Efficient simulation of 3D conditional random field using kriging with Gaussian-process trend
Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR tr...
Saved in:
Published in | Computers and geotechnics Vol. 177; p. 106862 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0266-352X |
DOI | 10.1016/j.compgeo.2024.106862 |
Cover
Abstract | Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems. |
---|---|
AbstractList | Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems. |
ArticleNumber | 106862 |
Author | Ching, Jianye Yoshida, Ikumasa |
Author_xml | – sequence: 1 givenname: Jianye surname: Ching fullname: Ching, Jianye email: jyching@gmail.com organization: Dept of Civil Engineering, National Taiwan University, Taipei, Taiwan, ROC – sequence: 2 givenname: Ikumasa surname: Yoshida fullname: Yoshida, Ikumasa organization: Department of Urban and Civil Engineering, Tokyo City University, Tokyo, Japan |
BookMark | eNqFkM1KAzEUhbOoYFt9BCEvMDV_M5lZidRahYIbBTcS0uSmps4kJZkqvr0ztHtXh3s553D4ZmgSYgCEbihZUEKr2_3CxO6wg7hghInhV9UVm6ApYVVV8JK9X6JZznsyeJu6maKPlXPeeAg9zr47trr3MeDoMH_AJgbrx1u3OOlgY4edh9biY_Zhh7-S34364_tPvNbHnL0OxSFFAznjPkGwV-jC6TbD9Vnn6O1x9bp8KjYv6-fl_aYwrJR94RgxUFIrXU20oKUAK7gRWyop5zWnDZU1MLkdNhMAYhu5lSXVjR1yhgnB56g89ZoUc07g1CH5TqdfRYkauai9OnNRIxd14jLk7k45GMZ9e0gqjywMWJ_A9MpG_0_DH-Ejc0E |
Cites_doi | 10.1061/(ASCE)GT.1943-5606.0001720 10.1061/(ASCE)GT.1943-5606.0001554 10.2113/gsecongeo.58.8.1246 10.1680/jgeot.16.P.143 10.1016/j.compgeo.2016.05.027 10.1139/t99-038 10.1016/j.strusafe.2019.101870 10.1061/(ASCE)EM.1943-7889.0001560 10.1016/j.compgeo.2021.104179 10.1061/(ASCE)EM.1943-7889.0001907 10.1016/j.gr.2022.07.011 10.1109/TSP.2007.914345 10.1061/(ASCE)EM.1943-7889.0001859 10.1139/cgj-2017-0254 10.1061/(ASCE)0733-9399(2007)133:7(816) 10.1093/biomet/93.4.989 10.1139/cgj-2016-0189 10.1061/(ASCE)EM.1943-7889.0001240 10.1016/j.sandf.2012.12.001 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compgeo.2024.106862 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compgeo_2024_106862 S0266352X24008012 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SES SET SEW SPC SPCBC SSE SST SSV SSZ T5K TN5 WH7 WUQ ZMT ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c257t-f20ce51d7f80a4154ed43c4b171338319178e27b1690ee0d97b751a9d20cc2443 |
IEDL.DBID | AIKHN |
ISSN | 0266-352X |
IngestDate | Tue Jul 01 01:23:53 EDT 2025 Sat Nov 23 15:54:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaussian process regression Random field Probabilistic site characterization Spatial variability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-f20ce51d7f80a4154ed43c4b171338319178e27b1690ee0d97b751a9d20cc2443 |
ParticipantIDs | crossref_primary_10_1016_j_compgeo_2024_106862 elsevier_sciencedirect_doi_10_1016_j_compgeo_2024_106862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Computers and geotechnics |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yoshida, Tomizawa, Otake (b0155) 2021; 136 Wang, Wang, Wellmann, Liang (b0130) 2018; 4 Ching, Chen (b0005) 2007; 133 Stuedlein, Gianella, Canivan (b0115) 2016; 142 Matheron (b0100) 1963; 58 Journel, Huijbregts (b0060) 1978 Guttorp, Gneiting (b0040) 2006; 93 Tipping (b0120) 2001; 1 Ji, Xue, Carin (b0055) 2008; 56 Wang, Zhao, Phoon (b0140) 2018; 55 Jaksa, M. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay. Ph.D. Dissertation, University of Adelaide, Australia. Ching, Phoon (b0015) 2017; 143 Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. (1999). Experimental evaluation of the scale of fluctuation of a stiff clay. Proceedings of the 8th International Conference on Application of Statistics and Probability, A.A. Balkema, Rotterdam, 415-422. Vanmarcke (b0125) 1977; GT11 Li, Hicks, Vardon (b0075) 2016; 79 Kim, Sitar (b0065) 2013; 53 Ching, Yoshida, Phoon (b0030) 2023; 123 Ching, Phoon, Stuedlein, Jaksa (b0020) 2019; 81 Lo, Leung (b0090) 2017; 143 Phoon, Kulhawy (b0105) 1999; 36 Lyu, Hu, Wang (b0095) 2023; 9 Rasmussen, Williams (b0110) 2006 Liu, Leung, Lo (b0080) 2017; 54 Lloret-Cabot, Fenton, Hicks (b0085) 2014; 8 Ching, Huang, Phoon (b0010) 2020; 146 De Gast, T. (2020). Dykes and Embankments: A Geostatistical Analysis of Soft Terrain. PhD thesis, Delft University of Technology, the Netherlands. Wang, Zhao, Hu, Phoon (b0145) 2019; 145 Woodbury, M.A. (1950). Inverting modified matrices, Memorandum Rept. 42, Statistical Research Group, Princeton University, Princeton, NJ. Ching, Yang, Phoon (b0025) 2021; 147 Wang, Zhao (b0135) 2017; 67 Krige (b0070) 1951; 52 Lloret-Cabot (10.1016/j.compgeo.2024.106862_b0085) 2014; 8 Li (10.1016/j.compgeo.2024.106862_b0075) 2016; 79 Journel (10.1016/j.compgeo.2024.106862_b0060) 1978 Wang (10.1016/j.compgeo.2024.106862_b0140) 2018; 55 10.1016/j.compgeo.2024.106862_b0150 10.1016/j.compgeo.2024.106862_b0050 10.1016/j.compgeo.2024.106862_b0045 Krige (10.1016/j.compgeo.2024.106862_b0070) 1951; 52 Kim (10.1016/j.compgeo.2024.106862_b0065) 2013; 53 Wang (10.1016/j.compgeo.2024.106862_b0135) 2017; 67 Guttorp (10.1016/j.compgeo.2024.106862_b0040) 2006; 93 Lo (10.1016/j.compgeo.2024.106862_b0090) 2017; 143 Lyu (10.1016/j.compgeo.2024.106862_b0095) 2023; 9 Tipping (10.1016/j.compgeo.2024.106862_b0120) 2001; 1 Ching (10.1016/j.compgeo.2024.106862_b0030) 2023; 123 Liu (10.1016/j.compgeo.2024.106862_b0080) 2017; 54 Wang (10.1016/j.compgeo.2024.106862_b0145) 2019; 145 Phoon (10.1016/j.compgeo.2024.106862_b0105) 1999; 36 Ching (10.1016/j.compgeo.2024.106862_b0020) 2019; 81 Ching (10.1016/j.compgeo.2024.106862_b0010) 2020; 146 Wang (10.1016/j.compgeo.2024.106862_b0130) 2018; 4 Yoshida (10.1016/j.compgeo.2024.106862_b0155) 2021; 136 Ji (10.1016/j.compgeo.2024.106862_b0055) 2008; 56 Ching (10.1016/j.compgeo.2024.106862_b0015) 2017; 143 Ching (10.1016/j.compgeo.2024.106862_b0025) 2021; 147 10.1016/j.compgeo.2024.106862_b0035 Vanmarcke (10.1016/j.compgeo.2024.106862_b0125) 1977; GT11 Rasmussen (10.1016/j.compgeo.2024.106862_b0110) 2006 Ching (10.1016/j.compgeo.2024.106862_b0005) 2007; 133 Matheron (10.1016/j.compgeo.2024.106862_b0100) 1963; 58 Stuedlein (10.1016/j.compgeo.2024.106862_b0115) 2016; 142 |
References_xml | – volume: GT11 start-page: 1227 year: 1977 end-page: 1246 ident: b0125 article-title: Probabilistic modeling of soil profiles publication-title: ASCE J. Geotech. Eng. – volume: 67 start-page: 523 year: 2017 end-page: 536 ident: b0135 article-title: Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling publication-title: Géotechnique – volume: 146 year: 2020 ident: b0010 article-title: 3D probabilistic site characterization by sparse Bayesian learning publication-title: ASCE J. Eng. Mech. – volume: 79 start-page: 159 year: 2016 end-page: 172 ident: b0075 article-title: Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields publication-title: Comput. Geotech. – reference: Woodbury, M.A. (1950). Inverting modified matrices, Memorandum Rept. 42, Statistical Research Group, Princeton University, Princeton, NJ. – volume: 93 start-page: 989 year: 2006 end-page: 995 ident: b0040 article-title: Studies in the history of probability and statistics XLIX on the Matérn correlation family publication-title: Biometrika – volume: 147 year: 2021 ident: b0025 article-title: Dealing with non-lattice data in three-dimensional probabilistic site characterization publication-title: ASCE J. Eng. Mech. – volume: 55 start-page: 862 year: 2018 end-page: 880 ident: b0140 article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation publication-title: Can. Geotech. J. – volume: 56 start-page: 2346 year: 2008 end-page: 2356 ident: b0055 article-title: Bayesian compressive sensing publication-title: IEEE Trans. Signal Process. – reference: Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. (1999). Experimental evaluation of the scale of fluctuation of a stiff clay. Proceedings of the 8th International Conference on Application of Statistics and Probability, A.A. Balkema, Rotterdam, 415-422. – volume: 54 start-page: 47 year: 2017 end-page: 58 ident: b0080 article-title: Integrated framework for characterization of spatial variability of geological profiles publication-title: Can. Geotech. J. – reference: Jaksa, M. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay. Ph.D. Dissertation, University of Adelaide, Australia. – year: 1978 ident: b0060 article-title: Mining Geostatistics – volume: 9 year: 2023 ident: b0095 article-title: Data-driven development of three-dimensional subsurface models from sparse measurements using Bayesian compressive sampling (BCS): A benchmarking study publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. – volume: 143 year: 2017 ident: b0015 article-title: Characterizing uncertain site-specific trend function by sparse Bayesian learning publication-title: ASCE J. Eng. Mech. – volume: 81 year: 2019 ident: b0020 article-title: Identification of sample path smoothness in soil spatial variability publication-title: Struct. Saf. – year: 2006 ident: b0110 article-title: Gaussian Processes for Machine Learning – volume: 142 year: 2016 ident: b0115 article-title: Densification of granular soils using conventional and drained timber displacement piles publication-title: ASCE J. Geotech. Geoenviron. Eng. – volume: 52 start-page: 119 year: 1951 end-page: 139 ident: b0070 article-title: A statistical approach to some basic mine valuation problems on Witwatersrand publication-title: J. Chem. Metall. Min. Soc. S. Afr. – volume: 8 start-page: 129 year: 2014 end-page: 140 ident: b0085 article-title: On the estimation of scale of fluctuation in geostatistics publication-title: Georisk – volume: 145 year: 2019 ident: b0145 article-title: Simulation of random fields with trend from sparse measurements without detrending publication-title: J. Eng. Mech. – volume: 53 start-page: 1 year: 2013 end-page: 10 ident: b0065 article-title: Reliability approach to slope stability analysis with spatially correlated soil properties publication-title: Soils Found. – volume: 143 year: 2017 ident: b0090 article-title: Probabilistic analyses of slopes and footings with spatially variable soils considering cross-correlation and conditioned random field publication-title: J. Geotech. Geoenviron. Eng. – volume: 133 start-page: 816 year: 2007 end-page: 832 ident: b0005 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection and model averaging publication-title: ASCE J. Eng. Mech. – volume: 58 start-page: 1246 year: 1963 end-page: 1266 ident: b0100 article-title: Principles of geostatistics publication-title: Econ. Geol. – volume: 136 year: 2021 ident: b0155 article-title: Estimation of trend and random components of conditional random field using Gaussian process regression publication-title: Comput. Geotech. – volume: 123 start-page: 174 year: 2023 end-page: 183 ident: b0030 article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian Learning vs. Gaussian Process Regression publication-title: Gondwana Res. – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: b0120 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 4 year: 2018 ident: b0130 article-title: Bayesian stochastic soil modeling framework using Gaussian Markov random fields publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. – volume: 36 start-page: 612 year: 1999 end-page: 624 ident: b0105 article-title: Characterization of geotechnical variability publication-title: Can. Geotech. J. – reference: De Gast, T. (2020). Dykes and Embankments: A Geostatistical Analysis of Soft Terrain. PhD thesis, Delft University of Technology, the Netherlands. – ident: 10.1016/j.compgeo.2024.106862_b0050 – volume: 143 issue: 9 year: 2017 ident: 10.1016/j.compgeo.2024.106862_b0090 article-title: Probabilistic analyses of slopes and footings with spatially variable soils considering cross-correlation and conditioned random field publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001720 – volume: 142 issue: 12 year: 2016 ident: 10.1016/j.compgeo.2024.106862_b0115 article-title: Densification of granular soils using conventional and drained timber displacement piles publication-title: ASCE J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001554 – ident: 10.1016/j.compgeo.2024.106862_b0035 – year: 1978 ident: 10.1016/j.compgeo.2024.106862_b0060 – volume: 58 start-page: 1246 year: 1963 ident: 10.1016/j.compgeo.2024.106862_b0100 article-title: Principles of geostatistics publication-title: Econ. Geol. doi: 10.2113/gsecongeo.58.8.1246 – volume: 9 issue: 2 year: 2023 ident: 10.1016/j.compgeo.2024.106862_b0095 article-title: Data-driven development of three-dimensional subsurface models from sparse measurements using Bayesian compressive sampling (BCS): A benchmarking study publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. – volume: 67 start-page: 523 issue: 6 year: 2017 ident: 10.1016/j.compgeo.2024.106862_b0135 article-title: Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling publication-title: Géotechnique doi: 10.1680/jgeot.16.P.143 – volume: 79 start-page: 159 year: 2016 ident: 10.1016/j.compgeo.2024.106862_b0075 article-title: Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.05.027 – volume: 36 start-page: 612 issue: 4 year: 1999 ident: 10.1016/j.compgeo.2024.106862_b0105 article-title: Characterization of geotechnical variability publication-title: Can. Geotech. J. doi: 10.1139/t99-038 – volume: 8 start-page: 129 issue: 2 year: 2014 ident: 10.1016/j.compgeo.2024.106862_b0085 article-title: On the estimation of scale of fluctuation in geostatistics publication-title: Georisk – volume: 81 year: 2019 ident: 10.1016/j.compgeo.2024.106862_b0020 article-title: Identification of sample path smoothness in soil spatial variability publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2019.101870 – volume: 145 issue: 2 year: 2019 ident: 10.1016/j.compgeo.2024.106862_b0145 article-title: Simulation of random fields with trend from sparse measurements without detrending publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001560 – volume: GT11 start-page: 1227 year: 1977 ident: 10.1016/j.compgeo.2024.106862_b0125 article-title: Probabilistic modeling of soil profiles publication-title: ASCE J. Geotech. Eng. – volume: 136 year: 2021 ident: 10.1016/j.compgeo.2024.106862_b0155 article-title: Estimation of trend and random components of conditional random field using Gaussian process regression publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104179 – volume: 147 issue: 5 year: 2021 ident: 10.1016/j.compgeo.2024.106862_b0025 article-title: Dealing with non-lattice data in three-dimensional probabilistic site characterization publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001907 – volume: 123 start-page: 174 year: 2023 ident: 10.1016/j.compgeo.2024.106862_b0030 article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian Learning vs. Gaussian Process Regression publication-title: Gondwana Res. doi: 10.1016/j.gr.2022.07.011 – year: 2006 ident: 10.1016/j.compgeo.2024.106862_b0110 – volume: 4 issue: 2 year: 2018 ident: 10.1016/j.compgeo.2024.106862_b0130 article-title: Bayesian stochastic soil modeling framework using Gaussian Markov random fields publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. – volume: 56 start-page: 2346 issue: 6 year: 2008 ident: 10.1016/j.compgeo.2024.106862_b0055 article-title: Bayesian compressive sensing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.914345 – volume: 146 issue: 12 year: 2020 ident: 10.1016/j.compgeo.2024.106862_b0010 article-title: 3D probabilistic site characterization by sparse Bayesian learning publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001859 – volume: 52 start-page: 119 issue: 6 year: 1951 ident: 10.1016/j.compgeo.2024.106862_b0070 article-title: A statistical approach to some basic mine valuation problems on Witwatersrand publication-title: J. Chem. Metall. Min. Soc. S. Afr. – volume: 55 start-page: 862 issue: 6 year: 2018 ident: 10.1016/j.compgeo.2024.106862_b0140 article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation publication-title: Can. Geotech. J. doi: 10.1139/cgj-2017-0254 – volume: 133 start-page: 816 issue: 7 year: 2007 ident: 10.1016/j.compgeo.2024.106862_b0005 article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection and model averaging publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2007)133:7(816) – volume: 93 start-page: 989 issue: 4 year: 2006 ident: 10.1016/j.compgeo.2024.106862_b0040 article-title: Studies in the history of probability and statistics XLIX on the Matérn correlation family publication-title: Biometrika doi: 10.1093/biomet/93.4.989 – volume: 54 start-page: 47 issue: 1 year: 2017 ident: 10.1016/j.compgeo.2024.106862_b0080 article-title: Integrated framework for characterization of spatial variability of geological profiles publication-title: Can. Geotech. J. doi: 10.1139/cgj-2016-0189 – volume: 143 issue: 7 year: 2017 ident: 10.1016/j.compgeo.2024.106862_b0015 article-title: Characterizing uncertain site-specific trend function by sparse Bayesian learning publication-title: ASCE J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001240 – ident: 10.1016/j.compgeo.2024.106862_b0150 – volume: 53 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.compgeo.2024.106862_b0065 article-title: Reliability approach to slope stability analysis with spatially correlated soil properties publication-title: Soils Found. doi: 10.1016/j.sandf.2012.12.001 – volume: 1 start-page: 211 year: 2001 ident: 10.1016/j.compgeo.2024.106862_b0120 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.compgeo.2024.106862_b0045 |
SSID | ssj0016989 |
Score | 2.4084225 |
Snippet | Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 106862 |
SubjectTerms | Gaussian process regression Probabilistic site characterization Random field Spatial variability |
Title | Efficient simulation of 3D conditional random field using kriging with Gaussian-process trend |
URI | https://dx.doi.org/10.1016/j.compgeo.2024.106862 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDywukkc5zVWpaWA6AKVuqDISewqRW0jmq78dnx5QJEQA6uli6JLfN-9vjuAG0uogKsAS4ORQzl3BI08rqjnykSgz-wXqYGniTue8oeZM2vAoObCYFtlZftLm15Y6-rEqLRpZGlqPOvoQaMlm2EXJNrZJrSZHbhOC9r9-8fx5KuYgDsSy1SLS1Hgm8hjLPDx2bygATKuz5Aw8TtE7cDO6BAOKn-R9MtXOoKGXB3D_s4UwRN4HRZjIDR6kE26rNZxkbUi9i3R0W6Sluk-olEpWS9J0bNGsN99Tt6KtVhzgtlYcie2G6RU0qwkD5Ac-2VPYToavgzGtNqaQGN9_XKqmBlLx0o85ZtCwzOXCbdjHlllOIrxmS-ZF2F9TEozCbzIcywRJFou1mBvn0FrtV7JcyCcxUqjnMeEMLmKXV8xXyjLD3QMFZnK7kCvVlSYlcMxwrprbBFWmg1Rs2Gp2Q74tTrDH1851Ab8b9GL_4tewh7Drb1F4uQKWvn7Vl5rVyKPutDsfVjd6of5BI8dyIU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSD8RnxuQevC31sX0eDICpwERIuptm2u6QYoJFy9be7020VE-PB66bbNNN2vpnZ75sBuDW5DJgM8GgwcihjDqeRxyT1XJFwjJn9ojQwGLq9MXuaOJMatCstDNIqS9-vfXrhrcuVVmnNVpamrReVPSi0tCbIgkQ_uwXbzLE95PU1P754HiZOSNSFFpfi5d8yntYMb55NCxGgxdQayiV-B6gN0OkewH4ZLZI7_UCHUBOLI9jb6CF4DK-dogmEwg6ySuflMC6ylMS-JyrXTVJd7CMKk5LlnBSMNYJs9yl5K4ZiTQnWYskDX69QUEkzLR0gObJlT2Dc7YzaPVrOTKCx-vlyKi0jFo6ZeNI3uAJnJhJmxywydTKK2ZkvLC_C0zEhjCTwIs8xeZCofbGCevsU6ovlQpwBYVYsFcZ5FucGk7HrS8vn0vQDlUFFhrQb0KwMFWa6NUZYccZmYWnZEC0bass2wK_MGf54x6Fy339vPf__1hvY6Y0G_bD_OHy-gF0L5_cWJZRLqOfva3Glgoo8ui4-mk88VclQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+simulation+of+3D+conditional+random+field+using+kriging+with+Gaussian-process+trend&rft.jtitle=Computers+and+geotechnics&rft.au=Ching%2C+Jianye&rft.au=Yoshida%2C+Ikumasa&rft.date=2025-01-01&rft.issn=0266-352X&rft.volume=177&rft.spage=106862&rft_id=info:doi/10.1016%2Fj.compgeo.2024.106862&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compgeo_2024_106862 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon |