Developing thermally stable high-entropy alloys using a phase-diagram method
Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at intermediate temperatures after heat treatment owing to limited guidance on structural stability. This study aimed to propose an element-addition...
Saved in:
Published in | Materials characterization Vol. 219; p. 114641 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at intermediate temperatures after heat treatment owing to limited guidance on structural stability. This study aimed to propose an element-addition method to create thermally stable RHEAs. The alloys within the suggested composition provided by this method maintained a single solid–solution phase after prolonged annealing at 600 °C, 700 °C, 800 °C, and 1000 °C for 100 h. Further, the alloys exhibited favorable mechanical properties. For example, the tensile yield strength (σ0.2) and fracture elongation of the alloy heat-treated at 800 °C for 100 h were 830 MPa and 11 %, respectively. The peak compressive true stress of these alloys at 800 °C exceeded 480 MPa. The mechanical performance at both room and elevated temperatures was comparable to those of the most as-cast RHEAs. The study identified Mo, Nb, and Ti elements as beneficial for forming a stable single-phase structure, with Al content strictly regulated. Characterization via x-ray diffraction and electron backscatter diffraction revealed that dislocation was the primary deformation mechanism at room temperature. In contrast, grain boundary sliding and dynamic recrystallization contributed to flow stress softening of the alloy at high temperatures. Besides providing a meaningful paradigm for obtaining stable RHEAs, this study offered insights into obtaining alloys with better high-temperature properties, which are essential for advancing their industrial applications.
[Display omitted]
•An element-addition method was proposed.•The alloy retains a single-phase structure after intermediate temperatures heat treatment for 100 h.•The alloy exhibited superior mechanical properties stability.•Grain boundary sliding, dynamical recrystallization, and dislocation annihilation lead to flow stress softening. |
---|---|
AbstractList | Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at intermediate temperatures after heat treatment owing to limited guidance on structural stability. This study aimed to propose an element-addition method to create thermally stable RHEAs. The alloys within the suggested composition provided by this method maintained a single solid–solution phase after prolonged annealing at 600 °C, 700 °C, 800 °C, and 1000 °C for 100 h. Further, the alloys exhibited favorable mechanical properties. For example, the tensile yield strength (σ0.2) and fracture elongation of the alloy heat-treated at 800 °C for 100 h were 830 MPa and 11 %, respectively. The peak compressive true stress of these alloys at 800 °C exceeded 480 MPa. The mechanical performance at both room and elevated temperatures was comparable to those of the most as-cast RHEAs. The study identified Mo, Nb, and Ti elements as beneficial for forming a stable single-phase structure, with Al content strictly regulated. Characterization via x-ray diffraction and electron backscatter diffraction revealed that dislocation was the primary deformation mechanism at room temperature. In contrast, grain boundary sliding and dynamic recrystallization contributed to flow stress softening of the alloy at high temperatures. Besides providing a meaningful paradigm for obtaining stable RHEAs, this study offered insights into obtaining alloys with better high-temperature properties, which are essential for advancing their industrial applications.
[Display omitted]
•An element-addition method was proposed.•The alloy retains a single-phase structure after intermediate temperatures heat treatment for 100 h.•The alloy exhibited superior mechanical properties stability.•Grain boundary sliding, dynamical recrystallization, and dislocation annihilation lead to flow stress softening. |
ArticleNumber | 114641 |
Author | Jiao, Wenna Huang, Rui Amar, Abdukadir Wang, Shudao Lu, Yiping |
Author_xml | – sequence: 1 givenname: Rui surname: Huang fullname: Huang, Rui organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Abdukadir surname: Amar fullname: Amar, Abdukadir organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Wenna surname: Jiao fullname: Jiao, Wenna organization: Instrumental Analysis Center Dalian University of Technolog, Dalian University of Technology, Dalian 116024, China – sequence: 4 givenname: Shudao surname: Wang fullname: Wang, Shudao organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 5 givenname: Yiping surname: Lu fullname: Lu, Yiping email: luyiping@dlut.edu.cn organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
BookMark | eNqFkM1qwzAQhHVIoUnaRyjoBexqZcl2TqWkvxDopT0LRVrHCrZlJDXgt69Dcu9pYGdnGL4VWQx-QEIegOXAoHw85r1OptUh54yLHECUAhZkCUyITNasuCWrGI-MsbKGakl2L3jCzo9uONDUYuh11000Jr3vkLbu0GY4pODHic6GnyL9jedXTcdWR8ys04ege9pjar29IzeN7iLeX3VNft5ev7cf2e7r_XP7vMsMl1XKECsoNJQarWmgAiOaGve8thvLxb4sivlsJG8ksqq0kgvBLS_4PFhabTZVsSby0muCjzFgo8bgeh0mBUydMaijumJQZwzqgmHOPV1yOI87OQwqGoeDQesCmqSsd_80_AH-YW35 |
Cites_doi | 10.1016/0022-5096(55)90054-5 10.1016/j.actamat.2023.118728 10.1007/BF03398039 10.1016/j.jmst.2018.09.034 10.1007/s11661-018-4646-8 10.1016/j.msea.2021.140798 10.1038/s41578-019-0121-4 10.1103/PhysRevLett.116.135504 10.1016/j.jallcom.2022.166593 10.1016/j.actamat.2019.06.032 10.1016/j.actamat.2019.12.004 10.1016/j.matchar.2021.111287 10.1016/j.jallcom.2024.175957 10.1016/j.actamat.2020.11.018 10.1016/j.jmst.2024.06.049 10.1016/j.mattod.2022.02.006 10.1007/BF02664244 10.1016/j.jmst.2021.12.057 10.1016/j.scriptamat.2021.114230 10.1016/j.intermet.2020.106935 10.1016/j.scriptamat.2018.08.032 10.1016/j.intermet.2011.01.004 10.1016/j.matlet.2016.08.060 10.1007/BF00566281 10.1002/adem.200300567 10.1016/S1359-6454(02)00039-3 10.1039/D0MH01341B 10.1016/j.jallcom.2023.168821 10.1016/j.jmst.2021.05.015 10.1016/j.actamat.2021.117269 10.1126/science.aas8815 10.1016/j.msea.2017.12.021 10.1016/j.jallcom.2022.165187 10.1038/s41586-018-0685-y 10.1016/j.jallcom.2021.162733 10.1016/j.actamat.2017.09.035 10.1016/j.mtla.2023.101766 10.1016/j.actamat.2019.11.001 10.1016/j.scriptamat.2020.08.029 10.1016/j.matdes.2022.111034 10.1016/j.corsci.2022.110504 10.1080/21663831.2016.1221861 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matchar.2024.114641 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_matchar_2024_114641 S1044580324010222 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH SSQ |
ID | FETCH-LOGICAL-c257t-ee713a16aedcf171c4f8eb28d9d24b633dcfc52f5e076d52442d2326815dac973 |
IEDL.DBID | .~1 |
ISSN | 1044-5803 |
IngestDate | Tue Jul 01 01:36:21 EDT 2025 Sat Jan 04 15:43:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Refractory high-entropy alloys Mechanical properties Phase structure stability Phase-diagram calculation Deformation mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-ee713a16aedcf171c4f8eb28d9d24b633dcfc52f5e076d52442d2326815dac973 |
ParticipantIDs | crossref_primary_10_1016_j_matchar_2024_114641 elsevier_sciencedirect_doi_10_1016_j_matchar_2024_114641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Materials characterization |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Voisin, Forien, Perron, Aubry, Bertin, Samanta, Baker, Wang (bb0120) 2021; 203 Senkov, Wilks, Scott, Miracle (bb0010) 2011; 19 Raj, Ashby (bb0210) 1971; 2 Abubaker Khan, Wang, Feng, Sun, Wang, Hamza, Yasin, Afifi, Liao (bb0220) 2022; 222 Fang, Wang, Li, Tao, Ouyang, Du (bb0050) 2022; 924 Tu, Wu, Lin (bb0130) 2020; 126 Qiao, Liang, Wu, He, Cao, Lu, Li (bb0190) 2021; 178 Senkov, Miracle, Chaput, Couzinie (bb0005) 2018; 1-37 Senkov, Pilchak, Semiatin (bb0060) 2018; 49 Chen, Tong, Tseng, Yeh, Poplawsky, Wen, Gao, Kim, Chen, Ren, Feng, Li, Liaw (bb0065) 2019; 158 Xu, Ma, Tan, Cheng (bb0175) 2022; 206 Cao, Huang, Jiang, Liu, Wang, Wu, Lu (bb0045) 2022; 122 Parthasarathy, Mendiratta, Dimiduk (bb0105) 2002; 50 Fazan, Sherby, Dorn (bb0205) 1954; 6 Huang, Wang, Li, Zhang, Amar, Chen, Ren, Lu (bb0085) 2023; 940 Kang, Lee, Ryu, Hong (bb0025) 2018; 712 Wu, Qiao, Zhang, Miao, Zhao, Wang, Lu, Wang, Li (bb0015) 2022; 97 Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis, Raabe, Gu, Zhang, Chen, Wang, Liu, An, Zeng, Nieh, Lu (bb0180) 2018; 563 Dorn (bb0200) 1955; 3 Schuh, Völker, Todt, Schell, Perrière, Li, Couzinié, Hohenwarter (bb0055) 2018; 142 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bb0035) 2004; 6 Li, Wang, Yang, Liu, Su, Zhang, Li, Huang, Wang, Luo, Chen, Su (bb0100) 2025; 215 Huang, Wang, Qiao, Wu (bb0030) 2022; 914 Juan, Tsai, Tsai, Hsu, Lin, Chen, Lin, Yeh (bb0135) 2016; 184 Li, Wang, Fan, Lu, Wang, Li, Liaw (bb0140) 2023; 246 Wen, Wu, Huang, Jiang, Wang, Liu, Zhang, Wang, Lu (bb0170) 2021; 805 Yurchenko, Panina, Tojibaev, Eleti, Volosevich, Klimova-Korsmik, Salishchev, Zherebtsov, Stepanov (bb0080) 2023; 28 Li, Wang, Wang, Li, Li, Luo, Chen, Su, Guo (bb0095) 2022; A Singh, Rama Rao, Cocks, Taplin (bb0215) 1977; 12 Soni, Gwalani, Alam, Dasari, Zheng, Senkov, Miracle, Banerjee (bb0070) 2020; 185 Wang, Wu, Wu, Huang, Zhu, Zhang, Zhu, Yuan, Chen, Wang, Liu, Wang, Jiang, Kim, Lu (bb0185) 2022; 54 Lu, Huang, Gao, Ren, Gao, Zhang, Zheng, Jin, Zhao, Lu, Wang, Li (bb0020) 2019; 35 Senkov, Gorsse, Miracle (bb0040) 2019; 175 Eleti, Chokshi, Shibata, Tsuji (bb0195) 2020; 183 Wang, Han, Liu, Zhang, Dong, Liaw (bb0125) 2021; 190 An, Mao, Yang, Liu, Zhang, Ma, Zhou, Zhang, Wang, Han (bb0160) 2021; 8 Lilensten, Couzinié, Bourgon, Perrière, Dirras, Prima, Guillot (bb0165) 2017; 5 Ostovari Moghaddam, Sudarikov, Shaburova, Zherebtsov, Zhivulin, Ashurali Solizoda, Starikov, Veselkov, Samoilova, Trofimov (bb0090) 2022; 897 Granberg, Nordlund, Ullah, Jin, Lu, Bei, Wang, Djurabekova, Weber, Zhang (bb0155) 2016; 116 Nataraj, Borda, van de Walle, Samanta (bb0075) 2021; 220 Zhang, Su, Wang, Liu, Li, Li, Wang, Luo, Chen, Su (bb0115) 2024; 1004 Li, Wang, Wang, Li, Li, Zhang, Luo, Chen, Su, Guo (bb0110) 2022; 206 Yang, Zhao, Tong, Jiao, Wei, Cai, Han, Chen, Hu, Kai, Lu, Liu, Liu (bb0150) 2018; 362 George, Raabe, Ritchie (bb0145) 2019; 4 Granberg (10.1016/j.matchar.2024.114641_bb0155) 2016; 116 Senkov (10.1016/j.matchar.2024.114641_bb0060) 2018; 49 Soni (10.1016/j.matchar.2024.114641_bb0070) 2020; 185 Abubaker Khan (10.1016/j.matchar.2024.114641_bb0220) 2022; 222 Tu (10.1016/j.matchar.2024.114641_bb0130) 2020; 126 Chen (10.1016/j.matchar.2024.114641_bb0065) 2019; 158 Yurchenko (10.1016/j.matchar.2024.114641_bb0080) 2023; 28 Schuh (10.1016/j.matchar.2024.114641_bb0055) 2018; 142 Wang (10.1016/j.matchar.2024.114641_bb0125) 2021; 190 Wen (10.1016/j.matchar.2024.114641_bb0170) 2021; 805 Raj (10.1016/j.matchar.2024.114641_bb0210) 1971; 2 Singh (10.1016/j.matchar.2024.114641_bb0215) 1977; 12 Zhang (10.1016/j.matchar.2024.114641_bb0115) 2024; 1004 Li (10.1016/j.matchar.2024.114641_bb0095) 2022; A Li (10.1016/j.matchar.2024.114641_bb0110) 2022; 206 Xu (10.1016/j.matchar.2024.114641_bb0175) 2022; 206 Senkov (10.1016/j.matchar.2024.114641_bb0005) 2018; 1-37 Parthasarathy (10.1016/j.matchar.2024.114641_bb0105) 2002; 50 Wang (10.1016/j.matchar.2024.114641_bb0185) 2022; 54 Yang (10.1016/j.matchar.2024.114641_bb0150) 2018; 362 Fazan (10.1016/j.matchar.2024.114641_bb0205) 1954; 6 Wu (10.1016/j.matchar.2024.114641_bb0015) 2022; 97 Voisin (10.1016/j.matchar.2024.114641_bb0120) 2021; 203 Senkov (10.1016/j.matchar.2024.114641_bb0040) 2019; 175 Cao (10.1016/j.matchar.2024.114641_bb0045) 2022; 122 Senkov (10.1016/j.matchar.2024.114641_bb0010) 2011; 19 Qiao (10.1016/j.matchar.2024.114641_bb0190) 2021; 178 Dorn (10.1016/j.matchar.2024.114641_bb0200) 1955; 3 Huang (10.1016/j.matchar.2024.114641_bb0030) 2022; 914 Kang (10.1016/j.matchar.2024.114641_bb0025) 2018; 712 An (10.1016/j.matchar.2024.114641_bb0160) 2021; 8 Li (10.1016/j.matchar.2024.114641_bb0140) 2023; 246 Lu (10.1016/j.matchar.2024.114641_bb0020) 2019; 35 George (10.1016/j.matchar.2024.114641_bb0145) 2019; 4 Eleti (10.1016/j.matchar.2024.114641_bb0195) 2020; 183 Huang (10.1016/j.matchar.2024.114641_bb0085) 2023; 940 Li (10.1016/j.matchar.2024.114641_bb0100) 2025; 215 Fang (10.1016/j.matchar.2024.114641_bb0050) 2022; 924 Lilensten (10.1016/j.matchar.2024.114641_bb0165) 2017; 5 Lei (10.1016/j.matchar.2024.114641_bb0180) 2018; 563 Juan (10.1016/j.matchar.2024.114641_bb0135) 2016; 184 Yeh (10.1016/j.matchar.2024.114641_bb0035) 2004; 6 Nataraj (10.1016/j.matchar.2024.114641_bb0075) 2021; 220 Ostovari Moghaddam (10.1016/j.matchar.2024.114641_bb0090) 2022; 897 |
References_xml | – volume: 222 year: 2022 ident: bb0220 article-title: A superb mechanical behavior of newly developed lightweight and ductile Al publication-title: Mater. Des. – volume: 142 start-page: 201 year: 2018 end-page: 212 ident: bb0055 article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties publication-title: Acta Mater. – volume: 3 start-page: 85 year: 1955 end-page: 116 ident: bb0200 article-title: Some fundamental experiments on high temperature creep publication-title: J. Mech. Phys. Solids – volume: 54 start-page: 83 year: 2022 end-page: 89 ident: bb0185 article-title: Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering publication-title: Mater. Today. – volume: 4 start-page: 515 year: 2019 end-page: 534 ident: bb0145 article-title: High-entropy alloys publication-title: Nat. Rev. Mater. – volume: 49 start-page: 2876 year: 2018 end-page: 2892 ident: bb0060 article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy publication-title: Metall. Mater. Trans. A. – volume: A year: 2022 ident: bb0095 article-title: Strength-ductility synergy of Al-bearing low-density refractory TiNbMo publication-title: Mater. Sci. Eng. – volume: 8 start-page: 948 year: 2021 end-page: 955 ident: bb0160 article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy publication-title: Mater. Horiz. – volume: 563 start-page: 546 year: 2018 end-page: 550 ident: bb0180 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature – volume: 158 start-page: 50 year: 2019 end-page: 56 ident: bb0065 article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures publication-title: Scr. Mater. – volume: 203 year: 2021 ident: bb0120 article-title: New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion publication-title: Acta Mater. – volume: 35 start-page: 369 year: 2019 end-page: 373 ident: bb0020 article-title: A promising new class of irradiation tolerant materials: Ti publication-title: J. Mater. Sci. Technol. – volume: 126 year: 2020 ident: bb0130 article-title: A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy publication-title: Intermetallics – volume: 914 year: 2022 ident: bb0030 article-title: Microstructures and mechanical properties of TiZrHfNbTaW publication-title: J. Alloys Compd. – volume: 897 year: 2022 ident: bb0090 article-title: High temperature oxidation resistance of W-containing high entropy alloys publication-title: J. Alloys Compd. – volume: 175 start-page: 394 year: 2019 end-page: 405 ident: bb0040 article-title: High temperature strength of refractory complex concentrated alloys publication-title: Acta Mater. – volume: 206 year: 2022 ident: bb0110 article-title: Oxidation behavior of Ti-Nb-Mo-Al-Si publication-title: Corros. Sci. – volume: 206 year: 2022 ident: bb0175 article-title: Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility publication-title: Scr. Mater. – volume: 184 start-page: 200 year: 2016 end-page: 203 ident: bb0135 article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining publication-title: Mater. Lett. – volume: 924 year: 2022 ident: bb0050 article-title: Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf publication-title: J. Alloys Compd. – volume: 183 start-page: 64 year: 2020 end-page: 77 ident: bb0195 article-title: Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy publication-title: Acta Mater. – volume: 712 start-page: 616 year: 2018 end-page: 624 ident: bb0025 article-title: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process publication-title: Mater. Sci. Eng. A – volume: 28 year: 2023 ident: bb0080 article-title: Temperature-dependent plastic deformation of a refractory Al publication-title: Materialia – volume: 50 start-page: 1857 year: 2002 end-page: 1868 ident: bb0105 article-title: Oxidation mechanisms in Mo-reinforced Mo publication-title: Acta Mater. – volume: 190 start-page: 40 year: 2021 end-page: 45 ident: bb0125 article-title: Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al publication-title: Scr. Mater. – volume: 1-37 year: 2018 ident: bb0005 article-title: Development and exploration of refractory high entropy alloys—A review publication-title: J. Mater. Res. – volume: 215 start-page: 131 year: 2025 end-page: 146 ident: bb0100 article-title: High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing publication-title: J. Mater. Sci. Technol. – volume: 97 start-page: 229 year: 2022 end-page: 238 ident: bb0015 article-title: Microstructure and mechanical properties of C publication-title: J. Mater. Sci. Technol. – volume: 185 start-page: 89 year: 2020 end-page: 97 ident: bb0070 article-title: Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy publication-title: Acta Mater. – volume: 220 year: 2021 ident: bb0075 article-title: A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models publication-title: Acta Mater. – volume: 1004 year: 2024 ident: bb0115 article-title: The mechanical properties and high-temperature oxidation behavior of (TiZr) publication-title: J. Alloys Compd. – volume: 5 start-page: 110 year: 2017 end-page: 116 ident: bb0165 article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity publication-title: Mater. Res. Lett. – volume: 116 year: 2016 ident: bb0155 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. – volume: 362 start-page: 933 year: 2018 end-page: 937 ident: bb0150 article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys publication-title: Science – volume: 12 start-page: 373 year: 1977 end-page: 383 ident: bb0215 article-title: On the formation of the diamond grain configuration during high temperature creep and fatigue publication-title: J. Mater. Sci. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bb0035 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 6 start-page: 919 year: 1954 end-page: 922 ident: bb0205 article-title: Some observations on grain boundary shearing during creep publication-title: JOM – volume: 178 year: 2021 ident: bb0190 article-title: The mechanical and oxidation properties of novel B2-ordered Ti publication-title: Mater. Charact. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bb0010 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 122 start-page: 243 year: 2022 end-page: 254 ident: bb0045 article-title: Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures publication-title: J. Mater. Sci. Technol. – volume: 246 year: 2023 ident: bb0140 article-title: CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy publication-title: Acta Mater. – volume: 2 start-page: 1113 year: 1971 end-page: 1127 ident: bb0210 article-title: On grain boundary sliding and diffusional creep publication-title: Metall. Trans. A. – volume: 940 year: 2023 ident: bb0085 article-title: A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility publication-title: J. Alloys Compd. – volume: 805 year: 2021 ident: bb0170 article-title: Effects of Nb on deformation-induced transformation and mechanical properties of HfNb publication-title: Mater. Sci. Eng. A – volume: 3 start-page: 85 year: 1955 ident: 10.1016/j.matchar.2024.114641_bb0200 article-title: Some fundamental experiments on high temperature creep publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(55)90054-5 – volume: 246 year: 2023 ident: 10.1016/j.matchar.2024.114641_bb0140 article-title: CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2023.118728 – volume: 6 start-page: 919 year: 1954 ident: 10.1016/j.matchar.2024.114641_bb0205 article-title: Some observations on grain boundary shearing during creep publication-title: JOM doi: 10.1007/BF03398039 – volume: 35 start-page: 369 year: 2019 ident: 10.1016/j.matchar.2024.114641_bb0020 article-title: A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.034 – volume: 49 start-page: 2876 year: 2018 ident: 10.1016/j.matchar.2024.114641_bb0060 article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy publication-title: Metall. Mater. Trans. A. doi: 10.1007/s11661-018-4646-8 – volume: 805 year: 2021 ident: 10.1016/j.matchar.2024.114641_bb0170 article-title: Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr high entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.140798 – volume: 4 start-page: 515 year: 2019 ident: 10.1016/j.matchar.2024.114641_bb0145 article-title: High-entropy alloys publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0121-4 – volume: 116 year: 2016 ident: 10.1016/j.matchar.2024.114641_bb0155 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.135504 – volume: 924 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0050 article-title: Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf0.2Crx refractory high entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166593 – volume: 175 start-page: 394 year: 2019 ident: 10.1016/j.matchar.2024.114641_bb0040 article-title: High temperature strength of refractory complex concentrated alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.06.032 – volume: 185 start-page: 89 year: 2020 ident: 10.1016/j.matchar.2024.114641_bb0070 article-title: Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.004 – volume: 178 year: 2021 ident: 10.1016/j.matchar.2024.114641_bb0190 article-title: The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys publication-title: Mater. Charact. doi: 10.1016/j.matchar.2021.111287 – volume: 1004 year: 2024 ident: 10.1016/j.matchar.2024.114641_bb0115 article-title: The mechanical properties and high-temperature oxidation behavior of (TiZr)65-x-yNb15Mo20SixAly refractory high entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2024.175957 – volume: 203 year: 2021 ident: 10.1016/j.matchar.2024.114641_bb0120 article-title: New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.11.018 – volume: 215 start-page: 131 year: 2025 ident: 10.1016/j.matchar.2024.114641_bb0100 article-title: High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2024.06.049 – volume: 54 start-page: 83 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0185 article-title: Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering publication-title: Mater. Today. doi: 10.1016/j.mattod.2022.02.006 – volume: 2 start-page: 1113 year: 1971 ident: 10.1016/j.matchar.2024.114641_bb0210 article-title: On grain boundary sliding and diffusional creep publication-title: Metall. Trans. A. doi: 10.1007/BF02664244 – volume: 122 start-page: 243 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0045 article-title: Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.12.057 – volume: 206 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0175 article-title: Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114230 – volume: 126 year: 2020 ident: 10.1016/j.matchar.2024.114641_bb0130 article-title: A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2020.106935 – volume: 158 start-page: 50 year: 2019 ident: 10.1016/j.matchar.2024.114641_bb0065 article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.08.032 – volume: 19 start-page: 698 year: 2011 ident: 10.1016/j.matchar.2024.114641_bb0010 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 184 start-page: 200 year: 2016 ident: 10.1016/j.matchar.2024.114641_bb0135 article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.08.060 – volume: 12 start-page: 373 year: 1977 ident: 10.1016/j.matchar.2024.114641_bb0215 article-title: On the formation of the diamond grain configuration during high temperature creep and fatigue publication-title: J. Mater. Sci. doi: 10.1007/BF00566281 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.matchar.2024.114641_bb0035 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 50 start-page: 1857 year: 2002 ident: 10.1016/j.matchar.2024.114641_bb0105 article-title: Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00039-3 – volume: 8 start-page: 948 year: 2021 ident: 10.1016/j.matchar.2024.114641_bb0160 article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy publication-title: Mater. Horiz. doi: 10.1039/D0MH01341B – volume: 940 year: 2023 ident: 10.1016/j.matchar.2024.114641_bb0085 article-title: A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.168821 – volume: 97 start-page: 229 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0015 article-title: Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.015 – volume: 220 year: 2021 ident: 10.1016/j.matchar.2024.114641_bb0075 article-title: A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117269 – volume: 362 start-page: 933 year: 2018 ident: 10.1016/j.matchar.2024.114641_bb0150 article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys publication-title: Science doi: 10.1126/science.aas8815 – volume: 1-37 year: 2018 ident: 10.1016/j.matchar.2024.114641_bb0005 article-title: Development and exploration of refractory high entropy alloys—A review publication-title: J. Mater. Res. – volume: 712 start-page: 616 year: 2018 ident: 10.1016/j.matchar.2024.114641_bb0025 article-title: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.12.021 – volume: 914 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0030 article-title: Microstructures and mechanical properties of TiZrHfNbTaWx refractory high entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165187 – volume: 563 start-page: 546 year: 2018 ident: 10.1016/j.matchar.2024.114641_bb0180 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature doi: 10.1038/s41586-018-0685-y – volume: 897 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0090 article-title: High temperature oxidation resistance of W-containing high entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162733 – volume: 142 start-page: 201 year: 2018 ident: 10.1016/j.matchar.2024.114641_bb0055 article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.09.035 – volume: 28 year: 2023 ident: 10.1016/j.matchar.2024.114641_bb0080 article-title: Temperature-dependent plastic deformation of a refractory Al7.5(NbTiZr)92.5 medium-entropy alloy with a bcc+B2 structure publication-title: Materialia doi: 10.1016/j.mtla.2023.101766 – volume: A year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0095 article-title: Strength-ductility synergy of Al-bearing low-density refractory TiNbMo0.5AlX medium entropy alloys via precipitation publication-title: Mater. Sci. Eng. – volume: 183 start-page: 64 year: 2020 ident: 10.1016/j.matchar.2024.114641_bb0195 article-title: Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.001 – volume: 190 start-page: 40 year: 2021 ident: 10.1016/j.matchar.2024.114641_bb0125 article-title: Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.08.029 – volume: 222 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0220 article-title: A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1Wx refractory high entropy alloy via nano-precipitates and dislocations induced-deformation publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111034 – volume: 206 year: 2022 ident: 10.1016/j.matchar.2024.114641_bb0110 article-title: Oxidation behavior of Ti-Nb-Mo-Al-Six refractory high entropy alloy at 1000 °C publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110504 – volume: 5 start-page: 110 year: 2017 ident: 10.1016/j.matchar.2024.114641_bb0165 article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1221861 |
SSID | ssj0006817 |
Score | 2.4123228 |
Snippet | Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114641 |
SubjectTerms | Deformation mechanism Mechanical properties Phase structure stability Phase-diagram calculation Refractory high-entropy alloys |
Title | Developing thermally stable high-entropy alloys using a phase-diagram method |
URI | https://dx.doi.org/10.1016/j.matchar.2024.114641 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPKgHo6gRH2QPXpc-2D72SFCCLy5Kwq3ZdrcKQWgUD1z87c70IZgYD143O0nzdTrzzXQeAJeoBbFEv86FIxQXQgRcGim4Rl9sbG3L2FAe8mHoD0biduyNa9CremGorLK0_YVNz611eWKVaFrZZGI9YiAhvNCmiXJ52EId7CIgLW9_rss8_DDfukuXOd1ed_FY0zaSQmpuwjDRFfnUXOH87p82fE5_H_ZKssi6xfMcQM3MG7Ddq3a0NWB3Y5zgIdxffXdAMeJ1r2o2WzGkf_HMMJpLzCmVu8hWjP62r94ZFb0_M8WyF_RlHDWFSrVYsVT6CEb966fegJfbEniCgC-5MRhvKsdXRiepEziJSEMMm0MttStiv9PB48RzU8_Yga89dOuuRjqF-HhaJTLoHEN9vpibE2AS0UxRQoYYbRilpI_ftQ6R_CSeCcK0Ce0KoygrhmJEVbXYNCpBjQjUqAC1CWGFZPTj7UZouP8WPf2_6BnsuLStN0-YnEN9-fZhLpBCLONWriMt2Ore3A2GX0KqxUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtCDUdSIzz3ocYGW7WMPHgxIUB4XIeFW2-5WIQiNYEwv_in_oLN9CCbGgwnXpttsvp3MfN92HgCXaAUex7hOmcZcyhizKJecUYGxWFZFlXtS3UN2e2ZrwO6HxjAHn1ktjEqrTH1_4tNjb50-qaRoVsLRqPKAQoIZdlV1lItlS5pZ2ZbRO-q2-fVdAw_5Stebt_16i6ajBaiPu1tQKVGcuZrpSuEHmqX5LLBRY9qCC515Zq2Gj31DDwyJOl8YGAN1gdzDtDVDuD63avjdDdhk6C7U2ITyxzKvBN-xkhYIjKrtLcuGKuMyslBVTYW6VGdxm16m_R4QV4Jccxd2UnZKbhIA9iAnp0Uo1LOhcEXYXulfuA-dxnfJFVFE8sWdTCKCfNObSKIaIVN1dzwLI6J-70dzorLsn4hLwmcMnhRNU-WGkWSK9QEM1oLhIeSns6k8AsLx-AJcwW2UN9J1uYmORNjItnxDWnZQgnKGkRMmXTicLD1t7KSgOgpUJwG1BHaGpPPDnByMFH8vPf7_0gsotPrdjtO567VPYEtXo4Lj25pTyC9e3-QZ8peFdx7bC4HHdRvoFwivAXs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+thermally+stable+high-entropy+alloys+using+a+phase-diagram+method&rft.jtitle=Materials+characterization&rft.au=Huang%2C+Rui&rft.au=Amar%2C+Abdukadir&rft.au=Jiao%2C+Wenna&rft.au=Wang%2C+Shudao&rft.date=2025-01-01&rft.pub=Elsevier+Inc&rft.issn=1044-5803&rft.volume=219&rft_id=info:doi/10.1016%2Fj.matchar.2024.114641&rft.externalDocID=S1044580324010222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon |