016_j_jsv_2023_117847
crossref_primary_10_1109_ACCESS_2023_3306410
crossref_primary_10_1007_s11431_023_2622_x
crossref_primary_10_1016_j_eswa_2023_121324
crossref_primary_10_2514_1_C037409
crossref_primary_10_2514_1_J063360
Cites_doi 10.1016/j.paerosci.2019.100596
10.1017/jfm.2013.249
10.2514/1.J052323
10.2514/1.J056710
10.2514/1.J056060
10.2514/1.J052725
10.1137/15M1013857
10.1016/j.ijheatfluidflow.2011.09.008
10.1146/annurev.fl.25.010193.002543
10.1146/annurev-fluid-010719-060214
10.1073/pnas.1517384113
10.1017/S0022112009992059
10.1016/j.jfluidstructs.2014.06.015
10.2514/2.1570
10.1016/j.physd.2003.03.001
10.2514/2.867
10.2514/1.J056760
10.2514/1.J050471
10.1016/j.jfluidstructs.2016.05.006
10.2514/1.C031236
10.2514/1.J058462
10.1007/s00348-016-2127-7
10.2514/1.J050802
10.2514/1.J051989
10.2514/1.J055143
10.1063/1.5093507
10.1017/S0022112004002149
10.2514/1.J050581
10.1017/S0022112010001217
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jfluidstructs.2022.103549
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-8622
ExternalDocumentID 10_1016_j_jfluidstructs_2022_103549
S0889974622000299
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~A~
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c257t-fe4f52638a64da2459168b47ffc827f7a15ec103a3c3f89f5fc46b285f4ebcd63
IEDL.DBID .~1
ISSN 0889-9746
IngestDate Tue Jul 01 00:47:23 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Fri Feb 23 02:39:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data-driven modeling
Fluid–structure interaction
Stability analysis
Transonic unsteady flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-fe4f52638a64da2459168b47ffc827f7a15ec103a3c3f89f5fc46b285f4ebcd63
ORCID 0000-0002-6094-9360
ParticipantIDs crossref_primary_10_1016_j_jfluidstructs_2022_103549
crossref_citationtrail_10_1016_j_jfluidstructs_2022_103549
elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2022_103549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Journal of fluids and structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Holmes, Connel (b11) 1989
Rowley, Mezić, Bagheri, Schlatter, Henningson (b23) 2009; 641
Zhang, Wang, Ye, Quan (b31) 2012; 50
Huang, Liu, Yang, Zhao, Hu (b13) 2018; 56
Willcox, Peraire (b28) 2002; 40
Taira, Hemati, Brunton, Sun, Duraisamy, Bagheri, Dawson, Yeh (b27) 2020; 58
Yao, Marques (b30) 2017; 55
Berkooz, Holmes, Lumley (b2) 1993; 25
Hall, Thomas, Dowell (b10) 2000; 38
Brunton, Proctor, Kutz (b4) 2016; 113
Xie, Xu, Dowell (b29) 2014; 52
Chen, Sun, Li (b5) 2012; 49
Dawson, Hemati, Williams, Rowley (b6) 2016; 57
Kou, Zhang (b15) 2019; 31
Rowley, Colonius, Murray (b22) 2004; 189
Lindhorst, Haupt, Horst (b16) 2014; 52
Seena, Sung (b25) 2011; 32
Huang, Hu, Zhao (b12) 2014; 52
Opgenoord, Drela, Willcox (b19) 2018; 56
Glaz, Friedmann, Liu, Cajigas, Bain, Sankar (b9) 2010; 48
Liu, Hu, Zhao, Huang (b17) 2014; 49
Gao, Zhang (b8) 2020; 113
Schmid (b24) 2010; 656
Proctor, Brunton, Kutz (b21) 2016; 15
Kim (b14) 2016; 65
Noack, Papas, Monkewitz (b18) 2005; 523
Bagheri (b1) 2013; 726
Taira, Brunton, Dawson, Rowley, Colonius, Mckeon, Schmidt, Gordeyev, Theofilis, Ukeiley (b26) 2017; 55
Perret, Collin, Delville (b20) 2006; 7
Brunton, Noack, Koumoutsakos (b3) 2020; 52
Falkiewicz, Cesnik, Crowell, Mcnamara (b7) 2010; 49
Liu (10.1016/j.jfluidstructs.2022.103549_b17) 2014; 49
Xie (10.1016/j.jfluidstructs.2022.103549_b29) 2014; 52
Kou (10.1016/j.jfluidstructs.2022.103549_b15) 2019; 31
Brunton (10.1016/j.jfluidstructs.2022.103549_b4) 2016; 113
Rowley (10.1016/j.jfluidstructs.2022.103549_b22) 2004; 189
Chen (10.1016/j.jfluidstructs.2022.103549_b5) 2012; 49
Seena (10.1016/j.jfluidstructs.2022.103549_b25) 2011; 32
Gao (10.1016/j.jfluidstructs.2022.103549_b8) 2020; 113
Proctor (10.1016/j.jfluidstructs.2022.103549_b21) 2016; 15
Glaz (10.1016/j.jfluidstructs.2022.103549_b9) 2010; 48
Falkiewicz (10.1016/j.jfluidstructs.2022.103549_b7) 2010; 49
Huang (10.1016/j.jfluidstructs.2022.103549_b12) 2014; 52
Rowley (10.1016/j.jfluidstructs.2022.103549_b23) 2009; 641
Taira (10.1016/j.jfluidstructs.2022.103549_b27) 2020; 58
Berkooz (10.1016/j.jfluidstructs.2022.103549_b2) 1993; 25
Opgenoord (10.1016/j.jfluidstructs.2022.103549_b19) 2018; 56
Willcox (10.1016/j.jfluidstructs.2022.103549_b28) 2002; 40
Brunton (10.1016/j.jfluidstructs.2022.103549_b3) 2020; 52
Holmes (10.1016/j.jfluidstructs.2022.103549_b11) 1989
Hall (10.1016/j.jfluidstructs.2022.103549_b10) 2000; 38
Taira (10.1016/j.jfluidstructs.2022.103549_b26) 2017; 55
Kim (10.1016/j.jfluidstructs.2022.103549_b14) 2016; 65
Schmid (10.1016/j.jfluidstructs.2022.103549_b24) 2010; 656
Yao (10.1016/j.jfluidstructs.2022.103549_b30) 2017; 55
Dawson (10.1016/j.jfluidstructs.2022.103549_b6) 2016; 57
Bagheri (10.1016/j.jfluidstructs.2022.103549_b1) 2013; 726
Huang (10.1016/j.jfluidstructs.2022.103549_b13) 2018; 56
Zhang (10.1016/j.jfluidstructs.2022.103549_b31) 2012; 50
Perret (10.1016/j.jfluidstructs.2022.103549_b20) 2006; 7
Lindhorst (10.1016/j.jfluidstructs.2022.103549_b16) 2014; 52
Noack (10.1016/j.jfluidstructs.2022.103549_b18) 2005; 523
References_xml – volume: 113
  year: 2020
  ident: b8
  article-title: Transonic aeroelasticity: A new perspective from the fluid mode
  publication-title: Prog. Aerosp. Sci.
– volume: 7
  year: 2006
  ident: b20
  article-title: Polynomial identification of POD based low-order dynamical system
  publication-title: J. Turbul.
– volume: 52
  start-page: 1952
  year: 2014
  end-page: 1966
  ident: b16
  article-title: Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes
  publication-title: AIAA J.
– volume: 726
  start-page: 596
  year: 2013
  end-page: 623
  ident: b1
  article-title: Koopman-mode decomposition of the cylinder wake
  publication-title: J. Fluid Mech.
– volume: 49
  start-page: 973
  year: 2012
  end-page: 980
  ident: b5
  article-title: Adaptive reduced-order-model-based control-law design for active flutter suppression
  publication-title: J. Aircr.
– volume: 40
  start-page: 2323
  year: 2002
  end-page: 2330
  ident: b28
  article-title: Balanced model reduction via the proper orthogonal decomposition
  publication-title: AIAA J.
– volume: 58
  start-page: 998
  year: 2020
  end-page: 1022
  ident: b27
  article-title: Modal analysis of fluid flows: applications and outlook
  publication-title: AIAA J.
– volume: 523
  start-page: 339
  year: 2005
  end-page: 365
  ident: b18
  article-title: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows
  publication-title: J. Fluid Mech.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b3
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 49
  start-page: 1625
  year: 2010
  end-page: 1646
  ident: b7
  article-title: Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation
  publication-title: AIAA J.
– volume: 641
  start-page: 115
  year: 2009
  end-page: 127
  ident: b23
  article-title: Spectral analysis of nonlinear flows
  publication-title: J. Fluid Mech.
– year: 1989
  ident: b11
  article-title: Solution of the 2D Navier–Stokes equations on unstructured adaptive grids
  publication-title: 9th Computational Fluid Dynamics Conference
– volume: 55
  start-page: 4013
  year: 2017
  end-page: 4041
  ident: b26
  article-title: Modal analysis of fluid flows: an overview
  publication-title: AIAA J.
– volume: 15
  start-page: 142
  year: 2016
  end-page: 161
  ident: b21
  article-title: Dynamic mode decomposition with control
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 56
  start-page: 3718
  year: 2018
  end-page: 3731
  ident: b13
  article-title: Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems
  publication-title: AIAA J.
– volume: 55
  start-page: 624
  year: 2017
  end-page: 637
  ident: b30
  article-title: Nonlinear aerodynamic and aeroelastic model reduction using a discrete empirical interpolation method
  publication-title: AIAA J.
– volume: 32
  start-page: 1098
  year: 2011
  end-page: 1110
  ident: b25
  article-title: Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
  publication-title: Int. J. Heat Fluid Flow
– volume: 57
  start-page: 42
  year: 2016
  ident: b6
  article-title: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition
  publication-title: Exp. Fluids
– volume: 48
  start-page: 2418
  year: 2010
  end-page: 2429
  ident: b9
  article-title: Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework
  publication-title: AIAA J.
– volume: 38
  start-page: 1853
  year: 2000
  end-page: 1862
  ident: b10
  article-title: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows
  publication-title: AIAA J.
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: b2
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 65
  start-page: 196
  year: 2016
  end-page: 216
  ident: b14
  article-title: Parametric model reduction for aeroelastic systems: invariant aeroelastic modes
  publication-title: J. Fluids Struct.
– volume: 56
  start-page: 1519
  year: 2018
  end-page: 1531
  ident: b19
  article-title: Physics-based low-order model for transonic flutter prediction
  publication-title: AIAA J.
– volume: 49
  start-page: 728
  year: 2014
  end-page: 741
  ident: b17
  article-title: Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations
  publication-title: J. Fluids Struct.
– volume: 52
  start-page: 1219
  year: 2014
  end-page: 1231
  ident: b12
  article-title: Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems
  publication-title: AIAA J.
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  ident: b24
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: b4
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  year: 2019
  ident: b15
  article-title: Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows
  publication-title: Phys. Fluids
– volume: 189
  start-page: 115
  year: 2004
  end-page: 129
  ident: b22
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D
– volume: 50
  start-page: 1019
  year: 2012
  end-page: 1028
  ident: b31
  article-title: Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models
  publication-title: AIAA J.
– volume: 52
  start-page: 229
  year: 2014
  end-page: 241
  ident: b29
  article-title: Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations
  publication-title: AIAA J.
– year: 1989
  ident: 10.1016/j.jfluidstructs.2022.103549_b11
  article-title: Solution of the 2D Navier–Stokes equations on unstructured adaptive grids
– volume: 7
  issue: N17
  year: 2006
  ident: 10.1016/j.jfluidstructs.2022.103549_b20
  article-title: Polynomial identification of POD based low-order dynamical system
  publication-title: J. Turbul.
– volume: 113
  year: 2020
  ident: 10.1016/j.jfluidstructs.2022.103549_b8
  article-title: Transonic aeroelasticity: A new perspective from the fluid mode
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2019.100596
– volume: 726
  start-page: 596
  year: 2013
  ident: 10.1016/j.jfluidstructs.2022.103549_b1
  article-title: Koopman-mode decomposition of the cylinder wake
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.249
– volume: 52
  start-page: 1219
  issue: 6
  year: 2014
  ident: 10.1016/j.jfluidstructs.2022.103549_b12
  article-title: Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems
  publication-title: AIAA J.
  doi: 10.2514/1.J052323
– volume: 56
  start-page: 1519
  issue: 4
  year: 2018
  ident: 10.1016/j.jfluidstructs.2022.103549_b19
  article-title: Physics-based low-order model for transonic flutter prediction
  publication-title: AIAA J.
  doi: 10.2514/1.J056710
– volume: 55
  start-page: 4013
  issue: 12
  year: 2017
  ident: 10.1016/j.jfluidstructs.2022.103549_b26
  article-title: Modal analysis of fluid flows: an overview
  publication-title: AIAA J.
  doi: 10.2514/1.J056060
– volume: 52
  start-page: 1952
  issue: 9
  year: 2014
  ident: 10.1016/j.jfluidstructs.2022.103549_b16
  article-title: Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes
  publication-title: AIAA J.
  doi: 10.2514/1.J052725
– volume: 15
  start-page: 142
  issue: 1
  year: 2016
  ident: 10.1016/j.jfluidstructs.2022.103549_b21
  article-title: Dynamic mode decomposition with control
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/15M1013857
– volume: 32
  start-page: 1098
  issue: 6
  year: 2011
  ident: 10.1016/j.jfluidstructs.2022.103549_b25
  article-title: Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2011.09.008
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.jfluidstructs.2022.103549_b2
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 52
  start-page: 477
  year: 2020
  ident: 10.1016/j.jfluidstructs.2022.103549_b3
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.jfluidstructs.2022.103549_b4
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517384113
– volume: 641
  start-page: 115
  year: 2009
  ident: 10.1016/j.jfluidstructs.2022.103549_b23
  article-title: Spectral analysis of nonlinear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009992059
– volume: 49
  start-page: 728
  year: 2014
  ident: 10.1016/j.jfluidstructs.2022.103549_b17
  article-title: Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.06.015
– volume: 40
  start-page: 2323
  issue: 11
  year: 2002
  ident: 10.1016/j.jfluidstructs.2022.103549_b28
  article-title: Balanced model reduction via the proper orthogonal decomposition
  publication-title: AIAA J.
  doi: 10.2514/2.1570
– volume: 189
  start-page: 115
  issue: 1–2
  year: 2004
  ident: 10.1016/j.jfluidstructs.2022.103549_b22
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D
  doi: 10.1016/j.physd.2003.03.001
– volume: 38
  start-page: 1853
  issue: 10
  year: 2000
  ident: 10.1016/j.jfluidstructs.2022.103549_b10
  article-title: Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows
  publication-title: AIAA J.
  doi: 10.2514/2.867
– volume: 56
  start-page: 3718
  issue: 9
  year: 2018
  ident: 10.1016/j.jfluidstructs.2022.103549_b13
  article-title: Nonlinear reduced-order models for transonic aeroelastic and aeroservoelastic problems
  publication-title: AIAA J.
  doi: 10.2514/1.J056760
– volume: 48
  start-page: 2418
  issue: 10
  year: 2010
  ident: 10.1016/j.jfluidstructs.2022.103549_b9
  article-title: Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework
  publication-title: AIAA J.
  doi: 10.2514/1.J050471
– volume: 65
  start-page: 196
  year: 2016
  ident: 10.1016/j.jfluidstructs.2022.103549_b14
  article-title: Parametric model reduction for aeroelastic systems: invariant aeroelastic modes
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2016.05.006
– volume: 49
  start-page: 973
  year: 2012
  ident: 10.1016/j.jfluidstructs.2022.103549_b5
  article-title: Adaptive reduced-order-model-based control-law design for active flutter suppression
  publication-title: J. Aircr.
  doi: 10.2514/1.C031236
– volume: 58
  start-page: 998
  issue: 3
  year: 2020
  ident: 10.1016/j.jfluidstructs.2022.103549_b27
  article-title: Modal analysis of fluid flows: applications and outlook
  publication-title: AIAA J.
  doi: 10.2514/1.J058462
– volume: 57
  start-page: 42
  issue: 3
  year: 2016
  ident: 10.1016/j.jfluidstructs.2022.103549_b6
  article-title: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-016-2127-7
– volume: 49
  start-page: 1625
  issue: 8
  year: 2010
  ident: 10.1016/j.jfluidstructs.2022.103549_b7
  article-title: Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation
  publication-title: AIAA J.
  doi: 10.2514/1.J050802
– volume: 52
  start-page: 229
  issue: 2
  year: 2014
  ident: 10.1016/j.jfluidstructs.2022.103549_b29
  article-title: Proper orthogonal decomposition reduced-order model for nonlinear aeroelastic oscillations
  publication-title: AIAA J.
  doi: 10.2514/1.J051989
– volume: 55
  start-page: 624
  issue: 2
  year: 2017
  ident: 10.1016/j.jfluidstructs.2022.103549_b30
  article-title: Nonlinear aerodynamic and aeroelastic model reduction using a discrete empirical interpolation method
  publication-title: AIAA J.
  doi: 10.2514/1.J055143
– volume: 31
  issue: 5
  year: 2019
  ident: 10.1016/j.jfluidstructs.2022.103549_b15
  article-title: Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.5093507
– volume: 523
  start-page: 339
  year: 2005
  ident: 10.1016/j.jfluidstructs.2022.103549_b18
  article-title: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004002149
– volume: 50
  start-page: 1019
  issue: 5
  year: 2012
  ident: 10.1016/j.jfluidstructs.2022.103549_b31
  article-title: Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models
  publication-title: AIAA J.
  doi: 10.2514/1.J050581
– volume: 656
  start-page: 5
  year: 2010
  ident: 10.1016/j.jfluidstructs.2022.103549_b24
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001217
SSID ssj0009431
Score 2.3990526
Snippet The reduced-order aerodynamic models constructed via the linear/nonlinear system identification methodologies cannot reveal the flow characteristics of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103549
SubjectTerms Data-driven modeling
Fluid–structure interaction
Stability analysis
Transonic unsteady flow
Title Data-driven modeling of transonic unsteady flows and efficient analysis of fluid–structure stability
URI https://dx.doi.org/10.1016/j.jfluidstructs.2022.103549
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrE-SkCva9ls9lEPQqmWqtiLFnpb8oSWsi21RXoR_4P_0F_izGZrW_BQ8JiQhMlkMjOHb74h5Eppo630jQf-V3k84NpLhBSe78e-xFLGJMRq5Od21Orwx27YLZHGvBYGYZWF73c-PffWxUy10GZ11OtVXxCgA9lwxLDaBLwqVrDzGK38-mMB86hx15MQ0Ty4eotcLjBefTuY9rRjakXubsawCD1EYs2_otRS5Gnukd0iZaR1J9U-KZnsgOwsEQkeEnsnJsLTY3RdNG9uA9N0aOkEQxGy39Jplr_njNrB8P2NikxTk9NHQNSBkaMmwS25sN-fX07e6dhQSCBzCO3siHSa96-Nlld0UPAUfMWJZw23IYMvJiKuBeMhJIOJ5LG1KmGxjYUfGgU3FoEKbFKzoVU8kiwJLTdS6Sg4JhvZMDMnhPrwpjqSEPKk5L4KhGVMJEj9A0ma9GWZ3Mw1lqqCXhy7XAzSOY6sn66oO0V1p07dZcJ_N48cy8Z6227nT5OuGE0K8WCdA07_e8AZ2caRQ0Cekw1YYS4gS5nISm6GFbJZf3hqtX8A4ZTvLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qCz4O4hPfLug1lGx20-hBkKq0PnpRwVvYJ1RKKtoi3vwP_kN_iTPZ1Ad4EDxmk1kmM7szc_jmG4B9Y531OnYRxl8TiUTYKFNaRXHcijW1MmaSupGvemnnVpzfybsatCe9MASrrGJ_iOlltK5WmpU1mw_9fvOaADpYDaecuk0wqk5Bg9ipZB0ax92LTu-Le1eEsYQE6CGBadj7gnnd-8G4bwNZK9F3c0596JK4NX9LVN-Sz9kCzFdVIzsOii1CzRVLMPeNS3AZ_Ikaqcg-UvRi5XwbXGZDz0aUjYgAl42L0qUvzA-Gz09MFZa5kkECEw8-BXYSEimVfX99C_qOHx3DGrJE0b6swO3Z6U27E1VDFCKDt3EUeSe85HjLVCqs4kJiPZhp0fLeZLzlWyqWzuAfq8QkPjvw0huRap5JL5w2Nk1WoV4MC7cGLEa32lRj1tNaxCZRnnOVEfsP1mk61utwOLFYbiqGcRp0McgnULL7_Ie5czJ3Hsy9DuJT-CEQbfxN7GjimvzHuckxJfxlg43_brALM52bq8v8stu72IRZehMAkVtQx6_dNhYtI71THcoPBhnx3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+modeling+of+transonic+unsteady+flows+and+efficient+analysis+of+fluid%E2%80%93structure+stability&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Yao%2C+Xiangjie&rft.au=Huang%2C+Rui&rft.au=Hu%2C+Haiyan&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=111&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2022.103549&rft.externalDocID=S0889974622000299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon