Developing thermally stable high-entropy alloys using a phase-diagram method

Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at intermediate temperatures after heat treatment owing to limited guidance on structural stability. This study aimed to propose an element-addition...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 219; p. 114641
Main Authors Huang, Rui, Amar, Abdukadir, Jiao, Wenna, Wang, Shudao, Lu, Yiping
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at intermediate temperatures after heat treatment owing to limited guidance on structural stability. This study aimed to propose an element-addition method to create thermally stable RHEAs. The alloys within the suggested composition provided by this method maintained a single solid–solution phase after prolonged annealing at 600 °C, 700 °C, 800 °C, and 1000 °C for 100 h. Further, the alloys exhibited favorable mechanical properties. For example, the tensile yield strength (σ0.2) and fracture elongation of the alloy heat-treated at 800 °C for 100 h were 830 MPa and 11 %, respectively. The peak compressive true stress of these alloys at 800 °C exceeded 480 MPa. The mechanical performance at both room and elevated temperatures was comparable to those of the most as-cast RHEAs. The study identified Mo, Nb, and Ti elements as beneficial for forming a stable single-phase structure, with Al content strictly regulated. Characterization via x-ray diffraction and electron backscatter diffraction revealed that dislocation was the primary deformation mechanism at room temperature. In contrast, grain boundary sliding and dynamic recrystallization contributed to flow stress softening of the alloy at high temperatures. Besides providing a meaningful paradigm for obtaining stable RHEAs, this study offered insights into obtaining alloys with better high-temperature properties, which are essential for advancing their industrial applications. [Display omitted] •An element-addition method was proposed.•The alloy retains a single-phase structure after intermediate temperatures heat treatment for 100 h.•The alloy exhibited superior mechanical properties stability.•Grain boundary sliding, dynamical recrystallization, and dislocation annihilation lead to flow stress softening.
AbstractList Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at intermediate temperatures after heat treatment owing to limited guidance on structural stability. This study aimed to propose an element-addition method to create thermally stable RHEAs. The alloys within the suggested composition provided by this method maintained a single solid–solution phase after prolonged annealing at 600 °C, 700 °C, 800 °C, and 1000 °C for 100 h. Further, the alloys exhibited favorable mechanical properties. For example, the tensile yield strength (σ0.2) and fracture elongation of the alloy heat-treated at 800 °C for 100 h were 830 MPa and 11 %, respectively. The peak compressive true stress of these alloys at 800 °C exceeded 480 MPa. The mechanical performance at both room and elevated temperatures was comparable to those of the most as-cast RHEAs. The study identified Mo, Nb, and Ti elements as beneficial for forming a stable single-phase structure, with Al content strictly regulated. Characterization via x-ray diffraction and electron backscatter diffraction revealed that dislocation was the primary deformation mechanism at room temperature. In contrast, grain boundary sliding and dynamic recrystallization contributed to flow stress softening of the alloy at high temperatures. Besides providing a meaningful paradigm for obtaining stable RHEAs, this study offered insights into obtaining alloys with better high-temperature properties, which are essential for advancing their industrial applications. [Display omitted] •An element-addition method was proposed.•The alloy retains a single-phase structure after intermediate temperatures heat treatment for 100 h.•The alloy exhibited superior mechanical properties stability.•Grain boundary sliding, dynamical recrystallization, and dislocation annihilation lead to flow stress softening.
ArticleNumber 114641
Author Jiao, Wenna
Huang, Rui
Amar, Abdukadir
Wang, Shudao
Lu, Yiping
Author_xml – sequence: 1
  givenname: Rui
  surname: Huang
  fullname: Huang, Rui
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Abdukadir
  surname: Amar
  fullname: Amar, Abdukadir
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Wenna
  surname: Jiao
  fullname: Jiao, Wenna
  organization: Instrumental Analysis Center Dalian University of Technolog, Dalian University of Technology, Dalian 116024, China
– sequence: 4
  givenname: Shudao
  surname: Wang
  fullname: Wang, Shudao
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 5
  givenname: Yiping
  surname: Lu
  fullname: Lu, Yiping
  email: luyiping@dlut.edu.cn
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
BookMark eNqFkM1qwzAQhHVIoUnaRyjoBexqZcl2TqWkvxDopT0LRVrHCrZlJDXgt69Dcu9pYGdnGL4VWQx-QEIegOXAoHw85r1OptUh54yLHECUAhZkCUyITNasuCWrGI-MsbKGakl2L3jCzo9uONDUYuh11000Jr3vkLbu0GY4pODHic6GnyL9jedXTcdWR8ys04ege9pjar29IzeN7iLeX3VNft5ev7cf2e7r_XP7vMsMl1XKECsoNJQarWmgAiOaGve8thvLxb4sivlsJG8ksqq0kgvBLS_4PFhabTZVsSby0muCjzFgo8bgeh0mBUydMaijumJQZwzqgmHOPV1yOI87OQwqGoeDQesCmqSsd_80_AH-YW35
Cites_doi 10.1016/0022-5096(55)90054-5
10.1016/j.actamat.2023.118728
10.1007/BF03398039
10.1016/j.jmst.2018.09.034
10.1007/s11661-018-4646-8
10.1016/j.msea.2021.140798
10.1038/s41578-019-0121-4
10.1103/PhysRevLett.116.135504
10.1016/j.jallcom.2022.166593
10.1016/j.actamat.2019.06.032
10.1016/j.actamat.2019.12.004
10.1016/j.matchar.2021.111287
10.1016/j.jallcom.2024.175957
10.1016/j.actamat.2020.11.018
10.1016/j.jmst.2024.06.049
10.1016/j.mattod.2022.02.006
10.1007/BF02664244
10.1016/j.jmst.2021.12.057
10.1016/j.scriptamat.2021.114230
10.1016/j.intermet.2020.106935
10.1016/j.scriptamat.2018.08.032
10.1016/j.intermet.2011.01.004
10.1016/j.matlet.2016.08.060
10.1007/BF00566281
10.1002/adem.200300567
10.1016/S1359-6454(02)00039-3
10.1039/D0MH01341B
10.1016/j.jallcom.2023.168821
10.1016/j.jmst.2021.05.015
10.1016/j.actamat.2021.117269
10.1126/science.aas8815
10.1016/j.msea.2017.12.021
10.1016/j.jallcom.2022.165187
10.1038/s41586-018-0685-y
10.1016/j.jallcom.2021.162733
10.1016/j.actamat.2017.09.035
10.1016/j.mtla.2023.101766
10.1016/j.actamat.2019.11.001
10.1016/j.scriptamat.2020.08.029
10.1016/j.matdes.2022.111034
10.1016/j.corsci.2022.110504
10.1080/21663831.2016.1221861
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.matchar.2024.114641
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_matchar_2024_114641
S1044580324010222
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
SSQ
ID FETCH-LOGICAL-c257t-ee713a16aedcf171c4f8eb28d9d24b633dcfc52f5e076d52442d2326815dac973
IEDL.DBID .~1
ISSN 1044-5803
IngestDate Tue Jul 01 01:36:21 EDT 2025
Sat Jan 04 15:43:50 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Refractory high-entropy alloys
Mechanical properties
Phase structure stability
Phase-diagram calculation
Deformation mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-ee713a16aedcf171c4f8eb28d9d24b633dcfc52f5e076d52442d2326815dac973
ParticipantIDs crossref_primary_10_1016_j_matchar_2024_114641
elsevier_sciencedirect_doi_10_1016_j_matchar_2024_114641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Materials characterization
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Voisin, Forien, Perron, Aubry, Bertin, Samanta, Baker, Wang (bb0120) 2021; 203
Senkov, Wilks, Scott, Miracle (bb0010) 2011; 19
Raj, Ashby (bb0210) 1971; 2
Abubaker Khan, Wang, Feng, Sun, Wang, Hamza, Yasin, Afifi, Liao (bb0220) 2022; 222
Fang, Wang, Li, Tao, Ouyang, Du (bb0050) 2022; 924
Tu, Wu, Lin (bb0130) 2020; 126
Qiao, Liang, Wu, He, Cao, Lu, Li (bb0190) 2021; 178
Senkov, Miracle, Chaput, Couzinie (bb0005) 2018; 1-37
Senkov, Pilchak, Semiatin (bb0060) 2018; 49
Chen, Tong, Tseng, Yeh, Poplawsky, Wen, Gao, Kim, Chen, Ren, Feng, Li, Liaw (bb0065) 2019; 158
Xu, Ma, Tan, Cheng (bb0175) 2022; 206
Cao, Huang, Jiang, Liu, Wang, Wu, Lu (bb0045) 2022; 122
Parthasarathy, Mendiratta, Dimiduk (bb0105) 2002; 50
Fazan, Sherby, Dorn (bb0205) 1954; 6
Huang, Wang, Li, Zhang, Amar, Chen, Ren, Lu (bb0085) 2023; 940
Kang, Lee, Ryu, Hong (bb0025) 2018; 712
Wu, Qiao, Zhang, Miao, Zhao, Wang, Lu, Wang, Li (bb0015) 2022; 97
Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis, Raabe, Gu, Zhang, Chen, Wang, Liu, An, Zeng, Nieh, Lu (bb0180) 2018; 563
Dorn (bb0200) 1955; 3
Schuh, Völker, Todt, Schell, Perrière, Li, Couzinié, Hohenwarter (bb0055) 2018; 142
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bb0035) 2004; 6
Li, Wang, Yang, Liu, Su, Zhang, Li, Huang, Wang, Luo, Chen, Su (bb0100) 2025; 215
Huang, Wang, Qiao, Wu (bb0030) 2022; 914
Juan, Tsai, Tsai, Hsu, Lin, Chen, Lin, Yeh (bb0135) 2016; 184
Li, Wang, Fan, Lu, Wang, Li, Liaw (bb0140) 2023; 246
Wen, Wu, Huang, Jiang, Wang, Liu, Zhang, Wang, Lu (bb0170) 2021; 805
Yurchenko, Panina, Tojibaev, Eleti, Volosevich, Klimova-Korsmik, Salishchev, Zherebtsov, Stepanov (bb0080) 2023; 28
Li, Wang, Wang, Li, Li, Luo, Chen, Su, Guo (bb0095) 2022; A
Singh, Rama Rao, Cocks, Taplin (bb0215) 1977; 12
Soni, Gwalani, Alam, Dasari, Zheng, Senkov, Miracle, Banerjee (bb0070) 2020; 185
Wang, Wu, Wu, Huang, Zhu, Zhang, Zhu, Yuan, Chen, Wang, Liu, Wang, Jiang, Kim, Lu (bb0185) 2022; 54
Lu, Huang, Gao, Ren, Gao, Zhang, Zheng, Jin, Zhao, Lu, Wang, Li (bb0020) 2019; 35
Senkov, Gorsse, Miracle (bb0040) 2019; 175
Eleti, Chokshi, Shibata, Tsuji (bb0195) 2020; 183
Wang, Han, Liu, Zhang, Dong, Liaw (bb0125) 2021; 190
An, Mao, Yang, Liu, Zhang, Ma, Zhou, Zhang, Wang, Han (bb0160) 2021; 8
Lilensten, Couzinié, Bourgon, Perrière, Dirras, Prima, Guillot (bb0165) 2017; 5
Ostovari Moghaddam, Sudarikov, Shaburova, Zherebtsov, Zhivulin, Ashurali Solizoda, Starikov, Veselkov, Samoilova, Trofimov (bb0090) 2022; 897
Granberg, Nordlund, Ullah, Jin, Lu, Bei, Wang, Djurabekova, Weber, Zhang (bb0155) 2016; 116
Nataraj, Borda, van de Walle, Samanta (bb0075) 2021; 220
Zhang, Su, Wang, Liu, Li, Li, Wang, Luo, Chen, Su (bb0115) 2024; 1004
Li, Wang, Wang, Li, Li, Zhang, Luo, Chen, Su, Guo (bb0110) 2022; 206
Yang, Zhao, Tong, Jiao, Wei, Cai, Han, Chen, Hu, Kai, Lu, Liu, Liu (bb0150) 2018; 362
George, Raabe, Ritchie (bb0145) 2019; 4
Granberg (10.1016/j.matchar.2024.114641_bb0155) 2016; 116
Senkov (10.1016/j.matchar.2024.114641_bb0060) 2018; 49
Soni (10.1016/j.matchar.2024.114641_bb0070) 2020; 185
Abubaker Khan (10.1016/j.matchar.2024.114641_bb0220) 2022; 222
Tu (10.1016/j.matchar.2024.114641_bb0130) 2020; 126
Chen (10.1016/j.matchar.2024.114641_bb0065) 2019; 158
Yurchenko (10.1016/j.matchar.2024.114641_bb0080) 2023; 28
Schuh (10.1016/j.matchar.2024.114641_bb0055) 2018; 142
Wang (10.1016/j.matchar.2024.114641_bb0125) 2021; 190
Wen (10.1016/j.matchar.2024.114641_bb0170) 2021; 805
Raj (10.1016/j.matchar.2024.114641_bb0210) 1971; 2
Singh (10.1016/j.matchar.2024.114641_bb0215) 1977; 12
Zhang (10.1016/j.matchar.2024.114641_bb0115) 2024; 1004
Li (10.1016/j.matchar.2024.114641_bb0095) 2022; A
Li (10.1016/j.matchar.2024.114641_bb0110) 2022; 206
Xu (10.1016/j.matchar.2024.114641_bb0175) 2022; 206
Senkov (10.1016/j.matchar.2024.114641_bb0005) 2018; 1-37
Parthasarathy (10.1016/j.matchar.2024.114641_bb0105) 2002; 50
Wang (10.1016/j.matchar.2024.114641_bb0185) 2022; 54
Yang (10.1016/j.matchar.2024.114641_bb0150) 2018; 362
Fazan (10.1016/j.matchar.2024.114641_bb0205) 1954; 6
Wu (10.1016/j.matchar.2024.114641_bb0015) 2022; 97
Voisin (10.1016/j.matchar.2024.114641_bb0120) 2021; 203
Senkov (10.1016/j.matchar.2024.114641_bb0040) 2019; 175
Cao (10.1016/j.matchar.2024.114641_bb0045) 2022; 122
Senkov (10.1016/j.matchar.2024.114641_bb0010) 2011; 19
Qiao (10.1016/j.matchar.2024.114641_bb0190) 2021; 178
Dorn (10.1016/j.matchar.2024.114641_bb0200) 1955; 3
Huang (10.1016/j.matchar.2024.114641_bb0030) 2022; 914
Kang (10.1016/j.matchar.2024.114641_bb0025) 2018; 712
An (10.1016/j.matchar.2024.114641_bb0160) 2021; 8
Li (10.1016/j.matchar.2024.114641_bb0140) 2023; 246
Lu (10.1016/j.matchar.2024.114641_bb0020) 2019; 35
George (10.1016/j.matchar.2024.114641_bb0145) 2019; 4
Eleti (10.1016/j.matchar.2024.114641_bb0195) 2020; 183
Huang (10.1016/j.matchar.2024.114641_bb0085) 2023; 940
Li (10.1016/j.matchar.2024.114641_bb0100) 2025; 215
Fang (10.1016/j.matchar.2024.114641_bb0050) 2022; 924
Lilensten (10.1016/j.matchar.2024.114641_bb0165) 2017; 5
Lei (10.1016/j.matchar.2024.114641_bb0180) 2018; 563
Juan (10.1016/j.matchar.2024.114641_bb0135) 2016; 184
Yeh (10.1016/j.matchar.2024.114641_bb0035) 2004; 6
Nataraj (10.1016/j.matchar.2024.114641_bb0075) 2021; 220
Ostovari Moghaddam (10.1016/j.matchar.2024.114641_bb0090) 2022; 897
References_xml – volume: 222
  year: 2022
  ident: bb0220
  article-title: A superb mechanical behavior of newly developed lightweight and ductile Al
  publication-title: Mater. Des.
– volume: 142
  start-page: 201
  year: 2018
  end-page: 212
  ident: bb0055
  article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties
  publication-title: Acta Mater.
– volume: 3
  start-page: 85
  year: 1955
  end-page: 116
  ident: bb0200
  article-title: Some fundamental experiments on high temperature creep
  publication-title: J. Mech. Phys. Solids
– volume: 54
  start-page: 83
  year: 2022
  end-page: 89
  ident: bb0185
  article-title: Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering
  publication-title: Mater. Today.
– volume: 4
  start-page: 515
  year: 2019
  end-page: 534
  ident: bb0145
  article-title: High-entropy alloys
  publication-title: Nat. Rev. Mater.
– volume: 49
  start-page: 2876
  year: 2018
  end-page: 2892
  ident: bb0060
  article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy
  publication-title: Metall. Mater. Trans. A.
– volume: A
  year: 2022
  ident: bb0095
  article-title: Strength-ductility synergy of Al-bearing low-density refractory TiNbMo
  publication-title: Mater. Sci. Eng.
– volume: 8
  start-page: 948
  year: 2021
  end-page: 955
  ident: bb0160
  article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy
  publication-title: Mater. Horiz.
– volume: 563
  start-page: 546
  year: 2018
  end-page: 550
  ident: bb0180
  article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
  publication-title: Nature
– volume: 158
  start-page: 50
  year: 2019
  end-page: 56
  ident: bb0065
  article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
  publication-title: Scr. Mater.
– volume: 203
  year: 2021
  ident: bb0120
  article-title: New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion
  publication-title: Acta Mater.
– volume: 35
  start-page: 369
  year: 2019
  end-page: 373
  ident: bb0020
  article-title: A promising new class of irradiation tolerant materials: Ti
  publication-title: J. Mater. Sci. Technol.
– volume: 126
  year: 2020
  ident: bb0130
  article-title: A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy
  publication-title: Intermetallics
– volume: 914
  year: 2022
  ident: bb0030
  article-title: Microstructures and mechanical properties of TiZrHfNbTaW
  publication-title: J. Alloys Compd.
– volume: 897
  year: 2022
  ident: bb0090
  article-title: High temperature oxidation resistance of W-containing high entropy alloys
  publication-title: J. Alloys Compd.
– volume: 175
  start-page: 394
  year: 2019
  end-page: 405
  ident: bb0040
  article-title: High temperature strength of refractory complex concentrated alloys
  publication-title: Acta Mater.
– volume: 206
  year: 2022
  ident: bb0110
  article-title: Oxidation behavior of Ti-Nb-Mo-Al-Si
  publication-title: Corros. Sci.
– volume: 206
  year: 2022
  ident: bb0175
  article-title: Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility
  publication-title: Scr. Mater.
– volume: 184
  start-page: 200
  year: 2016
  end-page: 203
  ident: bb0135
  article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining
  publication-title: Mater. Lett.
– volume: 924
  year: 2022
  ident: bb0050
  article-title: Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf
  publication-title: J. Alloys Compd.
– volume: 183
  start-page: 64
  year: 2020
  end-page: 77
  ident: bb0195
  article-title: Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy
  publication-title: Acta Mater.
– volume: 712
  start-page: 616
  year: 2018
  end-page: 624
  ident: bb0025
  article-title: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process
  publication-title: Mater. Sci. Eng. A
– volume: 28
  year: 2023
  ident: bb0080
  article-title: Temperature-dependent plastic deformation of a refractory Al
  publication-title: Materialia
– volume: 50
  start-page: 1857
  year: 2002
  end-page: 1868
  ident: bb0105
  article-title: Oxidation mechanisms in Mo-reinforced Mo
  publication-title: Acta Mater.
– volume: 190
  start-page: 40
  year: 2021
  end-page: 45
  ident: bb0125
  article-title: Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al
  publication-title: Scr. Mater.
– volume: 1-37
  year: 2018
  ident: bb0005
  article-title: Development and exploration of refractory high entropy alloys—A review
  publication-title: J. Mater. Res.
– volume: 215
  start-page: 131
  year: 2025
  end-page: 146
  ident: bb0100
  article-title: High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing
  publication-title: J. Mater. Sci. Technol.
– volume: 97
  start-page: 229
  year: 2022
  end-page: 238
  ident: bb0015
  article-title: Microstructure and mechanical properties of C
  publication-title: J. Mater. Sci. Technol.
– volume: 185
  start-page: 89
  year: 2020
  end-page: 97
  ident: bb0070
  article-title: Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy
  publication-title: Acta Mater.
– volume: 220
  year: 2021
  ident: bb0075
  article-title: A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models
  publication-title: Acta Mater.
– volume: 1004
  year: 2024
  ident: bb0115
  article-title: The mechanical properties and high-temperature oxidation behavior of (TiZr)
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 110
  year: 2017
  end-page: 116
  ident: bb0165
  article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity
  publication-title: Mater. Res. Lett.
– volume: 116
  year: 2016
  ident: bb0155
  article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys
  publication-title: Phys. Rev. Lett.
– volume: 362
  start-page: 933
  year: 2018
  end-page: 937
  ident: bb0150
  article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
  publication-title: Science
– volume: 12
  start-page: 373
  year: 1977
  end-page: 383
  ident: bb0215
  article-title: On the formation of the diamond grain configuration during high temperature creep and fatigue
  publication-title: J. Mater. Sci.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bb0035
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 6
  start-page: 919
  year: 1954
  end-page: 922
  ident: bb0205
  article-title: Some observations on grain boundary shearing during creep
  publication-title: JOM
– volume: 178
  year: 2021
  ident: bb0190
  article-title: The mechanical and oxidation properties of novel B2-ordered Ti
  publication-title: Mater. Charact.
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bb0010
  article-title: Mechanical properties of Nb
  publication-title: Intermetallics
– volume: 122
  start-page: 243
  year: 2022
  end-page: 254
  ident: bb0045
  article-title: Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures
  publication-title: J. Mater. Sci. Technol.
– volume: 246
  year: 2023
  ident: bb0140
  article-title: CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy
  publication-title: Acta Mater.
– volume: 2
  start-page: 1113
  year: 1971
  end-page: 1127
  ident: bb0210
  article-title: On grain boundary sliding and diffusional creep
  publication-title: Metall. Trans. A.
– volume: 940
  year: 2023
  ident: bb0085
  article-title: A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility
  publication-title: J. Alloys Compd.
– volume: 805
  year: 2021
  ident: bb0170
  article-title: Effects of Nb on deformation-induced transformation and mechanical properties of HfNb
  publication-title: Mater. Sci. Eng. A
– volume: 3
  start-page: 85
  year: 1955
  ident: 10.1016/j.matchar.2024.114641_bb0200
  article-title: Some fundamental experiments on high temperature creep
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(55)90054-5
– volume: 246
  year: 2023
  ident: 10.1016/j.matchar.2024.114641_bb0140
  article-title: CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2023.118728
– volume: 6
  start-page: 919
  year: 1954
  ident: 10.1016/j.matchar.2024.114641_bb0205
  article-title: Some observations on grain boundary shearing during creep
  publication-title: JOM
  doi: 10.1007/BF03398039
– volume: 35
  start-page: 369
  year: 2019
  ident: 10.1016/j.matchar.2024.114641_bb0020
  article-title: A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.09.034
– volume: 49
  start-page: 2876
  year: 2018
  ident: 10.1016/j.matchar.2024.114641_bb0060
  article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy
  publication-title: Metall. Mater. Trans. A.
  doi: 10.1007/s11661-018-4646-8
– volume: 805
  year: 2021
  ident: 10.1016/j.matchar.2024.114641_bb0170
  article-title: Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr high entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.140798
– volume: 4
  start-page: 515
  year: 2019
  ident: 10.1016/j.matchar.2024.114641_bb0145
  article-title: High-entropy alloys
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0121-4
– volume: 116
  year: 2016
  ident: 10.1016/j.matchar.2024.114641_bb0155
  article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.135504
– volume: 924
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0050
  article-title: Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf0.2Crx refractory high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166593
– volume: 175
  start-page: 394
  year: 2019
  ident: 10.1016/j.matchar.2024.114641_bb0040
  article-title: High temperature strength of refractory complex concentrated alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.06.032
– volume: 185
  start-page: 89
  year: 2020
  ident: 10.1016/j.matchar.2024.114641_bb0070
  article-title: Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.004
– volume: 178
  year: 2021
  ident: 10.1016/j.matchar.2024.114641_bb0190
  article-title: The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2021.111287
– volume: 1004
  year: 2024
  ident: 10.1016/j.matchar.2024.114641_bb0115
  article-title: The mechanical properties and high-temperature oxidation behavior of (TiZr)65-x-yNb15Mo20SixAly refractory high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2024.175957
– volume: 203
  year: 2021
  ident: 10.1016/j.matchar.2024.114641_bb0120
  article-title: New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.11.018
– volume: 215
  start-page: 131
  year: 2025
  ident: 10.1016/j.matchar.2024.114641_bb0100
  article-title: High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2024.06.049
– volume: 54
  start-page: 83
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0185
  article-title: Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering
  publication-title: Mater. Today.
  doi: 10.1016/j.mattod.2022.02.006
– volume: 2
  start-page: 1113
  year: 1971
  ident: 10.1016/j.matchar.2024.114641_bb0210
  article-title: On grain boundary sliding and diffusional creep
  publication-title: Metall. Trans. A.
  doi: 10.1007/BF02664244
– volume: 122
  start-page: 243
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0045
  article-title: Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.12.057
– volume: 206
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0175
  article-title: Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114230
– volume: 126
  year: 2020
  ident: 10.1016/j.matchar.2024.114641_bb0130
  article-title: A study on severely cold-rolled and intermediate temperature aged HfNbTiZr refractory high-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2020.106935
– volume: 158
  start-page: 50
  year: 2019
  ident: 10.1016/j.matchar.2024.114641_bb0065
  article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.08.032
– volume: 19
  start-page: 698
  year: 2011
  ident: 10.1016/j.matchar.2024.114641_bb0010
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 184
  start-page: 200
  year: 2016
  ident: 10.1016/j.matchar.2024.114641_bb0135
  article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.08.060
– volume: 12
  start-page: 373
  year: 1977
  ident: 10.1016/j.matchar.2024.114641_bb0215
  article-title: On the formation of the diamond grain configuration during high temperature creep and fatigue
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00566281
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.matchar.2024.114641_bb0035
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 50
  start-page: 1857
  year: 2002
  ident: 10.1016/j.matchar.2024.114641_bb0105
  article-title: Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00039-3
– volume: 8
  start-page: 948
  year: 2021
  ident: 10.1016/j.matchar.2024.114641_bb0160
  article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH01341B
– volume: 940
  year: 2023
  ident: 10.1016/j.matchar.2024.114641_bb0085
  article-title: A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.168821
– volume: 97
  start-page: 229
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0015
  article-title: Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.05.015
– volume: 220
  year: 2021
  ident: 10.1016/j.matchar.2024.114641_bb0075
  article-title: A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117269
– volume: 362
  start-page: 933
  year: 2018
  ident: 10.1016/j.matchar.2024.114641_bb0150
  article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
  publication-title: Science
  doi: 10.1126/science.aas8815
– volume: 1-37
  year: 2018
  ident: 10.1016/j.matchar.2024.114641_bb0005
  article-title: Development and exploration of refractory high entropy alloys—A review
  publication-title: J. Mater. Res.
– volume: 712
  start-page: 616
  year: 2018
  ident: 10.1016/j.matchar.2024.114641_bb0025
  article-title: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.12.021
– volume: 914
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0030
  article-title: Microstructures and mechanical properties of TiZrHfNbTaWx refractory high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165187
– volume: 563
  start-page: 546
  year: 2018
  ident: 10.1016/j.matchar.2024.114641_bb0180
  article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
  publication-title: Nature
  doi: 10.1038/s41586-018-0685-y
– volume: 897
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0090
  article-title: High temperature oxidation resistance of W-containing high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162733
– volume: 142
  start-page: 201
  year: 2018
  ident: 10.1016/j.matchar.2024.114641_bb0055
  article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.09.035
– volume: 28
  year: 2023
  ident: 10.1016/j.matchar.2024.114641_bb0080
  article-title: Temperature-dependent plastic deformation of a refractory Al7.5(NbTiZr)92.5 medium-entropy alloy with a bcc+B2 structure
  publication-title: Materialia
  doi: 10.1016/j.mtla.2023.101766
– volume: A
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0095
  article-title: Strength-ductility synergy of Al-bearing low-density refractory TiNbMo0.5AlX medium entropy alloys via precipitation
  publication-title: Mater. Sci. Eng.
– volume: 183
  start-page: 64
  year: 2020
  ident: 10.1016/j.matchar.2024.114641_bb0195
  article-title: Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.001
– volume: 190
  start-page: 40
  year: 2021
  ident: 10.1016/j.matchar.2024.114641_bb0125
  article-title: Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.08.029
– volume: 222
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0220
  article-title: A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1Wx refractory high entropy alloy via nano-precipitates and dislocations induced-deformation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111034
– volume: 206
  year: 2022
  ident: 10.1016/j.matchar.2024.114641_bb0110
  article-title: Oxidation behavior of Ti-Nb-Mo-Al-Six refractory high entropy alloy at 1000 °C
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110504
– volume: 5
  start-page: 110
  year: 2017
  ident: 10.1016/j.matchar.2024.114641_bb0165
  article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1221861
SSID ssj0006817
Score 2.4123228
Snippet Refractory high-entropy alloys (RHEAs) designed using empirical formulas face challenges in maintaining structural stability and mechanical properties at...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114641
SubjectTerms Deformation mechanism
Mechanical properties
Phase structure stability
Phase-diagram calculation
Refractory high-entropy alloys
Title Developing thermally stable high-entropy alloys using a phase-diagram method
URI https://dx.doi.org/10.1016/j.matchar.2024.114641
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPKgHo6gRH2QPXpc-2D72SFCCLy5Kwq3ZdrcKQWgUD1z87c70IZgYD143O0nzdTrzzXQeAJeoBbFEv86FIxQXQgRcGim4Rl9sbG3L2FAe8mHoD0biduyNa9CremGorLK0_YVNz611eWKVaFrZZGI9YiAhvNCmiXJ52EId7CIgLW9_rss8_DDfukuXOd1ed_FY0zaSQmpuwjDRFfnUXOH87p82fE5_H_ZKssi6xfMcQM3MG7Ddq3a0NWB3Y5zgIdxffXdAMeJ1r2o2WzGkf_HMMJpLzCmVu8hWjP62r94ZFb0_M8WyF_RlHDWFSrVYsVT6CEb966fegJfbEniCgC-5MRhvKsdXRiepEziJSEMMm0MttStiv9PB48RzU8_Yga89dOuuRjqF-HhaJTLoHEN9vpibE2AS0UxRQoYYbRilpI_ftQ6R_CSeCcK0Ce0KoygrhmJEVbXYNCpBjQjUqAC1CWGFZPTj7UZouP8WPf2_6BnsuLStN0-YnEN9-fZhLpBCLONWriMt2Ore3A2GX0KqxUQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtCDUdSIzz3ocYGW7WMPHgxIUB4XIeFW2-5WIQiNYEwv_in_oLN9CCbGgwnXpttsvp3MfN92HgCXaAUex7hOmcZcyhizKJecUYGxWFZFlXtS3UN2e2ZrwO6HxjAHn1ktjEqrTH1_4tNjb50-qaRoVsLRqPKAQoIZdlV1lItlS5pZ2ZbRO-q2-fVdAw_5Stebt_16i6ajBaiPu1tQKVGcuZrpSuEHmqX5LLBRY9qCC515Zq2Gj31DDwyJOl8YGAN1gdzDtDVDuD63avjdDdhk6C7U2ITyxzKvBN-xkhYIjKrtLcuGKuMyslBVTYW6VGdxm16m_R4QV4Jccxd2UnZKbhIA9iAnp0Uo1LOhcEXYXulfuA-dxnfJFVFE8sWdTCKCfNObSKIaIVN1dzwLI6J-70dzorLsn4hLwmcMnhRNU-WGkWSK9QEM1oLhIeSns6k8AsLx-AJcwW2UN9J1uYmORNjItnxDWnZQgnKGkRMmXTicLD1t7KSgOgpUJwG1BHaGpPPDnByMFH8vPf7_0gsotPrdjtO567VPYEtXo4Lj25pTyC9e3-QZ8peFdx7bC4HHdRvoFwivAXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+thermally+stable+high-entropy+alloys+using+a+phase-diagram+method&rft.jtitle=Materials+characterization&rft.au=Huang%2C+Rui&rft.au=Amar%2C+Abdukadir&rft.au=Jiao%2C+Wenna&rft.au=Wang%2C+Shudao&rft.date=2025-01-01&rft.pub=Elsevier+Inc&rft.issn=1044-5803&rft.volume=219&rft_id=info:doi/10.1016%2Fj.matchar.2024.114641&rft.externalDocID=S1044580324010222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon