Multiple motion pattern augmentation assisted gait recognition
Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust spatio-temporal representations via global–local feature learning or multi-scale temporal modeling. However, they may neglect the dynamic posture change wi...
Saved in:
Published in | Signal processing Vol. 238; p. 110185 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust spatio-temporal representations via global–local feature learning or multi-scale temporal modeling. However, they may neglect the dynamic posture change within consecutive frames. In addition, few methods explore useful motion cues by data self-mining manner. In this paper, we propose a novel Motion Pattern Augmentation assisted gait recognition framework named GaitMPA, which explores diverse behavior characteristics from the augmented movement sequences. GaitMPA consists of three components: Motion perception and Fine-grained variation extraction Network (MFNet), Motion Pattern Augmentation (MPA), and Multi-stage Feature Aggregation (MFA). Specifically, we present MFNet to capture dynamic motion difference between neighboring frames by Motion Perception Module (MPM), and extract multi-grained body representation via Fine-grained Variation Extractor (FVE). In MPA, we transform raw sequences into four novel motion patterns to provide distinctive movement traits. Furthermore, MFA is designed to merge the multi-source features of the raw and augmented sequences, and perform multi-stage motion information aggregation. The outputs of MFNet and MFA are fused for gait recognition. Experimental results demonstrate the effectiveness of GaitMPA on five public datasets, including the CASIA-B (in-the-lab), OU-MVLP (in-the-lab), CCPG (cloth-changing), GREW (in-the-wild), and Gait3D (in-the-wild).
•We present a novel motion augmentation module to generate diverse gait sequences.•We design a novel gait recognition method, GaitMPA, to learn powerful gait features.•We validate the effectiveness of the proposed method on five public gait datasets. |
---|---|
AbstractList | Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust spatio-temporal representations via global–local feature learning or multi-scale temporal modeling. However, they may neglect the dynamic posture change within consecutive frames. In addition, few methods explore useful motion cues by data self-mining manner. In this paper, we propose a novel Motion Pattern Augmentation assisted gait recognition framework named GaitMPA, which explores diverse behavior characteristics from the augmented movement sequences. GaitMPA consists of three components: Motion perception and Fine-grained variation extraction Network (MFNet), Motion Pattern Augmentation (MPA), and Multi-stage Feature Aggregation (MFA). Specifically, we present MFNet to capture dynamic motion difference between neighboring frames by Motion Perception Module (MPM), and extract multi-grained body representation via Fine-grained Variation Extractor (FVE). In MPA, we transform raw sequences into four novel motion patterns to provide distinctive movement traits. Furthermore, MFA is designed to merge the multi-source features of the raw and augmented sequences, and perform multi-stage motion information aggregation. The outputs of MFNet and MFA are fused for gait recognition. Experimental results demonstrate the effectiveness of GaitMPA on five public datasets, including the CASIA-B (in-the-lab), OU-MVLP (in-the-lab), CCPG (cloth-changing), GREW (in-the-wild), and Gait3D (in-the-wild).
•We present a novel motion augmentation module to generate diverse gait sequences.•We design a novel gait recognition method, GaitMPA, to learn powerful gait features.•We validate the effectiveness of the proposed method on five public gait datasets. |
ArticleNumber | 110185 |
Author | Tang, Jun Liang, Dong Wang, Nian Bao, Wenxia Huo, Wei Wang, Ke |
Author_xml | – sequence: 1 givenname: Wei surname: Huo fullname: Huo, Wei organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China – sequence: 2 givenname: Jun surname: Tang fullname: Tang, Jun organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China – sequence: 3 givenname: Wenxia orcidid: 0000-0002-0536-1556 surname: Bao fullname: Bao, Wenxia organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China – sequence: 4 givenname: Ke surname: Wang fullname: Wang, Ke email: 22014@ahu.edu.cn organization: School of Internet, Anhui University, Hefei, 230039, Anhui, China – sequence: 5 givenname: Nian surname: Wang fullname: Wang, Nian organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China – sequence: 6 givenname: Dong surname: Liang fullname: Liang, Dong organization: School of Internet, Anhui University, Hefei, 230039, Anhui, China |
BookMark | eNp9j0tqwzAYhLVIoUnaG3ThC9jVw5LlTaCEviClm3YtFPmXkXEkIymF3r5O3XVXAzPMMN8GrXzwgNAdwRXBRNwPVXL9FENFMeUVmT3JV2g9R7wkQtbXaJPSgDEmTOA12r2dx-ymEYpTyC74YtI5Q_SFPvcn8Fn_mjollzJ0Ra9dLiKY0Ht3SW7QldVjgts_3aLPp8eP_Ut5eH9-3T8cSkN5k8vOSs3BmgYsCK7lkbZMUgx1B9KQY8taLRpmLBeYaGpB1iBZ3WjRtoJ1QNkW1cuuiSGlCFZN0Z10_FYEqwu3GtTCrS7cauGea7ulBvO3LwdRJePAG-jcDJFVF9z_Az-Op2iN |
Cites_doi | 10.1016/j.patrec.2010.05.027 10.1016/j.patcog.2021.108453 10.1049/cvi2.12278 10.1016/j.neucom.2022.06.048 10.1016/j.eswa.2024.124250 10.1109/TBIOM.2020.3008862 10.1109/TPAMI.2020.2998790 10.1109/TCSVT.2022.3175959 10.1109/TIP.2019.2926208 10.1109/TMM.2022.3154609 10.1109/TPAMI.2011.260 10.1109/TPAMI.2006.38 10.1016/j.patcog.2019.107069 10.1049/iet-bmt.2015.0082 10.1016/j.ins.2023.03.145 10.1109/TIP.2020.3039888 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2025.110185 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_sigpro_2025_110185 S0165168425002993 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c257t-df8a5efc7efe65a8b293820e4de8c1b939a673cf5601a2fe84e8347a69963de23 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Thu Jul 31 00:33:06 EDT 2025 Sat Aug 09 17:30:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-stage feature aggregation Dynamic motion difference extraction Fine-grained gait representation Gait recognition Motion pattern augmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-df8a5efc7efe65a8b293820e4de8c1b939a673cf5601a2fe84e8347a69963de23 |
ORCID | 0000-0002-0536-1556 |
ParticipantIDs | crossref_primary_10_1016_j_sigpro_2025_110185 elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110185 |
PublicationCentury | 2000 |
PublicationDate | January 2026 2026-01-00 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Makihara, Xu, Yagi, Yu, Ren (b16) 2020 Yu, Tan, Tan (b40) 2006; Vol. 4 Wu, Tian, Fu, Li, Li (b7) 2021; 30 Li, Zhao (b19) 2023; 25 Zhang, Huang, Yu, Wang (b5) 2020; 29 Dou, Zhang, Su, Yu, Li (b25) 2022 Chao, He, Zhang, Feng (b37) 2019; Vol. 33 Zhang, Tran, Liu, Liu (b27) 2022; 44 Chen, Wang, Zheng, Zeng, Zou, Cui (b4) 2023; 636 Lin, Zhang, Liu, Qin (b8) 2021 Wei, Liu, Zhao, Li (b32) 2024; 252 Chai, Li, Zhang, Li, Wang (b39) 2022 An, Yu, Makihara, Wu, Xu, Yu, Liao, Yagi (b12) 2020; 2 Han, Bhanu (b33) 2006; 28 Zhang, Wang, Li (b29) 2021 Huang, Ben, Gong, Zhang, Yan, Wu (b30) 2022; 32 Wang, Zhang, Wang, Pu, Yuan (b35) 2012; 34 Lin, Zhang, Bao (b6) 2020 Huang, Xue, Shen, Tian, Li, Huang, Hua (b22) 2021 Huang, Zhu, Wang, Wang, Yang, He, Liu, Feng (b9) 2021 Hou, Cao, Liu, Huang (b44) 2020 Wang, Lin, Guo, Li, Zhu, Sun, Zhang, Liu, Yu (b21) 2022 Fan, Liang, Shen, Hou, Huang, Yu (b10) 2023 Hua, Zhang, Li, Pan (b31) 2024; 18 Ariyanto, Nixon (b17) 2011 Zheng, Liu, Gu, Sun, Gan, Zhang, Liu, Yan (b23) 2022 Dou, Zhang, Su, Yu, Lin, Li (b24) 2023 Lin, Zhang, Yu (b3) 2021 Li, Makihara, Xu, Yagi (b15) 2021 Fan, Peng, Cao, Liu, Hou, Chi, Huang, Li, He (b2) 2020 Li, Qiu, Zhao, Zhan, Chen, Wei, Huang (b26) 2022; 124 Wang, Guo, Lin, Yang, Zhu, Li, Zhang, Yu (b38) 2023 Zheng, Liu, Liu, He, Yan, Mei (b42) 2022 Boulgouris, Chi (b18) 2007; Vol. 1 Darwish (b36) 2017; 6 Teepe, Gilg, Herzog, Hörmann, Rigoll (b14) 2022 Teepe, Khan, Gilg, Herzog, Hörmann, Rigoll (b13) 2021 Takemura, Makihara, Muramatsu, Echigo, Yagi (b43) 2018; 10 Yoshino, Nakashima, Ahn, Iwashita, Kurazume (b11) 2022 Liao, Yu, An, Huang (b20) 2020; 98 Liao, Li, Bhattacharyya, York (b1) 2022; 501 Li, Makihara, Xu, Yagi, Ren (b28) 2020 Bashir, Xiang, Gong (b34) 2010; 31 Li, Hou, Zhang, Cao, Liu, Huang, Zhao (b41) 2023 Liao (10.1016/j.sigpro.2025.110185_b1) 2022; 501 Lin (10.1016/j.sigpro.2025.110185_b3) 2021 Li (10.1016/j.sigpro.2025.110185_b19) 2023; 25 Zheng (10.1016/j.sigpro.2025.110185_b23) 2022 Han (10.1016/j.sigpro.2025.110185_b33) 2006; 28 Hou (10.1016/j.sigpro.2025.110185_b44) 2020 Fan (10.1016/j.sigpro.2025.110185_b2) 2020 Huang (10.1016/j.sigpro.2025.110185_b9) 2021 Lin (10.1016/j.sigpro.2025.110185_b8) 2021 Teepe (10.1016/j.sigpro.2025.110185_b14) 2022 Huang (10.1016/j.sigpro.2025.110185_b30) 2022; 32 Chai (10.1016/j.sigpro.2025.110185_b39) 2022 Lin (10.1016/j.sigpro.2025.110185_b6) 2020 Hua (10.1016/j.sigpro.2025.110185_b31) 2024; 18 Darwish (10.1016/j.sigpro.2025.110185_b36) 2017; 6 Huang (10.1016/j.sigpro.2025.110185_b22) 2021 Dou (10.1016/j.sigpro.2025.110185_b25) 2022 Chen (10.1016/j.sigpro.2025.110185_b4) 2023; 636 Wang (10.1016/j.sigpro.2025.110185_b21) 2022 Li (10.1016/j.sigpro.2025.110185_b15) 2021 Wang (10.1016/j.sigpro.2025.110185_b35) 2012; 34 Takemura (10.1016/j.sigpro.2025.110185_b43) 2018; 10 Zhang (10.1016/j.sigpro.2025.110185_b29) 2021 Zheng (10.1016/j.sigpro.2025.110185_b42) 2022 Li (10.1016/j.sigpro.2025.110185_b28) 2020 Yu (10.1016/j.sigpro.2025.110185_b40) 2006; Vol. 4 Li (10.1016/j.sigpro.2025.110185_b26) 2022; 124 Boulgouris (10.1016/j.sigpro.2025.110185_b18) 2007; Vol. 1 Teepe (10.1016/j.sigpro.2025.110185_b13) 2021 An (10.1016/j.sigpro.2025.110185_b12) 2020; 2 Zhang (10.1016/j.sigpro.2025.110185_b5) 2020; 29 Wang (10.1016/j.sigpro.2025.110185_b38) 2023 Li (10.1016/j.sigpro.2025.110185_b16) 2020 Fan (10.1016/j.sigpro.2025.110185_b10) 2023 Zhang (10.1016/j.sigpro.2025.110185_b27) 2022; 44 Bashir (10.1016/j.sigpro.2025.110185_b34) 2010; 31 Wei (10.1016/j.sigpro.2025.110185_b32) 2024; 252 Ariyanto (10.1016/j.sigpro.2025.110185_b17) 2011 Chao (10.1016/j.sigpro.2025.110185_b37) 2019; Vol. 33 Li (10.1016/j.sigpro.2025.110185_b41) 2023 Yoshino (10.1016/j.sigpro.2025.110185_b11) 2022 Liao (10.1016/j.sigpro.2025.110185_b20) 2020; 98 Wu (10.1016/j.sigpro.2025.110185_b7) 2021; 30 Dou (10.1016/j.sigpro.2025.110185_b24) 2023 |
References_xml | – start-page: 14648 year: 2021 end-page: 14656 ident: b3 article-title: Gait recognition via effective global-local feature representation and local temporal aggregation publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 31 start-page: 2052 year: 2010 end-page: 2060 ident: b34 article-title: Gait recognition without subject cooperation publication-title: Pattern Recognit. Lett. – start-page: 20228 year: 2022 end-page: 20237 ident: b42 article-title: Gait recognition in the wild with dense 3D representations and a benchmark publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 2314 year: 2021 end-page: 2318 ident: b13 article-title: Gaitgraph: Graph convolutional network for skeleton-based gait recognition publication-title: Proceedings of the IEEE International Conference on Image Processing – volume: 32 start-page: 6967 year: 2022 end-page: 6980 ident: b30 article-title: Enhanced spatial-temporal salience for cross-view gait recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 28 start-page: 316 year: 2006 end-page: 322 ident: b33 article-title: Individual recognition using gait energy image publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 53 year: 2017 end-page: 60 ident: b36 article-title: Design of adaptive biometric gait recognition algorithm with free walking directions publication-title: IET Biom. – start-page: 536 year: 2022 end-page: 551 ident: b21 article-title: GaitStrip: Gait recognition via effective strip-based feature representations and multi-level framework publication-title: Proceedings of the Asian Conference on Computer Vision – start-page: 14920 year: 2021 end-page: 14929 ident: b22 article-title: 3D local convolutional neural networks for gait recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 44 start-page: 345 year: 2022 end-page: 360 ident: b27 article-title: On learning disentangled representations for gait recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 382 year: 2020 end-page: 398 ident: b44 article-title: Gait lateral network: Learning discriminative and compact representations for gait recognition publication-title: Proceedings of the European Conference on Computer Vision – start-page: 9707 year: 2023 end-page: 9716 ident: b10 article-title: OpenGait: Revisiting gait recognition towards better practicality publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 5578 year: 2023 end-page: 5588 ident: b24 article-title: GaitGCI: Generative counterfactual intervention for gait recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: Vol. 1 start-page: 353 year: 2007 end-page: 356 ident: b18 article-title: Gait recognition based on human body components publication-title: Proceedings of the IEEE International Conference on Image Processing – volume: 25 start-page: 3046 year: 2023 end-page: 3058 ident: b19 article-title: A strong and robust skeleton-based gait recognition method with gait periodicity priors publication-title: IEEE Trans. Multimed. – start-page: 20249 year: 2022 end-page: 20258 ident: b39 article-title: Lagrange motion analysis and view embeddings for improved gait recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 501 start-page: 514 year: 2022 end-page: 528 ident: b1 article-title: PoseMapGait: A model-based gait recognition method with pose estimation maps and graph convolutional networks publication-title: Neurocomputing – start-page: 6136 year: 2022 end-page: 6145 ident: b23 article-title: Gait recognition in the wild with multi-hop temporal switch publication-title: Proceedings of the ACM International Conference on Multimedia – volume: 18 start-page: 788 year: 2024 end-page: 800 ident: b31 article-title: Continuous-dilated temporal and inter-frame motion excitation feature learning for gait recognition publication-title: IET Comput. Vis. – start-page: 3054 year: 2020 end-page: 3062 ident: b6 article-title: Gait recognition with multiple-temporal-scale 3D convolutional neural network publication-title: Proceedings of the ACM International Conference on Multimedia – start-page: 357 year: 2022 end-page: 374 ident: b25 article-title: Metagait: Learning to learn an omni sample adaptive representation for gait recognition publication-title: Proceedings of the European Conference on Computer Vision – volume: Vol. 33 start-page: 8126 year: 2019 end-page: 8133 ident: b37 article-title: GaitSet: Regarding gait as a set for cross-view gait recognition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 13424 year: 2023 end-page: 13433 ident: b38 article-title: DyGait: Exploiting dynamic representations for high-performance gait recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 13306 year: 2020 end-page: 13316 ident: b28 article-title: Gait recognition via semi-supervised disentangled representation learning to identity and covariate features publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 10 start-page: 1 year: 2018 end-page: 14 ident: b43 article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition publication-title: IPSJ Trans. Comput. Vis. Appl. – start-page: 9095 year: 2021 end-page: 9104 ident: b29 article-title: Cross-view gait recognition with deep universal linear embeddings publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 29 start-page: 1001 year: 2020 end-page: 1015 ident: b5 article-title: Cross-view gait recognition by discriminative feature learning publication-title: IEEE Trans. Image Process. – volume: 2 start-page: 421 year: 2020 end-page: 430 ident: b12 article-title: Performance evaluation of model-based gait on multi-view very large population database with pose sequences publication-title: IEEE Trans. Biom. Behav. Identity Sci. – start-page: 13824 year: 2023 end-page: 13833 ident: b41 article-title: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 636 year: 2023 ident: b4 article-title: GaitAMR: Cross-view gait recognition via aggregated multi-feature representation publication-title: Inform. Sci. – start-page: 1569 year: 2022 end-page: 1577 ident: b14 article-title: Towards a deeper understanding of skeleton-based gait recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – volume: 34 start-page: 2164 year: 2012 end-page: 2176 ident: b35 article-title: Human identification using temporal information preserving gait template publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 252 year: 2024 ident: b32 article-title: GMSN: An efficient multi-scale feature extraction network for gait recognition publication-title: Expert Syst. Appl. – volume: 30 start-page: 2734 year: 2021 end-page: 2744 ident: b7 article-title: Condition-aware comparison scheme for gait recognition publication-title: IEEE Trans. Image Process. – start-page: 14213 year: 2020 end-page: 14221 ident: b2 article-title: GaitPart: Temporal part-based model for gait recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: Vol. 4 start-page: 441 year: 2006 end-page: 444 ident: b40 article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition publication-title: Proceedings of the International Conference on Pattern Recognition – start-page: 12909 year: 2021 end-page: 12918 ident: b9 article-title: Context-sensitive temporal feature learning for gait recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 98 year: 2020 ident: b20 article-title: A model-based gait recognition method with body pose and human prior knowledge publication-title: Pattern Recognit. – start-page: 596 year: 2022 end-page: 601 ident: b11 article-title: Gait recognition using identity-aware adversarial data augmentation publication-title: Proceedings of the IEEE/SICE International Symposium on System Integration – volume: 124 year: 2022 ident: b26 article-title: GaitSlice: A gait recognition model based on spatio-temporal slice features publication-title: Pattern Recognit. – start-page: 2998 year: 2021 end-page: 3002 ident: b8 article-title: Multi-scale temporal information extractor for gait recognition publication-title: Proceedings of the IEEE International Conference on Image Processing – start-page: 1 year: 2011 end-page: 7 ident: b17 article-title: Model-based 3D gait biometrics publication-title: Proceedings of the International Joint Conference on Biometrics – start-page: 4106 year: 2021 end-page: 4115 ident: b15 article-title: End-to-end model-based gait recognition using synchronized multi-view pose constraint publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops – start-page: 3 year: 2020 end-page: 20 ident: b16 article-title: End-to-end model-based gait recognition publication-title: Proceedings of the Asian Conference on Computer Vision – start-page: 9095 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b29 article-title: Cross-view gait recognition with deep universal linear embeddings – volume: 31 start-page: 2052 issue: 13 year: 2010 ident: 10.1016/j.sigpro.2025.110185_b34 article-title: Gait recognition without subject cooperation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.05.027 – start-page: 9707 year: 2023 ident: 10.1016/j.sigpro.2025.110185_b10 article-title: OpenGait: Revisiting gait recognition towards better practicality – start-page: 3 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b16 article-title: End-to-end model-based gait recognition – start-page: 5578 year: 2023 ident: 10.1016/j.sigpro.2025.110185_b24 article-title: GaitGCI: Generative counterfactual intervention for gait recognition – volume: 124 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b26 article-title: GaitSlice: A gait recognition model based on spatio-temporal slice features publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108453 – start-page: 12909 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b9 article-title: Context-sensitive temporal feature learning for gait recognition – start-page: 20228 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b42 article-title: Gait recognition in the wild with dense 3D representations and a benchmark – volume: Vol. 1 start-page: 353 year: 2007 ident: 10.1016/j.sigpro.2025.110185_b18 article-title: Gait recognition based on human body components – volume: 18 start-page: 788 issue: 6 year: 2024 ident: 10.1016/j.sigpro.2025.110185_b31 article-title: Continuous-dilated temporal and inter-frame motion excitation feature learning for gait recognition publication-title: IET Comput. Vis. doi: 10.1049/cvi2.12278 – start-page: 382 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b44 article-title: Gait lateral network: Learning discriminative and compact representations for gait recognition – volume: 501 start-page: 514 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b1 article-title: PoseMapGait: A model-based gait recognition method with pose estimation maps and graph convolutional networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.048 – volume: 252 year: 2024 ident: 10.1016/j.sigpro.2025.110185_b32 article-title: GMSN: An efficient multi-scale feature extraction network for gait recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124250 – start-page: 13424 year: 2023 ident: 10.1016/j.sigpro.2025.110185_b38 article-title: DyGait: Exploiting dynamic representations for high-performance gait recognition – start-page: 3054 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b6 article-title: Gait recognition with multiple-temporal-scale 3D convolutional neural network – volume: 2 start-page: 421 issue: 4 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b12 article-title: Performance evaluation of model-based gait on multi-view very large population database with pose sequences publication-title: IEEE Trans. Biom. Behav. Identity Sci. doi: 10.1109/TBIOM.2020.3008862 – volume: 10 start-page: 1 year: 2018 ident: 10.1016/j.sigpro.2025.110185_b43 article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition publication-title: IPSJ Trans. Comput. Vis. Appl. – start-page: 1569 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b14 article-title: Towards a deeper understanding of skeleton-based gait recognition – volume: Vol. 4 start-page: 441 year: 2006 ident: 10.1016/j.sigpro.2025.110185_b40 article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition – start-page: 2998 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b8 article-title: Multi-scale temporal information extractor for gait recognition – start-page: 13306 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b28 article-title: Gait recognition via semi-supervised disentangled representation learning to identity and covariate features – volume: 44 start-page: 345 issue: 1 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b27 article-title: On learning disentangled representations for gait recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2998790 – volume: 32 start-page: 6967 issue: 10 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b30 article-title: Enhanced spatial-temporal salience for cross-view gait recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3175959 – start-page: 13824 year: 2023 ident: 10.1016/j.sigpro.2025.110185_b41 article-title: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions – volume: 29 start-page: 1001 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b5 article-title: Cross-view gait recognition by discriminative feature learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2926208 – start-page: 14920 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b22 article-title: 3D local convolutional neural networks for gait recognition – start-page: 14213 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b2 article-title: GaitPart: Temporal part-based model for gait recognition – volume: Vol. 33 start-page: 8126 year: 2019 ident: 10.1016/j.sigpro.2025.110185_b37 article-title: GaitSet: Regarding gait as a set for cross-view gait recognition – start-page: 20249 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b39 article-title: Lagrange motion analysis and view embeddings for improved gait recognition – start-page: 1 year: 2011 ident: 10.1016/j.sigpro.2025.110185_b17 article-title: Model-based 3D gait biometrics – volume: 25 start-page: 3046 year: 2023 ident: 10.1016/j.sigpro.2025.110185_b19 article-title: A strong and robust skeleton-based gait recognition method with gait periodicity priors publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2022.3154609 – start-page: 14648 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b3 article-title: Gait recognition via effective global-local feature representation and local temporal aggregation – start-page: 357 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b25 article-title: Metagait: Learning to learn an omni sample adaptive representation for gait recognition – volume: 34 start-page: 2164 issue: 11 year: 2012 ident: 10.1016/j.sigpro.2025.110185_b35 article-title: Human identification using temporal information preserving gait template publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.260 – volume: 28 start-page: 316 issue: 2 year: 2006 ident: 10.1016/j.sigpro.2025.110185_b33 article-title: Individual recognition using gait energy image publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.38 – start-page: 6136 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b23 article-title: Gait recognition in the wild with multi-hop temporal switch – volume: 98 year: 2020 ident: 10.1016/j.sigpro.2025.110185_b20 article-title: A model-based gait recognition method with body pose and human prior knowledge publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107069 – start-page: 4106 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b15 article-title: End-to-end model-based gait recognition using synchronized multi-view pose constraint – start-page: 2314 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b13 article-title: Gaitgraph: Graph convolutional network for skeleton-based gait recognition – volume: 6 start-page: 53 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2025.110185_b36 article-title: Design of adaptive biometric gait recognition algorithm with free walking directions publication-title: IET Biom. doi: 10.1049/iet-bmt.2015.0082 – volume: 636 year: 2023 ident: 10.1016/j.sigpro.2025.110185_b4 article-title: GaitAMR: Cross-view gait recognition via aggregated multi-feature representation publication-title: Inform. Sci. doi: 10.1016/j.ins.2023.03.145 – volume: 30 start-page: 2734 year: 2021 ident: 10.1016/j.sigpro.2025.110185_b7 article-title: Condition-aware comparison scheme for gait recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3039888 – start-page: 596 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b11 article-title: Gait recognition using identity-aware adversarial data augmentation – start-page: 536 year: 2022 ident: 10.1016/j.sigpro.2025.110185_b21 article-title: GaitStrip: Gait recognition via effective strip-based feature representations and multi-level framework |
SSID | ssj0001360 |
Score | 2.4633603 |
Snippet | Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 110185 |
SubjectTerms | Dynamic motion difference extraction Fine-grained gait representation Gait recognition Motion pattern augmentation Multi-stage feature aggregation |
Title | Multiple motion pattern augmentation assisted gait recognition |
URI | https://dx.doi.org/10.1016/j.sigpro.2025.110185 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYEB8RTlUWVgNY1j57UgVRVVAbULVOoWOc65ChJpBenKb8d2HCgSYmB05Iui8-Ve_u4O4JpTmmvHWxJqUzeBEiRHFRBhuu9jxDG0FXLTWTSZ84dFuOjAqK2FMbBKp_sbnW61tXsycNwcrMty8GQKcai9RjJXS6np-Ml5bKT85uMb5kGZrRQ2m4nZ3ZbPWYzXe7nUekpHiUFo8PDUTFT-zTxtmZzxAew7X9EbNp9zCB2sjmBvq4PgMdxOHSDQa8bxeGvbL7PyxGb56sqK9EILvklrektR1t4XZmhVncB8fPc8mhA3EoFI_W_VpFCJCFHJGBVGoUhyba21DUdeYCJpnrJURDGTysRZIlCYcEwYj0WkwxpWYMBOoVutKjwDL_elpvIZL5jPRaFSJYpYv0H6VBY5xj0gLSeyddP5ImshYS9Zw7nMcC5rONeDuGVX9uMEM62c_6Q8_zflBezqlUuJXEK3ftvglXYS6rxvpaAPO8P7x8nsE2TDvb8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoaw5crcaxs12QqooqpcuFVurNchy7ChJpBen_YydOVSTEgWOWiaIXZza_mQF4ohin2vEWCFepG09xlErlIW6678uASr-qkJvOgmRBX5f-sgWDphbG0Cqt7q91eqWt7ZmeRbO3yfPemynEwdU2ktlaiskBdEx3Kr8Nnf5onMx2ChmTqljY3I-MQFNBV9G8vvKVVlU6UPR8Q4nHZqjybxZqz-oMT-HEuotOv36jM2jJ4hyO95oIXsDz1HICnXoij7OpWmYWDt-uPmxlkT7Qa99kNp0Vz0tnRxtaF5ewGL7MBwmyUxGQ0L9XiTIVcV8qEUolA59HqTbY2oxLmslI4DQmMQ9CIpQJtbinZERlRGjIAx3ZkEx65AraxbqQ1-CkrtBSLqEZcSnPVKx4FuonCBeLLJVhF1CDBNvUzS9Ywwp7ZzVyzCDHauS6EDZwsR8fkWn9_Kfkzb8lH-EwmU8nbDKajW_hSF-xGZI7aJefW3mvfYYyfbBr4hv5tcBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+motion+pattern+augmentation+assisted+gait+recognition&rft.jtitle=Signal+processing&rft.au=Huo%2C+Wei&rft.au=Tang%2C+Jun&rft.au=Bao%2C+Wenxia&rft.au=Wang%2C+Ke&rft.date=2026-01-01&rft.issn=0165-1684&rft.volume=238&rft.spage=110185&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2025_110185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |