Temperature-dependent broadening of spectral lineshapes and kinetics of luminescence centers in monoclinic gallium oxide nanowires
The broadening of spectral lineshapes and kinetics of luminescence centers in highly crystalline monoclinic gallium oxide (β-Ga2O3) nanowires have been investigated through temperature-dependent cathodoluminescence (CL), transient photoluminescence (PL) as well as hybrid density functional theory (D...
Saved in:
Published in | Journal of alloys and compounds Vol. 1010; p. 177609 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The broadening of spectral lineshapes and kinetics of luminescence centers in highly crystalline monoclinic gallium oxide (β-Ga2O3) nanowires have been investigated through temperature-dependent cathodoluminescence (CL), transient photoluminescence (PL) as well as hybrid density functional theory (DFT). The results indicate that the holes are trapped onto two distinct sites of oxygen, forming two self-trap holes (STHs), namely STHO1 and STHO3, which are stable and optically active luminescence centers in β-Ga2O3 nanowires depending on temperature. The nanowires exhibit an ultraviolet luminescence (UVL) band at room temperature. The spectral lineshape of this UVL band shows an asymmetric broadening with decreasing temperature, which leads to the emergence of a new deep ultraviolet luminescence (DUVL) band below 220 K. These UVL and DUVL bands in β-Ga2O3 nanowires are attributed to STHO3 and STHO1 luminescence centers, which show similar thermal quenching behavior and possess short decay time constants of 7.11 and 5.25 ns, respectively. Hybrid DFT calculations and simulation of the UVL and DUVL bands using the Franck-Condon model reveal the vibronic coupling strength, zero phonon energies, and self-trapping energies of STHO1 and STHO3.
•Holes are trapped in oxygen to form two types of self-trapped holes (STHs), namely STHo1 and STHo3 in β-Ga2O3.•Both the STHo1 and STHo3 are optically active luminescence centers in β-Ga2O3 nanowires.•The β-Ga2O3 nanowires show strong ultraviolet and deep ultraviolet emissions at 80 K attributed to STHo1 and STHo3.•Franck-Condon analysis reveals the thermodynamic transition and phonon coupling strengths of these luminescence centers. |
---|---|
AbstractList | The broadening of spectral lineshapes and kinetics of luminescence centers in highly crystalline monoclinic gallium oxide (β-Ga2O3) nanowires have been investigated through temperature-dependent cathodoluminescence (CL), transient photoluminescence (PL) as well as hybrid density functional theory (DFT). The results indicate that the holes are trapped onto two distinct sites of oxygen, forming two self-trap holes (STHs), namely STHO1 and STHO3, which are stable and optically active luminescence centers in β-Ga2O3 nanowires depending on temperature. The nanowires exhibit an ultraviolet luminescence (UVL) band at room temperature. The spectral lineshape of this UVL band shows an asymmetric broadening with decreasing temperature, which leads to the emergence of a new deep ultraviolet luminescence (DUVL) band below 220 K. These UVL and DUVL bands in β-Ga2O3 nanowires are attributed to STHO3 and STHO1 luminescence centers, which show similar thermal quenching behavior and possess short decay time constants of 7.11 and 5.25 ns, respectively. Hybrid DFT calculations and simulation of the UVL and DUVL bands using the Franck-Condon model reveal the vibronic coupling strength, zero phonon energies, and self-trapping energies of STHO1 and STHO3.
•Holes are trapped in oxygen to form two types of self-trapped holes (STHs), namely STHo1 and STHo3 in β-Ga2O3.•Both the STHo1 and STHo3 are optically active luminescence centers in β-Ga2O3 nanowires.•The β-Ga2O3 nanowires show strong ultraviolet and deep ultraviolet emissions at 80 K attributed to STHo1 and STHo3.•Franck-Condon analysis reveals the thermodynamic transition and phonon coupling strengths of these luminescence centers. |
ArticleNumber | 177609 |
Author | Paul, Dholon Kumar Chowdhury, Tasfia Ton-That, Cuong Rahman, M. Azizar Rahaman, Md. Rabiur |
Author_xml | – sequence: 1 givenname: Tasfia surname: Chowdhury fullname: Chowdhury, Tasfia organization: Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh – sequence: 2 givenname: Dholon Kumar surname: Paul fullname: Paul, Dholon Kumar organization: Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh – sequence: 3 givenname: Md. Rabiur surname: Rahaman fullname: Rahaman, Md. Rabiur organization: Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh – sequence: 4 givenname: Cuong surname: Ton-That fullname: Ton-That, Cuong organization: School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia – sequence: 5 givenname: M. Azizar surname: Rahman fullname: Rahman, M. Azizar email: azizar@phy.buet.ac.bd organization: Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh |
BookMark | eNqFUMtOwzAQ9KFItIVPQPIPJNhJnDgnhCpeUiUu5Wy5m01xSOzITnlc-XIctXcu-9DOjGZnRRbWWSTkhrOUM17edmmn-x7ckGYsK1JeVSWrF2TJ6kwkMpfykqxC6BhjvM75kvzucBjR6-noMWlwRNugnejeOx0HYw_UtTSMCJPXPe2NxfCuRwxU24Z-xHUyEGZMfxzmI6AFpLFO6AM1lg7OOog8A_QQnZnjQN23aZBabd2X8RiuyEWr-4DX574mb48Pu81zsn19etncbxPIRDUlbTQELQqZIysysQdW1KXAYl9XBdMAlQQmkWOpmRRaN5pXuRQShIxgwZt8TcRJF7wLwWOrRm8G7X8UZ2oOT3XqHJ6aw1On8CLv7sTDaO7ToFcBzPxmE93DpBpn_lH4A0u9g1Y |
Cites_doi | 10.1063/5.0219595 10.1021/acs.jpcc.3c07684 10.1017/S1431927603030204 10.1103/PhysRevB.44.943 10.1063/1.1928322 10.1016/j.jallcom.2019.06.224 10.1088/1361-6641/aadf78 10.1038/srep42132 10.1021/acs.jpclett.8b02892 10.1016/j.jallcom.2019.152026 10.1002/adma.200306299 10.1063/1.1760074 10.1063/1.5110535 10.1088/1361-6528/aad7d2 10.1016/S0022-3697(98)00047-X 10.1038/s41598-018-36676-7 10.1016/j.jpcs.2014.06.005 10.1063/1.5007095 10.1063/1.363903 10.1063/1.2910768 10.1016/j.jallcom.2019.152842 10.1103/PhysRevB.85.081109 10.1209/epl/i1996-00441-9 10.1063/5.0219987 10.1016/j.mssp.2017.10.040 10.1016/j.jallcom.2023.168732 10.1021/acs.jpclett.2c00682 10.1021/acsanm.4c02228 10.1063/1.1374498 10.1016/j.nima.2018.01.023 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jallcom.2024.177609 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
ExternalDocumentID | 10_1016_j_jallcom_2024_177609 S0925838824041975 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSH SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SMS T9H WUQ |
ID | FETCH-LOGICAL-c257t-fadecfe583e0425bc04965e4b9740acc78c08e1e6a085aada173858c5825b51d3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Tue Jul 01 05:09:28 EDT 2025 Sun May 04 07:42:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ga2O3 nanowires Density functional theory, luminescence centers, cathodoluminescence Carrier dynamics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-fadecfe583e0425bc04965e4b9740acc78c08e1e6a085aada173858c5825b51d3 |
ParticipantIDs | crossref_primary_10_1016_j_jallcom_2024_177609 elsevier_sciencedirect_doi_10_1016_j_jallcom_2024_177609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-05 |
PublicationDateYYYYMMDD | 2025-01-05 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Liu, Tu, Zhai, He, Lu (bib6) 2023; 939 Binet, Gourier (bib12) 1998; 59 Wang, Zhang, Saito, Tanaka, Nishio, Guo (bib17) 2014; 75 Ye, Gu, Zhu, Liu, Zheng, Zhang, Shi (bib26) 2005; 86 Phillips, Telg, Kucheyev, Gelhausen, Toth (bib36) 2003; 9 Datta, Mei, Lebedinsky, Halasyamani, Motakef (bib15) 2024; 136 Cheng, Zhu, Wang, Zheng (bib34) 2022; 13 Pozina, Forsberg, Kaliteevski, Hemmingsson (bib11) 2017; 7 Wang, Ye, Wang, Zhang, Li, Kong, Li (bib1) 2019; 803 Chang, Wu (bib13) 2004; 16 Spindler, Babbe, Wolter, Ehré, Santhosh, Hilgert, Werner, Siebentritt (bib33) 2019; 3 Rahman, Scott, Gentle, Phillips, Ton-That (bib22) 2018; 29 Gake, Kumagai, Oba (bib16) 2019; 3 Krustok, Collan, Hjelt (bib35) 1997; 81 Shimamura, Víllora, Ujiie, Aoki (bib18) 2008; 92 Varley, Janotti, Franchini, Van de Walle (bib20) 2012; 85 Galazka, Schewski, Irmscher, Drozdowski, Witkowski, Makowski, Wojtowicz, Hanke, Pietsch, Schulz (bib3) 2020; 818 Liang, Meng, Wang, Wang, Zhang, Zhang (bib31) 2001; 78 Chikoidze, Tchelidze, Sartel, Chi, Kabouche, Madaci, Rubio, Mohamed, Sallet, Medjdoub (bib8) 2020; 15 Luan, Dong, Ma, Jia (bib9) 2020; 812 Makuła, Pacia, Macyk (bib25) 2018; 9 Valdes, Miller, Leak, Haque, Gunthoti, Wender, Paneru, Lee, Vogel, Sun (bib4) 2024; 95 Wang, Dickens, Varley, Ni, Lotubai, Sprawls, Liu, Lordi, Krishnamoorthy, Blair (bib19) 2018; 8 Jing, Mao, Ji, Xu, Wang, Tang (bib2) 2024; 7 Galazka (bib7) 2018; 33 Anisimov, Zaanen, Andersen (bib23) 1991; 44 Huang, Rhys (bib32) 1950; 204 Heyd, Scuseria (bib24) 2004; 121 Gréus, Forchel, Spiegel, Faller, Benner, Haug (bib27) 1996; 34 Mamun, Farhad, Tanvir, Rahman (bib30) 2024; 46 Tang, He, Zhu, Gu, Liu, Xu, Xu, Chen, Liu, Ouyang (bib29) 2019; 115 He, Tang, Liu, Zhu, Li, Guo, Gu, Xu, Liu, Xu (bib14) 2018; 888 Liu, Zhou, Zhang, Ye, Xiong, Yu, Li, Yang, Li, Kong (bib10) 2022; 55 Baldini, Galazka, Wagner (bib5) 2018; 78 Kananen, Giles, Halliburton, Foundos, Chang, Stevens (bib21) 2017; 122 Mamun, Kumar Paul, Matar, Ton-That, Rahman (bib28) 2024; 128 Chikoidze (10.1016/j.jallcom.2024.177609_bib8) 2020; 15 Galazka (10.1016/j.jallcom.2024.177609_bib7) 2018; 33 Mamun (10.1016/j.jallcom.2024.177609_bib30) 2024; 46 Valdes (10.1016/j.jallcom.2024.177609_bib4) 2024; 95 Kananen (10.1016/j.jallcom.2024.177609_bib21) 2017; 122 Spindler (10.1016/j.jallcom.2024.177609_bib33) 2019; 3 Pozina (10.1016/j.jallcom.2024.177609_bib11) 2017; 7 Wang (10.1016/j.jallcom.2024.177609_bib17) 2014; 75 Krustok (10.1016/j.jallcom.2024.177609_bib35) 1997; 81 Zhang (10.1016/j.jallcom.2024.177609_bib6) 2023; 939 Binet (10.1016/j.jallcom.2024.177609_bib12) 1998; 59 Heyd (10.1016/j.jallcom.2024.177609_bib24) 2004; 121 Mamun (10.1016/j.jallcom.2024.177609_bib28) 2024; 128 Jing (10.1016/j.jallcom.2024.177609_bib2) 2024; 7 Luan (10.1016/j.jallcom.2024.177609_bib9) 2020; 812 Gake (10.1016/j.jallcom.2024.177609_bib16) 2019; 3 Baldini (10.1016/j.jallcom.2024.177609_bib5) 2018; 78 Makuła (10.1016/j.jallcom.2024.177609_bib25) 2018; 9 Rahman (10.1016/j.jallcom.2024.177609_bib22) 2018; 29 Phillips (10.1016/j.jallcom.2024.177609_bib36) 2003; 9 Liu (10.1016/j.jallcom.2024.177609_bib10) 2022; 55 Gréus (10.1016/j.jallcom.2024.177609_bib27) 1996; 34 Varley (10.1016/j.jallcom.2024.177609_bib20) 2012; 85 Liang (10.1016/j.jallcom.2024.177609_bib31) 2001; 78 Wang (10.1016/j.jallcom.2024.177609_bib19) 2018; 8 Wang (10.1016/j.jallcom.2024.177609_bib1) 2019; 803 Galazka (10.1016/j.jallcom.2024.177609_bib3) 2020; 818 Shimamura (10.1016/j.jallcom.2024.177609_bib18) 2008; 92 Anisimov (10.1016/j.jallcom.2024.177609_bib23) 1991; 44 Tang (10.1016/j.jallcom.2024.177609_bib29) 2019; 115 Chang (10.1016/j.jallcom.2024.177609_bib13) 2004; 16 Cheng (10.1016/j.jallcom.2024.177609_bib34) 2022; 13 Huang (10.1016/j.jallcom.2024.177609_bib32) 1950; 204 Datta (10.1016/j.jallcom.2024.177609_bib15) 2024; 136 Ye (10.1016/j.jallcom.2024.177609_bib26) 2005; 86 He (10.1016/j.jallcom.2024.177609_bib14) 2018; 888 |
References_xml | – volume: 204 start-page: 406 year: 1950 ident: bib32 article-title: Theory of light absorption and non-radiative transitions in F-centres publication-title: Proc. Roy. Soc. A – volume: 888 start-page: 9 year: 2018 ident: bib14 article-title: Ultra-fast scintillation properties of β-Ga publication-title: Nucl. Instr. Meth. Phys. Res. A – volume: 803 start-page: 9 year: 2019 ident: bib1 article-title: High transmittance β-Ga publication-title: J. Alloy. Compd. – volume: 59 start-page: 1241 year: 1998 ident: bib12 article-title: Origin of the blue luminescence of beta-Ga publication-title: J. Phys. Chem. Solids – volume: 818 year: 2020 ident: bib3 article-title: Bulk β-Ga publication-title: J. Alloy. Compd. – volume: 939 year: 2023 ident: bib6 article-title: High-performance β-Ga publication-title: J. Alloy. Compd. – volume: 92 year: 2008 ident: bib18 article-title: Excitation and photoluminescence of pure and Si-doped β-Ga publication-title: Appl. Phys. Lett. – volume: 136 year: 2024 ident: bib15 article-title: Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators publication-title: J. Appl. Phys. – volume: 33 year: 2018 ident: bib7 article-title: β-Ga publication-title: Semicond. Sci. Technol. – volume: 121 start-page: 1187 year: 2004 ident: bib24 article-title: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional publication-title: J. Chem. Phys. – volume: 55 year: 2022 ident: bib10 article-title: Ultrasensitive fully transparent amorphous Ga publication-title: J. Phys. D. Appl. Phys. – volume: 13 start-page: 3053 year: 2022 ident: bib34 article-title: Strong electron–phonon coupling in β-Ga publication-title: J. Phys. Chem. Lett. – volume: 78 start-page: 3202 year: 2001 ident: bib31 article-title: Catalytic synthesis and photoluminescence of β-Ga publication-title: Appl. Phys. Lett. – volume: 7 start-page: 42132 year: 2017 ident: bib11 article-title: Emission properties of Ga publication-title: Sci. Rep. – volume: 16 start-page: 545 year: 2004 ident: bib13 article-title: Low-temperature growth of well-aligned β-Ga publication-title: Adv. Mater. – volume: 3 year: 2019 ident: bib16 article-title: First-principles study of self-trapped holes and acceptor impurities in Ga publication-title: Phys. Rev. Mater. – volume: 3 year: 2019 ident: bib33 article-title: Electronic defects in Cu (In, Ga) Se publication-title: Phys. Rev. Mater. – volume: 29 year: 2018 ident: bib22 article-title: A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods publication-title: Nanotechnol – volume: 115 year: 2019 ident: bib29 article-title: Temperature-dependence of X-ray excited luminescence of β-Ga publication-title: Appl. Phys. Lett. – volume: 7 start-page: 19970 year: 2024 end-page: 19980 ident: bib2 article-title: Enhancing solar-blind photodetectors with Ga publication-title: ACS Appl. Nano Mater. – volume: 85 year: 2012 ident: bib20 article-title: Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides publication-title: Phys. Rev. B – volume: 86 year: 2005 ident: bib26 article-title: Fermi-level band filling and band-gap renormalization in Ga-doped ZnO publication-title: Appl. Phys. Lett. – volume: 812 year: 2020 ident: bib9 article-title: The further investigation of N-doped β-Ga publication-title: J. Alloy. Compd. – volume: 9 start-page: 6814 year: 2018 ident: bib25 article-title: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra publication-title: J. Phys. Chem. Lett. – volume: 128 start-page: 4722 year: 2024 ident: bib28 article-title: Zinc dopant-induced modulation of electronic structure and defect emissions in monoclinic gallium oxide publication-title: J. Phys. Chem. C. – volume: 34 start-page: 213 year: 1996 ident: bib27 article-title: Phase space filling and band gap renormalization in the luminescence of highly excited InGaAs/GaAs quantum wires publication-title: Europhys. Lett. – volume: 81 start-page: 1442 year: 1997 ident: bib35 article-title: Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? publication-title: J. Appl. Phys. – volume: 78 start-page: 132 year: 2018 ident: bib5 article-title: Recent progress in the growth of β-Ga publication-title: Mater. Sci. Semicond. Process. – volume: 9 start-page: 144 year: 2003 ident: bib36 article-title: Cathodoluminescence efficiency dependence on excitation density in n-type gallium nitride publication-title: Microsc. Microanal. – volume: 15 year: 2020 ident: bib8 article-title: Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga publication-title: Mater. Today Phys. – volume: 46 year: 2024 ident: bib30 article-title: Simulation and interpretation of zinc and nitrogen dopants induced defect emissions in monoclinic gallium oxide publication-title: Mater. Today Phys. – volume: 122 year: 2017 ident: bib21 article-title: Self-trapped holes in β-Ga publication-title: J. Appl. Phys. – volume: 44 start-page: 943 year: 1991 ident: bib23 article-title: Band theory and Mott insulators: Hubbard U instead of Stoner I publication-title: Phys. Rev. B – volume: 8 start-page: 18075 year: 2018 ident: bib19 article-title: Incident wavelength and polarization dependence of spectral shifts in β-Ga publication-title: Sci. Rep. – volume: 95 year: 2024 ident: bib4 article-title: Gallium oxide (Ga publication-title: Rev. Sci. Instrum. – volume: 75 start-page: 1201 year: 2014 ident: bib17 article-title: Electrical properties and emission mechanisms of Zn-doped β-Ga publication-title: J. Phys. Chem. Solids – volume: 95 year: 2024 ident: 10.1016/j.jallcom.2024.177609_bib4 article-title: Gallium oxide (Ga2O3) energy dependent scintillation response to fast neutrons and flash gamma-rays publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0219595 – volume: 128 start-page: 4722 year: 2024 ident: 10.1016/j.jallcom.2024.177609_bib28 article-title: Zinc dopant-induced modulation of electronic structure and defect emissions in monoclinic gallium oxide publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.3c07684 – volume: 46 year: 2024 ident: 10.1016/j.jallcom.2024.177609_bib30 article-title: Simulation and interpretation of zinc and nitrogen dopants induced defect emissions in monoclinic gallium oxide publication-title: Mater. Today Phys. – volume: 9 start-page: 144 year: 2003 ident: 10.1016/j.jallcom.2024.177609_bib36 article-title: Cathodoluminescence efficiency dependence on excitation density in n-type gallium nitride publication-title: Microsc. Microanal. doi: 10.1017/S1431927603030204 – volume: 44 start-page: 943 year: 1991 ident: 10.1016/j.jallcom.2024.177609_bib23 article-title: Band theory and Mott insulators: Hubbard U instead of Stoner I publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.943 – volume: 86 year: 2005 ident: 10.1016/j.jallcom.2024.177609_bib26 article-title: Fermi-level band filling and band-gap renormalization in Ga-doped ZnO publication-title: Appl. Phys. Lett. doi: 10.1063/1.1928322 – volume: 803 start-page: 9 year: 2019 ident: 10.1016/j.jallcom.2024.177609_bib1 article-title: High transmittance β-Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.06.224 – volume: 33 year: 2018 ident: 10.1016/j.jallcom.2024.177609_bib7 article-title: β-Ga2O3 for wide-bandgap electronics and optoelectronics publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aadf78 – volume: 7 start-page: 42132 year: 2017 ident: 10.1016/j.jallcom.2024.177609_bib11 article-title: Emission properties of Ga2O3 nano-flakes: effect of excitation density publication-title: Sci. Rep. doi: 10.1038/srep42132 – volume: 9 start-page: 6814 year: 2018 ident: 10.1016/j.jallcom.2024.177609_bib25 article-title: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02892 – volume: 204 start-page: 406 year: 1950 ident: 10.1016/j.jallcom.2024.177609_bib32 article-title: Theory of light absorption and non-radiative transitions in F-centres publication-title: Proc. Roy. Soc. A – volume: 812 year: 2020 ident: 10.1016/j.jallcom.2024.177609_bib9 article-title: The further investigation of N-doped β-Ga2O3 thin films with native defects for Schottky-barrier diode publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.152026 – volume: 16 start-page: 545 year: 2004 ident: 10.1016/j.jallcom.2024.177609_bib13 article-title: Low-temperature growth of well-aligned β-Ga2O3 nanowires from a single-source organometallic precursor publication-title: Adv. Mater. doi: 10.1002/adma.200306299 – volume: 121 start-page: 1187 year: 2004 ident: 10.1016/j.jallcom.2024.177609_bib24 article-title: Efficient hybrid density functional calculations in solids: assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional publication-title: J. Chem. Phys. doi: 10.1063/1.1760074 – volume: 115 year: 2019 ident: 10.1016/j.jallcom.2024.177609_bib29 article-title: Temperature-dependence of X-ray excited luminescence of β-Ga2O3 single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.5110535 – volume: 15 year: 2020 ident: 10.1016/j.jallcom.2024.177609_bib8 article-title: Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga2O3 publication-title: Mater. Today Phys. – volume: 29 year: 2018 ident: 10.1016/j.jallcom.2024.177609_bib22 article-title: A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods publication-title: Nanotechnol doi: 10.1088/1361-6528/aad7d2 – volume: 59 start-page: 1241 year: 1998 ident: 10.1016/j.jallcom.2024.177609_bib12 article-title: Origin of the blue luminescence of beta-Ga2O3 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(98)00047-X – volume: 8 start-page: 18075 year: 2018 ident: 10.1016/j.jallcom.2024.177609_bib19 article-title: Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence publication-title: Sci. Rep. doi: 10.1038/s41598-018-36676-7 – volume: 75 start-page: 1201 year: 2014 ident: 10.1016/j.jallcom.2024.177609_bib17 article-title: Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2014.06.005 – volume: 122 year: 2017 ident: 10.1016/j.jallcom.2024.177609_bib21 article-title: Self-trapped holes in β-Ga2O3 crystals publication-title: J. Appl. Phys. doi: 10.1063/1.5007095 – volume: 3 year: 2019 ident: 10.1016/j.jallcom.2024.177609_bib33 article-title: Electronic defects in Cu (In, Ga) Se2: towards a comprehensive model publication-title: Phys. Rev. Mater. – volume: 81 start-page: 1442 year: 1997 ident: 10.1016/j.jallcom.2024.177609_bib35 article-title: Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? publication-title: J. Appl. Phys. doi: 10.1063/1.363903 – volume: 92 year: 2008 ident: 10.1016/j.jallcom.2024.177609_bib18 article-title: Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.2910768 – volume: 818 year: 2020 ident: 10.1016/j.jallcom.2024.177609_bib3 article-title: Bulk β-Ga2O3 single crystals doped with Ce, Ce+Si, Ce+Al, and Ce+Al+Si for detection of nuclear radiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.152842 – volume: 85 year: 2012 ident: 10.1016/j.jallcom.2024.177609_bib20 article-title: Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.081109 – volume: 34 start-page: 213 year: 1996 ident: 10.1016/j.jallcom.2024.177609_bib27 article-title: Phase space filling and band gap renormalization in the luminescence of highly excited InGaAs/GaAs quantum wires publication-title: Europhys. Lett. doi: 10.1209/epl/i1996-00441-9 – volume: 136 year: 2024 ident: 10.1016/j.jallcom.2024.177609_bib15 article-title: Gallium oxide semiconductor-based large volume ultrafast radiation hard spectroscopic scintillators publication-title: J. Appl. Phys. doi: 10.1063/5.0219987 – volume: 78 start-page: 132 year: 2018 ident: 10.1016/j.jallcom.2024.177609_bib5 article-title: Recent progress in the growth of β-Ga2O3 for power electronics applications publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2017.10.040 – volume: 939 year: 2023 ident: 10.1016/j.jallcom.2024.177609_bib6 article-title: High-performance β-Ga2O3 Schottky barrier diodes and metal-semiconductor field-effect transistors on a high doping level epitaxial layer publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.168732 – volume: 3 year: 2019 ident: 10.1016/j.jallcom.2024.177609_bib16 article-title: First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs publication-title: Phys. Rev. Mater. – volume: 13 start-page: 3053 year: 2022 ident: 10.1016/j.jallcom.2024.177609_bib34 article-title: Strong electron–phonon coupling in β-Ga2O3: a huge broadening of self-trapped exciton emission and a significant red shift of the direct bandgap publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00682 – volume: 7 start-page: 19970 year: 2024 ident: 10.1016/j.jallcom.2024.177609_bib2 article-title: Enhancing solar-blind photodetectors with Ga2O3 thin films using Pt nanoparticles publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.4c02228 – volume: 55 year: 2022 ident: 10.1016/j.jallcom.2024.177609_bib10 article-title: Ultrasensitive fully transparent amorphous Ga2O3 solar-blind deep-ultraviolet photodetector for corona discharge detection publication-title: J. Phys. D. Appl. Phys. – volume: 78 start-page: 3202 year: 2001 ident: 10.1016/j.jallcom.2024.177609_bib31 article-title: Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.1374498 – volume: 888 start-page: 9 year: 2018 ident: 10.1016/j.jallcom.2024.177609_bib14 article-title: Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by floating zone method publication-title: Nucl. Instr. Meth. Phys. Res. A doi: 10.1016/j.nima.2018.01.023 |
SSID | ssj0001931 |
Score | 2.4513233 |
Snippet | The broadening of spectral lineshapes and kinetics of luminescence centers in highly crystalline monoclinic gallium oxide (β-Ga2O3) nanowires have been... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 177609 |
SubjectTerms | Carrier dynamics Density functional theory, luminescence centers, cathodoluminescence Ga2O3 nanowires |
Title | Temperature-dependent broadening of spectral lineshapes and kinetics of luminescence centers in monoclinic gallium oxide nanowires |
URI | https://dx.doi.org/10.1016/j.jallcom.2024.177609 |
Volume | 1010 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhWfZQ9et91t0yQ9lmKpir1oobew2Qem1qS0FTx58Jc7kwdWEA_e8tgNy8zszDfZeQBco4nyHcJgbnzf44hvBVeBkzwQYewCFyDCpQTnh5E_HHt3k85kA_pVLgyFVZa6v9DpubYunzRLajbnSdJ8FN0WnfmFaJM82Q0o0dzzApLyxsd3mAcClLxrHg7mNPo7i6c5bUzVbEZBIy20VA2JC6O4xN_s05rNGRzAfgkWWa9YzyFs2LQGO_2qR1sN9tbKCdZgOw_n1Msj-HyyCIeLcsm86nO7YvEiU3iBg1nmWJ5kucDvE9JcPqu5XTKVGvaCt1S8mcag6qKXmujCKJAT0SJLUobCmxVJlYyO7pO3V5a9J8ayVKUZlT9eHsN4cPPUH_Ky2wLXuG1X3OECtLNIUksbOdaCSslbL0aPQyitg1CL0ErrK0RpShkl80I4uoM-ZtyRpn0Cm2mW2lNgbW0CaZUTVhr0T2XXiLbqoifuCydl25xBo6JxNC-KakRVtNk0KpkSEVOigilnEFaciH5IR4SK_--p5_-fegG7Ler2Sz9cOpewuVq82SuEIKu4nstYHbZ6t_fD0Rcqkt44 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BFQIOqAQQ0FL2AMdNdh3Hdg49VDwUnheCxM2s9yEcgh3FQbSXHvqX-gc744egUsWhEkc_drWaGc98u_5mBmAfQ1TgEAZzEwQ-R3wruAqd5KGIEhe6EBEuJThfXgWDG__stnc7B7-bXBiiVda-v_Lppbeu73RqaXYmadq5Fn2P_vlFGJN82Q8bZuW5_fGM-7bi6-kRKvnA806Oh4cDXrcW4BptdMadMlY7i-MtWW2iBdVNt36C8FoorcNIi8hKGyiEJEoZJcuqL7qHG6qkJ00X552HDz66C2qb0P75witBRFS26cPVcVreS9pQZ9QeqfGYWCoehsa2REkQEfJfAfFVkDv5CKs1OmXfKgGswZzNWrB02DSFa8HKq_qFLVgs-aO6WIdfQ4v4u6rPzJvGujOWTHMUAR29sNyxMqtzivMTtC3u1cQWTGWGPeAlVYumd9BX0kNNimDEHEV4ytKM4deSV1mcjLgC6dMjy7-nxrJMZTnVWy424OZddLAJC1me2S1gXW1CaZUTVhrcEMu-EV3Vx61_IJyUXbMN7UbG8aSq4hE39LZRXCslJqXElVK2IWo0Ef9ljjFGmreH7vz_0D1YGgwvL-KL06vzT7DsUathOu3pfYaF2fTJ7iL-mSVfSntjcPfeBv4HOkgabw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-dependent+broadening+of+spectral+lineshapes+and+kinetics+of+luminescence+centers+in+monoclinic+gallium+oxide+nanowires&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Chowdhury%2C+Tasfia&rft.au=Paul%2C+Dholon+Kumar&rft.au=Rahaman%2C+Md.+Rabiur&rft.au=Ton-That%2C+Cuong&rft.date=2025-01-05&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.volume=1010&rft_id=info:doi/10.1016%2Fj.jallcom.2024.177609&rft.externalDocID=S0925838824041975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |