Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5D integrated circuits

In system level electromigration test of 2.5D integrated circuits, a failure mode due to synergistic effect of Joule heating and electromigration has been found. In the test circuit, there are three levels of solder joints, two Si chips (one of them has through-Si-via), and one polymer substrate. In...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 118; no. 13
Main Authors Liu, Yingxia, Li, Menglu, Kim, Dong Wook, Gu, Sam, Tu, K. N.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In system level electromigration test of 2.5D integrated circuits, a failure mode due to synergistic effect of Joule heating and electromigration has been found. In the test circuit, there are three levels of solder joints, two Si chips (one of them has through-Si-via), and one polymer substrate. In addition, there are two redistribution layers; one between every two levels of solder joints. We found that the redistribution layer between the flip chip solder joints and micro-bumps is the weak-link and failed easily by burn-out in electromigration test. The failure is time-dependent with sudden resistance increase. Preliminary simulation results show that Joule heating has a positive feedback to electromigration in the redistribution layer and caused the thermal run-away failure. Joule heating becomes an important reliability issue in the future scaling of semiconductor devices.
AbstractList In system level electromigration test of 2.5D integrated circuits, a failure mode due to synergistic effect of Joule heating and electromigration has been found. In the test circuit, there are three levels of solder joints, two Si chips (one of them has through-Si-via), and one polymer substrate. In addition, there are two redistribution layers; one between every two levels of solder joints. We found that the redistribution layer between the flip chip solder joints and micro-bumps is the weak-link and failed easily by burn-out in electromigration test. The failure is time-dependent with sudden resistance increase. Preliminary simulation results show that Joule heating has a positive feedback to electromigration in the redistribution layer and caused the thermal run-away failure. Joule heating becomes an important reliability issue in the future scaling of semiconductor devices.
Author Gu, Sam
Li, Menglu
Kim, Dong Wook
Tu, K. N.
Liu, Yingxia
Author_xml – sequence: 1
  givenname: Yingxia
  surname: Liu
  fullname: Liu, Yingxia
– sequence: 2
  givenname: Menglu
  orcidid: 0000-0001-9656-8087
  surname: Li
  fullname: Li, Menglu
– sequence: 3
  givenname: Dong Wook
  surname: Kim
  fullname: Kim, Dong Wook
– sequence: 4
  givenname: Sam
  orcidid: 0000-0001-5176-6717
  surname: Gu
  fullname: Gu, Sam
– sequence: 5
  givenname: K. N.
  surname: Tu
  fullname: Tu, K. N.
BookMark eNptUD1PwzAUtFCRaAsD_8ASE0NaO47jeETlW5UYgDly3OfiNnWK7RT13-NCJ8R0T6e7e7oboYHrHCB0ScmEkpJN6aSQLOeyOkFDSiqZCc7JAA0JyWlWSSHP0CiEFSGUVkwO0e5178AvbYhWYzAGdMSdwdCmw3cbu_Qq2s5h5Rb4uetbwB-QGLfEiQz7EGGDW9hBi79ArbPWujU2yra9B2wdzif8NmGEQw4ssLZe9zaGc3RqVBvg4ohj9H5_9zZ7zOYvD0-zm3mmcy5iBrwoRdOAqJTITUkNEzLXjWqgKBe6aIQ2WgKVyjBGCmO40MBJw7jgJTSGsjG6-s3d-u6zhxDrVdd7l17WOc1ZVXJSiaSa_qq070LwYGpt40_v6FOXmpL6MG5N6-O4yXH9x7H1dqP8_h_tN0IBfPw
CitedBy_id crossref_primary_10_1007_s42243_024_01338_8
crossref_primary_10_1007_s10853_024_10549_z
crossref_primary_10_1016_j_matchar_2024_114477
crossref_primary_10_1016_j_mtla_2020_100791
crossref_primary_10_1063_1_4974168
crossref_primary_10_1016_j_intermet_2017_02_012
crossref_primary_10_1016_j_actamat_2016_07_004
crossref_primary_10_1016_j_mtadv_2020_100101
crossref_primary_10_1016_j_matchar_2019_110030
crossref_primary_10_1007_s13391_025_00562_y
crossref_primary_10_1016_j_rinp_2021_104154
crossref_primary_10_1063_1_5111159
crossref_primary_10_1016_j_rinp_2021_105048
crossref_primary_10_1149_1945_7111_ada9d6
crossref_primary_10_3390_mi14030499
crossref_primary_10_1016_j_jmrt_2021_11_111
crossref_primary_10_1039_D4NR02776K
crossref_primary_10_1063_5_0139658
crossref_primary_10_1007_s40195_021_01193_6
crossref_primary_10_1109_TCPMT_2023_3343708
crossref_primary_10_1007_s10854_023_11506_3
crossref_primary_10_1016_j_jmrt_2023_12_187
crossref_primary_10_1016_j_matlet_2020_127891
crossref_primary_10_1016_j_mtadv_2020_100115
crossref_primary_10_1063_1_4961219
crossref_primary_10_1016_j_matchemphys_2022_127228
crossref_primary_10_3390_nano13040709
crossref_primary_10_3390_mi13060867
crossref_primary_10_1016_j_jmrt_2023_04_234
crossref_primary_10_1016_j_actamat_2021_116637
crossref_primary_10_1063_5_0160825
crossref_primary_10_3390_cryst10060540
crossref_primary_10_1016_j_jmrt_2024_07_043
crossref_primary_10_1063_5_0143444
crossref_primary_10_1016_j_mser_2018_09_002
crossref_primary_10_1109_TCPMT_2020_3003003
Cites_doi 10.1063/1.1436562
10.1016/j.microrel.2010.09.031
10.1557/mrs.2015.9
10.1063/1.114954
10.1063/1.1532942
10.1016/j.scriptamat.2015.02.009
10.1063/1.4737154
10.1063/1.1347400
10.1063/1.106011
10.1063/1.354839
10.1063/1.115714
10.1063/1.1795978
10.1016/0254-0584(95)01505-1
10.1063/1.4870833
10.1109/TR.2002.804737
ContentType Journal Article
Copyright 2015 AIP Publishing LLC.
Copyright_xml – notice: 2015 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4932598
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_4932598
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAGWI
AAIKC
AAMNW
AAPUP
AAYIH
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-e5467bbe78a72f61f3792cbabe46dc4b7cfc9e19af3304ff57ce50b35756ebf13
ISSN 0021-8979
IngestDate Sun Jun 29 16:24:36 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Tue Jul 01 03:50:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-e5467bbe78a72f61f3792cbabe46dc4b7cfc9e19af3304ff57ce50b35756ebf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5176-6717
0000-0001-9656-8087
PQID 2123865087
PQPubID 2050677
ParticipantIDs proquest_journals_2123865087
crossref_citationtrail_10_1063_1_4932598
crossref_primary_10_1063_1_4932598
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-07
20151007
PublicationDateYYYYMMDD 2015-10-07
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-07
  day: 07
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2015
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062414363236400_c3) 2011; 51
(2023062414363236400_c4) 2012; 112
(2023062414363236400_c5) 1996; 68
(2023062414363236400_c11) 2004; 85
(2023062414363236400_c2) 2015; 102
(2023062414363236400_c14) 1966
(2023062414363236400_c7) 2003; 93
(2023062414363236400_c13) 2002; 91
(2023062414363236400_c15) 2002; 51
(2023062414363236400_c16) 1995; 41
(2023062414363236400_c8) 2014; 104
(2023062414363236400_c6) 1995; 67
(2023062414363236400_c9) 2001; 78
(2023062414363236400_c10) 1991; 59
(2023062414363236400_c12) 1993; 74
(2023062414363236400_c1) 2015; 40
References_xml – volume: 91
  start-page: 2014
  year: 2002
  ident: 2023062414363236400_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1436562
– volume: 51
  start-page: 517
  year: 2011
  ident: 2023062414363236400_c3
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2010.09.031
– volume: 40
  start-page: 233
  year: 2015
  ident: 2023062414363236400_c1
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2015.9
– volume: 67
  start-page: 1606
  year: 1995
  ident: 2023062414363236400_c6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.114954
– volume: 93
  start-page: 1417
  year: 2003
  ident: 2023062414363236400_c7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1532942
– volume: 102
  start-page: 39
  year: 2015
  ident: 2023062414363236400_c2
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.02.009
– volume: 112
  start-page: 023505
  year: 2012
  ident: 2023062414363236400_c4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4737154
– volume: 78
  start-page: 904
  year: 2001
  ident: 2023062414363236400_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1347400
– volume: 59
  start-page: 175
  year: 1991
  ident: 2023062414363236400_c10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106011
– volume: 74
  start-page: 969
  year: 1993
  ident: 2023062414363236400_c12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.354839
– volume: 68
  start-page: 1066
  year: 1996
  ident: 2023062414363236400_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.115714
– volume: 85
  start-page: 2502
  year: 2004
  ident: 2023062414363236400_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1795978
– volume: 41
  start-page: 1
  year: 1995
  ident: 2023062414363236400_c16
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/0254-0584(95)01505-1
– start-page: 44
  volume-title: Conduction Heat Transfer
  year: 1966
  ident: 2023062414363236400_c14
– volume: 104
  start-page: 141907
  year: 2014
  ident: 2023062414363236400_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4870833
– volume: 51
  start-page: 403
  year: 2002
  ident: 2023062414363236400_c15
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2002.804737
SSID ssj0011839
Score 2.4032536
Snippet In system level electromigration test of 2.5D integrated circuits, a failure mode due to synergistic effect of Joule heating and electromigration has been...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Addition polymerization
Applied physics
Electromigration
Failure modes
Flip chip soldering
Integrated circuits
Magnetic fields
Ohmic dissipation
Positive feedback
Resistance heating
Semiconductor devices
Silicon substrates
Soldered joints
Synergistic effect
Time dependence
Title Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5D integrated circuits
URI https://www.proquest.com/docview/2123865087
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60RdAH0arYWmUQH4Qlay4zmcljsUqRVoS22LcwM5kpwd1U2o23X--ZSya77T5UX0IYciPflzNfzpwLQm-alPIirUC5kUwmROfwSVFukpQJ3pBclJXL4j_6XB6ckk9n9Gz06brskoWcqj9r80r-B1UYA1xtluw_IBsvCgOwD_jCFhCG7a0wPv5tM_dcqeUQmGG1X-hsM2_PA7rWNw7Cc6atLPRhzl0o4TyZ2aChyU8tviV2LXdiRGsD1a0bJJ_S_bGcRDNR7aXqW1_5aY2eFUHPel9JlOqHbe_MPNz2VyvGUeeJ1d35rB_DAOZe0sMDfh20vw0N6r3rer7sochcZVPfyjZmDGQJr3zTmKn2hjblVcKoLzobLfFoivshR_WGiQdNZb0NUwLKk_oO1qtltK9NbzHo0C23l0Wd1eHUu2gzh58LsI6be_tHh8dx9cmqRh8a5J97qEhVFu_ifVd1zOo07rTJySP0MICA9zxDHqM7uttCD5ZKTW6he188LE_QjyXWYM8afGHwddZgYA12rMGBNRgGPWuwYw2OrMGBNbjtsGUNHlmDB9Y8RacfP5y8P0hC941EgRlfJJrCHCqlZlyw3JSZKViVKymkJmWjiGTKqEpnlTDWJWYMZUrTVBag_0stTVY8QxvdRaefI8xzQ2Sjc0moJEUhpGJUZBxkgoazSbWN3g7vslahNL3tkDKrb2C2jV7HQ7_7eizrDtodAKnD53pVW43G7f8I27nNNV6g-yOXd9HG4rLXL0F_LuSrQJe_CDiHww
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+effect+of+electromigration+and+Joule+heating+on+system+level+weak-link+failure+in+2.5D+integrated+circuits&rft.jtitle=Journal+of+applied+physics&rft.au=Liu%2C+Yingxia&rft.au=Li%2C+Menglu&rft.au=Kim%2C+Dong+Wook&rft.au=Gu%2C+Sam&rft.date=2015-10-07&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=118&rft.issue=13&rft_id=info:doi/10.1063%2F1.4932598&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4932598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon