Efficient simulation of 3D conditional random field using kriging with Gaussian-process trend

Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR tr...

Full description

Saved in:
Bibliographic Details
Published inComputers and geotechnics Vol. 177; p. 106862
Main Authors Ching, Jianye, Yoshida, Ikumasa
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN0266-352X
DOI10.1016/j.compgeo.2024.106862

Cover

Abstract Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems.
AbstractList Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend model than the linear combination of basis functions. However, the effectiveness of the conditional random (CRF) simulation based on the GPR trend model (denoted by the t-GPR kriging) has not been investigated. This study first addresses the high computational cost issue of the t-GPR kriging for realisic 3D problems by deriving the Kronecker-product algorithms. Then, this study further investigates the effectiveness of the t-GPR kriging in CRF simulation using real case studies. It is shown that with the Kronecker-product derivations, the computational time can be dramatically reduced such that the t-GPR kriging can conduct CRF simulation for full-scale 3D problems.
ArticleNumber 106862
Author Ching, Jianye
Yoshida, Ikumasa
Author_xml – sequence: 1
  givenname: Jianye
  surname: Ching
  fullname: Ching, Jianye
  email: jyching@gmail.com
  organization: Dept of Civil Engineering, National Taiwan University, Taipei, Taiwan, ROC
– sequence: 2
  givenname: Ikumasa
  surname: Yoshida
  fullname: Yoshida, Ikumasa
  organization: Department of Urban and Civil Engineering, Tokyo City University, Tokyo, Japan
BookMark eNqFkM1KAzEUhbOoYFt9BCEvMDV_M5lZidRahYIbBTcS0uSmps4kJZkqvr0ztHtXh3s553D4ZmgSYgCEbihZUEKr2_3CxO6wg7hghInhV9UVm6ApYVVV8JK9X6JZznsyeJu6maKPlXPeeAg9zr47trr3MeDoMH_AJgbrx1u3OOlgY4edh9biY_Zhh7-S34364_tPvNbHnL0OxSFFAznjPkGwV-jC6TbD9Vnn6O1x9bp8KjYv6-fl_aYwrJR94RgxUFIrXU20oKUAK7gRWyop5zWnDZU1MLkdNhMAYhu5lSXVjR1yhgnB56g89ZoUc07g1CH5TqdfRYkauai9OnNRIxd14jLk7k45GMZ9e0gqjywMWJ_A9MpG_0_DH-Ejc0E
Cites_doi 10.1061/(ASCE)GT.1943-5606.0001720
10.1061/(ASCE)GT.1943-5606.0001554
10.2113/gsecongeo.58.8.1246
10.1680/jgeot.16.P.143
10.1016/j.compgeo.2016.05.027
10.1139/t99-038
10.1016/j.strusafe.2019.101870
10.1061/(ASCE)EM.1943-7889.0001560
10.1016/j.compgeo.2021.104179
10.1061/(ASCE)EM.1943-7889.0001907
10.1016/j.gr.2022.07.011
10.1109/TSP.2007.914345
10.1061/(ASCE)EM.1943-7889.0001859
10.1139/cgj-2017-0254
10.1061/(ASCE)0733-9399(2007)133:7(816)
10.1093/biomet/93.4.989
10.1139/cgj-2016-0189
10.1061/(ASCE)EM.1943-7889.0001240
10.1016/j.sandf.2012.12.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compgeo.2024.106862
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compgeo_2024_106862
S0266352X24008012
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSV
SSZ
T5K
TN5
WH7
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c257t-f20ce51d7f80a4154ed43c4b171338319178e27b1690ee0d97b751a9d20cc2443
IEDL.DBID AIKHN
ISSN 0266-352X
IngestDate Tue Jul 01 01:23:53 EDT 2025
Sat Nov 23 15:54:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process regression
Random field
Probabilistic site characterization
Spatial variability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-f20ce51d7f80a4154ed43c4b171338319178e27b1690ee0d97b751a9d20cc2443
ParticipantIDs crossref_primary_10_1016_j_compgeo_2024_106862
elsevier_sciencedirect_doi_10_1016_j_compgeo_2024_106862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Computers and geotechnics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yoshida, Tomizawa, Otake (b0155) 2021; 136
Wang, Wang, Wellmann, Liang (b0130) 2018; 4
Ching, Chen (b0005) 2007; 133
Stuedlein, Gianella, Canivan (b0115) 2016; 142
Matheron (b0100) 1963; 58
Journel, Huijbregts (b0060) 1978
Guttorp, Gneiting (b0040) 2006; 93
Tipping (b0120) 2001; 1
Ji, Xue, Carin (b0055) 2008; 56
Wang, Zhao, Phoon (b0140) 2018; 55
Jaksa, M. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay. Ph.D. Dissertation, University of Adelaide, Australia.
Ching, Phoon (b0015) 2017; 143
Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. (1999). Experimental evaluation of the scale of fluctuation of a stiff clay. Proceedings of the 8th International Conference on Application of Statistics and Probability, A.A. Balkema, Rotterdam, 415-422.
Vanmarcke (b0125) 1977; GT11
Li, Hicks, Vardon (b0075) 2016; 79
Kim, Sitar (b0065) 2013; 53
Ching, Yoshida, Phoon (b0030) 2023; 123
Ching, Phoon, Stuedlein, Jaksa (b0020) 2019; 81
Lo, Leung (b0090) 2017; 143
Phoon, Kulhawy (b0105) 1999; 36
Lyu, Hu, Wang (b0095) 2023; 9
Rasmussen, Williams (b0110) 2006
Liu, Leung, Lo (b0080) 2017; 54
Lloret-Cabot, Fenton, Hicks (b0085) 2014; 8
Ching, Huang, Phoon (b0010) 2020; 146
De Gast, T. (2020). Dykes and Embankments: A Geostatistical Analysis of Soft Terrain. PhD thesis, Delft University of Technology, the Netherlands.
Wang, Zhao, Hu, Phoon (b0145) 2019; 145
Woodbury, M.A. (1950). Inverting modified matrices, Memorandum Rept. 42, Statistical Research Group, Princeton University, Princeton, NJ.
Ching, Yang, Phoon (b0025) 2021; 147
Wang, Zhao (b0135) 2017; 67
Krige (b0070) 1951; 52
Lloret-Cabot (10.1016/j.compgeo.2024.106862_b0085) 2014; 8
Li (10.1016/j.compgeo.2024.106862_b0075) 2016; 79
Journel (10.1016/j.compgeo.2024.106862_b0060) 1978
Wang (10.1016/j.compgeo.2024.106862_b0140) 2018; 55
10.1016/j.compgeo.2024.106862_b0150
10.1016/j.compgeo.2024.106862_b0050
10.1016/j.compgeo.2024.106862_b0045
Krige (10.1016/j.compgeo.2024.106862_b0070) 1951; 52
Kim (10.1016/j.compgeo.2024.106862_b0065) 2013; 53
Wang (10.1016/j.compgeo.2024.106862_b0135) 2017; 67
Guttorp (10.1016/j.compgeo.2024.106862_b0040) 2006; 93
Lo (10.1016/j.compgeo.2024.106862_b0090) 2017; 143
Lyu (10.1016/j.compgeo.2024.106862_b0095) 2023; 9
Tipping (10.1016/j.compgeo.2024.106862_b0120) 2001; 1
Ching (10.1016/j.compgeo.2024.106862_b0030) 2023; 123
Liu (10.1016/j.compgeo.2024.106862_b0080) 2017; 54
Wang (10.1016/j.compgeo.2024.106862_b0145) 2019; 145
Phoon (10.1016/j.compgeo.2024.106862_b0105) 1999; 36
Ching (10.1016/j.compgeo.2024.106862_b0020) 2019; 81
Ching (10.1016/j.compgeo.2024.106862_b0010) 2020; 146
Wang (10.1016/j.compgeo.2024.106862_b0130) 2018; 4
Yoshida (10.1016/j.compgeo.2024.106862_b0155) 2021; 136
Ji (10.1016/j.compgeo.2024.106862_b0055) 2008; 56
Ching (10.1016/j.compgeo.2024.106862_b0015) 2017; 143
Ching (10.1016/j.compgeo.2024.106862_b0025) 2021; 147
10.1016/j.compgeo.2024.106862_b0035
Vanmarcke (10.1016/j.compgeo.2024.106862_b0125) 1977; GT11
Rasmussen (10.1016/j.compgeo.2024.106862_b0110) 2006
Ching (10.1016/j.compgeo.2024.106862_b0005) 2007; 133
Matheron (10.1016/j.compgeo.2024.106862_b0100) 1963; 58
Stuedlein (10.1016/j.compgeo.2024.106862_b0115) 2016; 142
References_xml – volume: GT11
  start-page: 1227
  year: 1977
  end-page: 1246
  ident: b0125
  article-title: Probabilistic modeling of soil profiles
  publication-title: ASCE J. Geotech. Eng.
– volume: 67
  start-page: 523
  year: 2017
  end-page: 536
  ident: b0135
  article-title: Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling
  publication-title: Géotechnique
– volume: 146
  year: 2020
  ident: b0010
  article-title: 3D probabilistic site characterization by sparse Bayesian learning
  publication-title: ASCE J. Eng. Mech.
– volume: 79
  start-page: 159
  year: 2016
  end-page: 172
  ident: b0075
  article-title: Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields
  publication-title: Comput. Geotech.
– reference: Woodbury, M.A. (1950). Inverting modified matrices, Memorandum Rept. 42, Statistical Research Group, Princeton University, Princeton, NJ.
– volume: 93
  start-page: 989
  year: 2006
  end-page: 995
  ident: b0040
  article-title: Studies in the history of probability and statistics XLIX on the Matérn correlation family
  publication-title: Biometrika
– volume: 147
  year: 2021
  ident: b0025
  article-title: Dealing with non-lattice data in three-dimensional probabilistic site characterization
  publication-title: ASCE J. Eng. Mech.
– volume: 55
  start-page: 862
  year: 2018
  end-page: 880
  ident: b0140
  article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation
  publication-title: Can. Geotech. J.
– volume: 56
  start-page: 2346
  year: 2008
  end-page: 2356
  ident: b0055
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
– reference: Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. (1999). Experimental evaluation of the scale of fluctuation of a stiff clay. Proceedings of the 8th International Conference on Application of Statistics and Probability, A.A. Balkema, Rotterdam, 415-422.
– volume: 54
  start-page: 47
  year: 2017
  end-page: 58
  ident: b0080
  article-title: Integrated framework for characterization of spatial variability of geological profiles
  publication-title: Can. Geotech. J.
– reference: Jaksa, M. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay. Ph.D. Dissertation, University of Adelaide, Australia.
– year: 1978
  ident: b0060
  article-title: Mining Geostatistics
– volume: 9
  year: 2023
  ident: b0095
  article-title: Data-driven development of three-dimensional subsurface models from sparse measurements using Bayesian compressive sampling (BCS): A benchmarking study
  publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
– volume: 143
  year: 2017
  ident: b0015
  article-title: Characterizing uncertain site-specific trend function by sparse Bayesian learning
  publication-title: ASCE J. Eng. Mech.
– volume: 81
  year: 2019
  ident: b0020
  article-title: Identification of sample path smoothness in soil spatial variability
  publication-title: Struct. Saf.
– year: 2006
  ident: b0110
  article-title: Gaussian Processes for Machine Learning
– volume: 142
  year: 2016
  ident: b0115
  article-title: Densification of granular soils using conventional and drained timber displacement piles
  publication-title: ASCE J. Geotech. Geoenviron. Eng.
– volume: 52
  start-page: 119
  year: 1951
  end-page: 139
  ident: b0070
  article-title: A statistical approach to some basic mine valuation problems on Witwatersrand
  publication-title: J. Chem. Metall. Min. Soc. S. Afr.
– volume: 8
  start-page: 129
  year: 2014
  end-page: 140
  ident: b0085
  article-title: On the estimation of scale of fluctuation in geostatistics
  publication-title: Georisk
– volume: 145
  year: 2019
  ident: b0145
  article-title: Simulation of random fields with trend from sparse measurements without detrending
  publication-title: J. Eng. Mech.
– volume: 53
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0065
  article-title: Reliability approach to slope stability analysis with spatially correlated soil properties
  publication-title: Soils Found.
– volume: 143
  year: 2017
  ident: b0090
  article-title: Probabilistic analyses of slopes and footings with spatially variable soils considering cross-correlation and conditioned random field
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 133
  start-page: 816
  year: 2007
  end-page: 832
  ident: b0005
  article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection and model averaging
  publication-title: ASCE J. Eng. Mech.
– volume: 58
  start-page: 1246
  year: 1963
  end-page: 1266
  ident: b0100
  article-title: Principles of geostatistics
  publication-title: Econ. Geol.
– volume: 136
  year: 2021
  ident: b0155
  article-title: Estimation of trend and random components of conditional random field using Gaussian process regression
  publication-title: Comput. Geotech.
– volume: 123
  start-page: 174
  year: 2023
  end-page: 183
  ident: b0030
  article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian Learning vs. Gaussian Process Regression
  publication-title: Gondwana Res.
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: b0120
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 4
  year: 2018
  ident: b0130
  article-title: Bayesian stochastic soil modeling framework using Gaussian Markov random fields
  publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
– volume: 36
  start-page: 612
  year: 1999
  end-page: 624
  ident: b0105
  article-title: Characterization of geotechnical variability
  publication-title: Can. Geotech. J.
– reference: De Gast, T. (2020). Dykes and Embankments: A Geostatistical Analysis of Soft Terrain. PhD thesis, Delft University of Technology, the Netherlands.
– ident: 10.1016/j.compgeo.2024.106862_b0050
– volume: 143
  issue: 9
  year: 2017
  ident: 10.1016/j.compgeo.2024.106862_b0090
  article-title: Probabilistic analyses of slopes and footings with spatially variable soils considering cross-correlation and conditioned random field
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001720
– volume: 142
  issue: 12
  year: 2016
  ident: 10.1016/j.compgeo.2024.106862_b0115
  article-title: Densification of granular soils using conventional and drained timber displacement piles
  publication-title: ASCE J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001554
– ident: 10.1016/j.compgeo.2024.106862_b0035
– year: 1978
  ident: 10.1016/j.compgeo.2024.106862_b0060
– volume: 58
  start-page: 1246
  year: 1963
  ident: 10.1016/j.compgeo.2024.106862_b0100
  article-title: Principles of geostatistics
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 9
  issue: 2
  year: 2023
  ident: 10.1016/j.compgeo.2024.106862_b0095
  article-title: Data-driven development of three-dimensional subsurface models from sparse measurements using Bayesian compressive sampling (BCS): A benchmarking study
  publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
– volume: 67
  start-page: 523
  issue: 6
  year: 2017
  ident: 10.1016/j.compgeo.2024.106862_b0135
  article-title: Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling
  publication-title: Géotechnique
  doi: 10.1680/jgeot.16.P.143
– volume: 79
  start-page: 159
  year: 2016
  ident: 10.1016/j.compgeo.2024.106862_b0075
  article-title: Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.05.027
– volume: 36
  start-page: 612
  issue: 4
  year: 1999
  ident: 10.1016/j.compgeo.2024.106862_b0105
  article-title: Characterization of geotechnical variability
  publication-title: Can. Geotech. J.
  doi: 10.1139/t99-038
– volume: 8
  start-page: 129
  issue: 2
  year: 2014
  ident: 10.1016/j.compgeo.2024.106862_b0085
  article-title: On the estimation of scale of fluctuation in geostatistics
  publication-title: Georisk
– volume: 81
  year: 2019
  ident: 10.1016/j.compgeo.2024.106862_b0020
  article-title: Identification of sample path smoothness in soil spatial variability
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2019.101870
– volume: 145
  issue: 2
  year: 2019
  ident: 10.1016/j.compgeo.2024.106862_b0145
  article-title: Simulation of random fields with trend from sparse measurements without detrending
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001560
– volume: GT11
  start-page: 1227
  year: 1977
  ident: 10.1016/j.compgeo.2024.106862_b0125
  article-title: Probabilistic modeling of soil profiles
  publication-title: ASCE J. Geotech. Eng.
– volume: 136
  year: 2021
  ident: 10.1016/j.compgeo.2024.106862_b0155
  article-title: Estimation of trend and random components of conditional random field using Gaussian process regression
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104179
– volume: 147
  issue: 5
  year: 2021
  ident: 10.1016/j.compgeo.2024.106862_b0025
  article-title: Dealing with non-lattice data in three-dimensional probabilistic site characterization
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001907
– volume: 123
  start-page: 174
  year: 2023
  ident: 10.1016/j.compgeo.2024.106862_b0030
  article-title: Comparison of trend models for geotechnical spatial variability: Sparse Bayesian Learning vs. Gaussian Process Regression
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2022.07.011
– year: 2006
  ident: 10.1016/j.compgeo.2024.106862_b0110
– volume: 4
  issue: 2
  year: 2018
  ident: 10.1016/j.compgeo.2024.106862_b0130
  article-title: Bayesian stochastic soil modeling framework using Gaussian Markov random fields
  publication-title: ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng.
– volume: 56
  start-page: 2346
  issue: 6
  year: 2008
  ident: 10.1016/j.compgeo.2024.106862_b0055
  article-title: Bayesian compressive sensing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914345
– volume: 146
  issue: 12
  year: 2020
  ident: 10.1016/j.compgeo.2024.106862_b0010
  article-title: 3D probabilistic site characterization by sparse Bayesian learning
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001859
– volume: 52
  start-page: 119
  issue: 6
  year: 1951
  ident: 10.1016/j.compgeo.2024.106862_b0070
  article-title: A statistical approach to some basic mine valuation problems on Witwatersrand
  publication-title: J. Chem. Metall. Min. Soc. S. Afr.
– volume: 55
  start-page: 862
  issue: 6
  year: 2018
  ident: 10.1016/j.compgeo.2024.106862_b0140
  article-title: Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2017-0254
– volume: 133
  start-page: 816
  issue: 7
  year: 2007
  ident: 10.1016/j.compgeo.2024.106862_b0005
  article-title: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection and model averaging
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)
– volume: 93
  start-page: 989
  issue: 4
  year: 2006
  ident: 10.1016/j.compgeo.2024.106862_b0040
  article-title: Studies in the history of probability and statistics XLIX on the Matérn correlation family
  publication-title: Biometrika
  doi: 10.1093/biomet/93.4.989
– volume: 54
  start-page: 47
  issue: 1
  year: 2017
  ident: 10.1016/j.compgeo.2024.106862_b0080
  article-title: Integrated framework for characterization of spatial variability of geological profiles
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2016-0189
– volume: 143
  issue: 7
  year: 2017
  ident: 10.1016/j.compgeo.2024.106862_b0015
  article-title: Characterizing uncertain site-specific trend function by sparse Bayesian learning
  publication-title: ASCE J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001240
– ident: 10.1016/j.compgeo.2024.106862_b0150
– volume: 53
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compgeo.2024.106862_b0065
  article-title: Reliability approach to slope stability analysis with spatially correlated soil properties
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2012.12.001
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.compgeo.2024.106862_b0120
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.compgeo.2024.106862_b0045
SSID ssj0016989
Score 2.4084225
Snippet Previous investigations have shown that for the modeling the soil spatial variability, the Gaussian process regression (GPR) provides a more plausible trend...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106862
SubjectTerms Gaussian process regression
Probabilistic site characterization
Random field
Spatial variability
Title Efficient simulation of 3D conditional random field using kriging with Gaussian-process trend
URI https://dx.doi.org/10.1016/j.compgeo.2024.106862
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIryqDywukkc5zVWpaWA6AKVuqDISewqRW0jmq78dnx5QJEQA6uli6JLfN-9vjuAG0uogKsAS4ORQzl3BI08rqjnykSgz-wXqYGniTue8oeZM2vAoObCYFtlZftLm15Y6-rEqLRpZGlqPOvoQaMlm2EXJNrZJrSZHbhOC9r9-8fx5KuYgDsSy1SLS1Hgm8hjLPDx2bygATKuz5Aw8TtE7cDO6BAOKn-R9MtXOoKGXB3D_s4UwRN4HRZjIDR6kE26rNZxkbUi9i3R0W6Sluk-olEpWS9J0bNGsN99Tt6KtVhzgtlYcie2G6RU0qwkD5Ac-2VPYToavgzGtNqaQGN9_XKqmBlLx0o85ZtCwzOXCbdjHlllOIrxmS-ZF2F9TEozCbzIcywRJFou1mBvn0FrtV7JcyCcxUqjnMeEMLmKXV8xXyjLD3QMFZnK7kCvVlSYlcMxwrprbBFWmg1Rs2Gp2Q74tTrDH1851Ab8b9GL_4tewh7Drb1F4uQKWvn7Vl5rVyKPutDsfVjd6of5BI8dyIU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHtSD8RnxuQevC31sX0eDICpwERIuptm2u6QYoJFy9be7020VE-PB66bbNNN2vpnZ75sBuDW5DJgM8GgwcihjDqeRxyT1XJFwjJn9ojQwGLq9MXuaOJMatCstDNIqS9-vfXrhrcuVVmnNVpamrReVPSi0tCbIgkQ_uwXbzLE95PU1P754HiZOSNSFFpfi5d8yntYMb55NCxGgxdQayiV-B6gN0OkewH4ZLZI7_UCHUBOLI9jb6CF4DK-dogmEwg6ySuflMC6ylMS-JyrXTVJd7CMKk5LlnBSMNYJs9yl5K4ZiTQnWYskDX69QUEkzLR0gObJlT2Dc7YzaPVrOTKCx-vlyKi0jFo6ZeNI3uAJnJhJmxywydTKK2ZkvLC_C0zEhjCTwIs8xeZCofbGCevsU6ovlQpwBYVYsFcZ5FucGk7HrS8vn0vQDlUFFhrQb0KwMFWa6NUZYccZmYWnZEC0bass2wK_MGf54x6Fy339vPf__1hvY6Y0G_bD_OHy-gF0L5_cWJZRLqOfva3Glgoo8ui4-mk88VclQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+simulation+of+3D+conditional+random+field+using+kriging+with+Gaussian-process+trend&rft.jtitle=Computers+and+geotechnics&rft.au=Ching%2C+Jianye&rft.au=Yoshida%2C+Ikumasa&rft.date=2025-01-01&rft.issn=0266-352X&rft.volume=177&rft.spage=106862&rft_id=info:doi/10.1016%2Fj.compgeo.2024.106862&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compgeo_2024_106862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon