Multiple motion pattern augmentation assisted gait recognition

Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust spatio-temporal representations via global–local feature learning or multi-scale temporal modeling. However, they may neglect the dynamic posture change wi...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 238; p. 110185
Main Authors Huo, Wei, Tang, Jun, Bao, Wenxia, Wang, Ke, Wang, Nian, Liang, Dong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust spatio-temporal representations via global–local feature learning or multi-scale temporal modeling. However, they may neglect the dynamic posture change within consecutive frames. In addition, few methods explore useful motion cues by data self-mining manner. In this paper, we propose a novel Motion Pattern Augmentation assisted gait recognition framework named GaitMPA, which explores diverse behavior characteristics from the augmented movement sequences. GaitMPA consists of three components: Motion perception and Fine-grained variation extraction Network (MFNet), Motion Pattern Augmentation (MPA), and Multi-stage Feature Aggregation (MFA). Specifically, we present MFNet to capture dynamic motion difference between neighboring frames by Motion Perception Module (MPM), and extract multi-grained body representation via Fine-grained Variation Extractor (FVE). In MPA, we transform raw sequences into four novel motion patterns to provide distinctive movement traits. Furthermore, MFA is designed to merge the multi-source features of the raw and augmented sequences, and perform multi-stage motion information aggregation. The outputs of MFNet and MFA are fused for gait recognition. Experimental results demonstrate the effectiveness of GaitMPA on five public datasets, including the CASIA-B (in-the-lab), OU-MVLP (in-the-lab), CCPG (cloth-changing), GREW (in-the-wild), and Gait3D (in-the-wild). •We present a novel motion augmentation module to generate diverse gait sequences.•We design a novel gait recognition method, GaitMPA, to learn powerful gait features.•We validate the effectiveness of the proposed method on five public gait datasets.
AbstractList Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust spatio-temporal representations via global–local feature learning or multi-scale temporal modeling. However, they may neglect the dynamic posture change within consecutive frames. In addition, few methods explore useful motion cues by data self-mining manner. In this paper, we propose a novel Motion Pattern Augmentation assisted gait recognition framework named GaitMPA, which explores diverse behavior characteristics from the augmented movement sequences. GaitMPA consists of three components: Motion perception and Fine-grained variation extraction Network (MFNet), Motion Pattern Augmentation (MPA), and Multi-stage Feature Aggregation (MFA). Specifically, we present MFNet to capture dynamic motion difference between neighboring frames by Motion Perception Module (MPM), and extract multi-grained body representation via Fine-grained Variation Extractor (FVE). In MPA, we transform raw sequences into four novel motion patterns to provide distinctive movement traits. Furthermore, MFA is designed to merge the multi-source features of the raw and augmented sequences, and perform multi-stage motion information aggregation. The outputs of MFNet and MFA are fused for gait recognition. Experimental results demonstrate the effectiveness of GaitMPA on five public datasets, including the CASIA-B (in-the-lab), OU-MVLP (in-the-lab), CCPG (cloth-changing), GREW (in-the-wild), and Gait3D (in-the-wild). •We present a novel motion augmentation module to generate diverse gait sequences.•We design a novel gait recognition method, GaitMPA, to learn powerful gait features.•We validate the effectiveness of the proposed method on five public gait datasets.
ArticleNumber 110185
Author Tang, Jun
Liang, Dong
Wang, Nian
Bao, Wenxia
Huo, Wei
Wang, Ke
Author_xml – sequence: 1
  givenname: Wei
  surname: Huo
  fullname: Huo, Wei
  organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China
– sequence: 2
  givenname: Jun
  surname: Tang
  fullname: Tang, Jun
  organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China
– sequence: 3
  givenname: Wenxia
  orcidid: 0000-0002-0536-1556
  surname: Bao
  fullname: Bao, Wenxia
  organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China
– sequence: 4
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  email: 22014@ahu.edu.cn
  organization: School of Internet, Anhui University, Hefei, 230039, Anhui, China
– sequence: 5
  givenname: Nian
  surname: Wang
  fullname: Wang, Nian
  organization: School of Electronic and Information Engineering, Anhui University, Hefei, 230601, Anhui, China
– sequence: 6
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  organization: School of Internet, Anhui University, Hefei, 230039, Anhui, China
BookMark eNp9j0tqwzAYhLVIoUnaG3ThC9jVw5LlTaCEviClm3YtFPmXkXEkIymF3r5O3XVXAzPMMN8GrXzwgNAdwRXBRNwPVXL9FENFMeUVmT3JV2g9R7wkQtbXaJPSgDEmTOA12r2dx-ymEYpTyC74YtI5Q_SFPvcn8Fn_mjollzJ0Ra9dLiKY0Ht3SW7QldVjgts_3aLPp8eP_Ut5eH9-3T8cSkN5k8vOSs3BmgYsCK7lkbZMUgx1B9KQY8taLRpmLBeYaGpB1iBZ3WjRtoJ1QNkW1cuuiSGlCFZN0Z10_FYEqwu3GtTCrS7cauGea7ulBvO3LwdRJePAG-jcDJFVF9z_Az-Op2iN
Cites_doi 10.1016/j.patrec.2010.05.027
10.1016/j.patcog.2021.108453
10.1049/cvi2.12278
10.1016/j.neucom.2022.06.048
10.1016/j.eswa.2024.124250
10.1109/TBIOM.2020.3008862
10.1109/TPAMI.2020.2998790
10.1109/TCSVT.2022.3175959
10.1109/TIP.2019.2926208
10.1109/TMM.2022.3154609
10.1109/TPAMI.2011.260
10.1109/TPAMI.2006.38
10.1016/j.patcog.2019.107069
10.1049/iet-bmt.2015.0082
10.1016/j.ins.2023.03.145
10.1109/TIP.2020.3039888
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2025.110185
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2025_110185
S0165168425002993
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-df8a5efc7efe65a8b293820e4de8c1b939a673cf5601a2fe84e8347a69963de23
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Thu Jul 31 00:33:06 EDT 2025
Sat Aug 09 17:30:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-stage feature aggregation
Dynamic motion difference extraction
Fine-grained gait representation
Gait recognition
Motion pattern augmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-df8a5efc7efe65a8b293820e4de8c1b939a673cf5601a2fe84e8347a69963de23
ORCID 0000-0002-0536-1556
ParticipantIDs crossref_primary_10_1016_j_sigpro_2025_110185
elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110185
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Makihara, Xu, Yagi, Yu, Ren (b16) 2020
Yu, Tan, Tan (b40) 2006; Vol. 4
Wu, Tian, Fu, Li, Li (b7) 2021; 30
Li, Zhao (b19) 2023; 25
Zhang, Huang, Yu, Wang (b5) 2020; 29
Dou, Zhang, Su, Yu, Li (b25) 2022
Chao, He, Zhang, Feng (b37) 2019; Vol. 33
Zhang, Tran, Liu, Liu (b27) 2022; 44
Chen, Wang, Zheng, Zeng, Zou, Cui (b4) 2023; 636
Lin, Zhang, Liu, Qin (b8) 2021
Wei, Liu, Zhao, Li (b32) 2024; 252
Chai, Li, Zhang, Li, Wang (b39) 2022
An, Yu, Makihara, Wu, Xu, Yu, Liao, Yagi (b12) 2020; 2
Han, Bhanu (b33) 2006; 28
Zhang, Wang, Li (b29) 2021
Huang, Ben, Gong, Zhang, Yan, Wu (b30) 2022; 32
Wang, Zhang, Wang, Pu, Yuan (b35) 2012; 34
Lin, Zhang, Bao (b6) 2020
Huang, Xue, Shen, Tian, Li, Huang, Hua (b22) 2021
Huang, Zhu, Wang, Wang, Yang, He, Liu, Feng (b9) 2021
Hou, Cao, Liu, Huang (b44) 2020
Wang, Lin, Guo, Li, Zhu, Sun, Zhang, Liu, Yu (b21) 2022
Fan, Liang, Shen, Hou, Huang, Yu (b10) 2023
Hua, Zhang, Li, Pan (b31) 2024; 18
Ariyanto, Nixon (b17) 2011
Zheng, Liu, Gu, Sun, Gan, Zhang, Liu, Yan (b23) 2022
Dou, Zhang, Su, Yu, Lin, Li (b24) 2023
Lin, Zhang, Yu (b3) 2021
Li, Makihara, Xu, Yagi (b15) 2021
Fan, Peng, Cao, Liu, Hou, Chi, Huang, Li, He (b2) 2020
Li, Qiu, Zhao, Zhan, Chen, Wei, Huang (b26) 2022; 124
Wang, Guo, Lin, Yang, Zhu, Li, Zhang, Yu (b38) 2023
Zheng, Liu, Liu, He, Yan, Mei (b42) 2022
Boulgouris, Chi (b18) 2007; Vol. 1
Darwish (b36) 2017; 6
Teepe, Gilg, Herzog, Hörmann, Rigoll (b14) 2022
Teepe, Khan, Gilg, Herzog, Hörmann, Rigoll (b13) 2021
Takemura, Makihara, Muramatsu, Echigo, Yagi (b43) 2018; 10
Yoshino, Nakashima, Ahn, Iwashita, Kurazume (b11) 2022
Liao, Yu, An, Huang (b20) 2020; 98
Liao, Li, Bhattacharyya, York (b1) 2022; 501
Li, Makihara, Xu, Yagi, Ren (b28) 2020
Bashir, Xiang, Gong (b34) 2010; 31
Li, Hou, Zhang, Cao, Liu, Huang, Zhao (b41) 2023
Liao (10.1016/j.sigpro.2025.110185_b1) 2022; 501
Lin (10.1016/j.sigpro.2025.110185_b3) 2021
Li (10.1016/j.sigpro.2025.110185_b19) 2023; 25
Zheng (10.1016/j.sigpro.2025.110185_b23) 2022
Han (10.1016/j.sigpro.2025.110185_b33) 2006; 28
Hou (10.1016/j.sigpro.2025.110185_b44) 2020
Fan (10.1016/j.sigpro.2025.110185_b2) 2020
Huang (10.1016/j.sigpro.2025.110185_b9) 2021
Lin (10.1016/j.sigpro.2025.110185_b8) 2021
Teepe (10.1016/j.sigpro.2025.110185_b14) 2022
Huang (10.1016/j.sigpro.2025.110185_b30) 2022; 32
Chai (10.1016/j.sigpro.2025.110185_b39) 2022
Lin (10.1016/j.sigpro.2025.110185_b6) 2020
Hua (10.1016/j.sigpro.2025.110185_b31) 2024; 18
Darwish (10.1016/j.sigpro.2025.110185_b36) 2017; 6
Huang (10.1016/j.sigpro.2025.110185_b22) 2021
Dou (10.1016/j.sigpro.2025.110185_b25) 2022
Chen (10.1016/j.sigpro.2025.110185_b4) 2023; 636
Wang (10.1016/j.sigpro.2025.110185_b21) 2022
Li (10.1016/j.sigpro.2025.110185_b15) 2021
Wang (10.1016/j.sigpro.2025.110185_b35) 2012; 34
Takemura (10.1016/j.sigpro.2025.110185_b43) 2018; 10
Zhang (10.1016/j.sigpro.2025.110185_b29) 2021
Zheng (10.1016/j.sigpro.2025.110185_b42) 2022
Li (10.1016/j.sigpro.2025.110185_b28) 2020
Yu (10.1016/j.sigpro.2025.110185_b40) 2006; Vol. 4
Li (10.1016/j.sigpro.2025.110185_b26) 2022; 124
Boulgouris (10.1016/j.sigpro.2025.110185_b18) 2007; Vol. 1
Teepe (10.1016/j.sigpro.2025.110185_b13) 2021
An (10.1016/j.sigpro.2025.110185_b12) 2020; 2
Zhang (10.1016/j.sigpro.2025.110185_b5) 2020; 29
Wang (10.1016/j.sigpro.2025.110185_b38) 2023
Li (10.1016/j.sigpro.2025.110185_b16) 2020
Fan (10.1016/j.sigpro.2025.110185_b10) 2023
Zhang (10.1016/j.sigpro.2025.110185_b27) 2022; 44
Bashir (10.1016/j.sigpro.2025.110185_b34) 2010; 31
Wei (10.1016/j.sigpro.2025.110185_b32) 2024; 252
Ariyanto (10.1016/j.sigpro.2025.110185_b17) 2011
Chao (10.1016/j.sigpro.2025.110185_b37) 2019; Vol. 33
Li (10.1016/j.sigpro.2025.110185_b41) 2023
Yoshino (10.1016/j.sigpro.2025.110185_b11) 2022
Liao (10.1016/j.sigpro.2025.110185_b20) 2020; 98
Wu (10.1016/j.sigpro.2025.110185_b7) 2021; 30
Dou (10.1016/j.sigpro.2025.110185_b24) 2023
References_xml – start-page: 14648
  year: 2021
  end-page: 14656
  ident: b3
  article-title: Gait recognition via effective global-local feature representation and local temporal aggregation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 31
  start-page: 2052
  year: 2010
  end-page: 2060
  ident: b34
  article-title: Gait recognition without subject cooperation
  publication-title: Pattern Recognit. Lett.
– start-page: 20228
  year: 2022
  end-page: 20237
  ident: b42
  article-title: Gait recognition in the wild with dense 3D representations and a benchmark
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 2314
  year: 2021
  end-page: 2318
  ident: b13
  article-title: Gaitgraph: Graph convolutional network for skeleton-based gait recognition
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– volume: 32
  start-page: 6967
  year: 2022
  end-page: 6980
  ident: b30
  article-title: Enhanced spatial-temporal salience for cross-view gait recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 28
  start-page: 316
  year: 2006
  end-page: 322
  ident: b33
  article-title: Individual recognition using gait energy image
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 53
  year: 2017
  end-page: 60
  ident: b36
  article-title: Design of adaptive biometric gait recognition algorithm with free walking directions
  publication-title: IET Biom.
– start-page: 536
  year: 2022
  end-page: 551
  ident: b21
  article-title: GaitStrip: Gait recognition via effective strip-based feature representations and multi-level framework
  publication-title: Proceedings of the Asian Conference on Computer Vision
– start-page: 14920
  year: 2021
  end-page: 14929
  ident: b22
  article-title: 3D local convolutional neural networks for gait recognition
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 44
  start-page: 345
  year: 2022
  end-page: 360
  ident: b27
  article-title: On learning disentangled representations for gait recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 382
  year: 2020
  end-page: 398
  ident: b44
  article-title: Gait lateral network: Learning discriminative and compact representations for gait recognition
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 9707
  year: 2023
  end-page: 9716
  ident: b10
  article-title: OpenGait: Revisiting gait recognition towards better practicality
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 5578
  year: 2023
  end-page: 5588
  ident: b24
  article-title: GaitGCI: Generative counterfactual intervention for gait recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: Vol. 1
  start-page: 353
  year: 2007
  end-page: 356
  ident: b18
  article-title: Gait recognition based on human body components
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– volume: 25
  start-page: 3046
  year: 2023
  end-page: 3058
  ident: b19
  article-title: A strong and robust skeleton-based gait recognition method with gait periodicity priors
  publication-title: IEEE Trans. Multimed.
– start-page: 20249
  year: 2022
  end-page: 20258
  ident: b39
  article-title: Lagrange motion analysis and view embeddings for improved gait recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 501
  start-page: 514
  year: 2022
  end-page: 528
  ident: b1
  article-title: PoseMapGait: A model-based gait recognition method with pose estimation maps and graph convolutional networks
  publication-title: Neurocomputing
– start-page: 6136
  year: 2022
  end-page: 6145
  ident: b23
  article-title: Gait recognition in the wild with multi-hop temporal switch
  publication-title: Proceedings of the ACM International Conference on Multimedia
– volume: 18
  start-page: 788
  year: 2024
  end-page: 800
  ident: b31
  article-title: Continuous-dilated temporal and inter-frame motion excitation feature learning for gait recognition
  publication-title: IET Comput. Vis.
– start-page: 3054
  year: 2020
  end-page: 3062
  ident: b6
  article-title: Gait recognition with multiple-temporal-scale 3D convolutional neural network
  publication-title: Proceedings of the ACM International Conference on Multimedia
– start-page: 357
  year: 2022
  end-page: 374
  ident: b25
  article-title: Metagait: Learning to learn an omni sample adaptive representation for gait recognition
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: Vol. 33
  start-page: 8126
  year: 2019
  end-page: 8133
  ident: b37
  article-title: GaitSet: Regarding gait as a set for cross-view gait recognition
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 13424
  year: 2023
  end-page: 13433
  ident: b38
  article-title: DyGait: Exploiting dynamic representations for high-performance gait recognition
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 13306
  year: 2020
  end-page: 13316
  ident: b28
  article-title: Gait recognition via semi-supervised disentangled representation learning to identity and covariate features
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 10
  start-page: 1
  year: 2018
  end-page: 14
  ident: b43
  article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– start-page: 9095
  year: 2021
  end-page: 9104
  ident: b29
  article-title: Cross-view gait recognition with deep universal linear embeddings
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 29
  start-page: 1001
  year: 2020
  end-page: 1015
  ident: b5
  article-title: Cross-view gait recognition by discriminative feature learning
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 421
  year: 2020
  end-page: 430
  ident: b12
  article-title: Performance evaluation of model-based gait on multi-view very large population database with pose sequences
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
– start-page: 13824
  year: 2023
  end-page: 13833
  ident: b41
  article-title: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 636
  year: 2023
  ident: b4
  article-title: GaitAMR: Cross-view gait recognition via aggregated multi-feature representation
  publication-title: Inform. Sci.
– start-page: 1569
  year: 2022
  end-page: 1577
  ident: b14
  article-title: Towards a deeper understanding of skeleton-based gait recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 34
  start-page: 2164
  year: 2012
  end-page: 2176
  ident: b35
  article-title: Human identification using temporal information preserving gait template
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 252
  year: 2024
  ident: b32
  article-title: GMSN: An efficient multi-scale feature extraction network for gait recognition
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 2734
  year: 2021
  end-page: 2744
  ident: b7
  article-title: Condition-aware comparison scheme for gait recognition
  publication-title: IEEE Trans. Image Process.
– start-page: 14213
  year: 2020
  end-page: 14221
  ident: b2
  article-title: GaitPart: Temporal part-based model for gait recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: Vol. 4
  start-page: 441
  year: 2006
  end-page: 444
  ident: b40
  article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition
  publication-title: Proceedings of the International Conference on Pattern Recognition
– start-page: 12909
  year: 2021
  end-page: 12918
  ident: b9
  article-title: Context-sensitive temporal feature learning for gait recognition
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 98
  year: 2020
  ident: b20
  article-title: A model-based gait recognition method with body pose and human prior knowledge
  publication-title: Pattern Recognit.
– start-page: 596
  year: 2022
  end-page: 601
  ident: b11
  article-title: Gait recognition using identity-aware adversarial data augmentation
  publication-title: Proceedings of the IEEE/SICE International Symposium on System Integration
– volume: 124
  year: 2022
  ident: b26
  article-title: GaitSlice: A gait recognition model based on spatio-temporal slice features
  publication-title: Pattern Recognit.
– start-page: 2998
  year: 2021
  end-page: 3002
  ident: b8
  article-title: Multi-scale temporal information extractor for gait recognition
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– start-page: 1
  year: 2011
  end-page: 7
  ident: b17
  article-title: Model-based 3D gait biometrics
  publication-title: Proceedings of the International Joint Conference on Biometrics
– start-page: 4106
  year: 2021
  end-page: 4115
  ident: b15
  article-title: End-to-end model-based gait recognition using synchronized multi-view pose constraint
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops
– start-page: 3
  year: 2020
  end-page: 20
  ident: b16
  article-title: End-to-end model-based gait recognition
  publication-title: Proceedings of the Asian Conference on Computer Vision
– start-page: 9095
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b29
  article-title: Cross-view gait recognition with deep universal linear embeddings
– volume: 31
  start-page: 2052
  issue: 13
  year: 2010
  ident: 10.1016/j.sigpro.2025.110185_b34
  article-title: Gait recognition without subject cooperation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.05.027
– start-page: 9707
  year: 2023
  ident: 10.1016/j.sigpro.2025.110185_b10
  article-title: OpenGait: Revisiting gait recognition towards better practicality
– start-page: 3
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b16
  article-title: End-to-end model-based gait recognition
– start-page: 5578
  year: 2023
  ident: 10.1016/j.sigpro.2025.110185_b24
  article-title: GaitGCI: Generative counterfactual intervention for gait recognition
– volume: 124
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b26
  article-title: GaitSlice: A gait recognition model based on spatio-temporal slice features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108453
– start-page: 12909
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b9
  article-title: Context-sensitive temporal feature learning for gait recognition
– start-page: 20228
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b42
  article-title: Gait recognition in the wild with dense 3D representations and a benchmark
– volume: Vol. 1
  start-page: 353
  year: 2007
  ident: 10.1016/j.sigpro.2025.110185_b18
  article-title: Gait recognition based on human body components
– volume: 18
  start-page: 788
  issue: 6
  year: 2024
  ident: 10.1016/j.sigpro.2025.110185_b31
  article-title: Continuous-dilated temporal and inter-frame motion excitation feature learning for gait recognition
  publication-title: IET Comput. Vis.
  doi: 10.1049/cvi2.12278
– start-page: 382
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b44
  article-title: Gait lateral network: Learning discriminative and compact representations for gait recognition
– volume: 501
  start-page: 514
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b1
  article-title: PoseMapGait: A model-based gait recognition method with pose estimation maps and graph convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.048
– volume: 252
  year: 2024
  ident: 10.1016/j.sigpro.2025.110185_b32
  article-title: GMSN: An efficient multi-scale feature extraction network for gait recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124250
– start-page: 13424
  year: 2023
  ident: 10.1016/j.sigpro.2025.110185_b38
  article-title: DyGait: Exploiting dynamic representations for high-performance gait recognition
– start-page: 3054
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b6
  article-title: Gait recognition with multiple-temporal-scale 3D convolutional neural network
– volume: 2
  start-page: 421
  issue: 4
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b12
  article-title: Performance evaluation of model-based gait on multi-view very large population database with pose sequences
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
  doi: 10.1109/TBIOM.2020.3008862
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.sigpro.2025.110185_b43
  article-title: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– start-page: 1569
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b14
  article-title: Towards a deeper understanding of skeleton-based gait recognition
– volume: Vol. 4
  start-page: 441
  year: 2006
  ident: 10.1016/j.sigpro.2025.110185_b40
  article-title: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition
– start-page: 2998
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b8
  article-title: Multi-scale temporal information extractor for gait recognition
– start-page: 13306
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b28
  article-title: Gait recognition via semi-supervised disentangled representation learning to identity and covariate features
– volume: 44
  start-page: 345
  issue: 1
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b27
  article-title: On learning disentangled representations for gait recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2998790
– volume: 32
  start-page: 6967
  issue: 10
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b30
  article-title: Enhanced spatial-temporal salience for cross-view gait recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3175959
– start-page: 13824
  year: 2023
  ident: 10.1016/j.sigpro.2025.110185_b41
  article-title: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions
– volume: 29
  start-page: 1001
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b5
  article-title: Cross-view gait recognition by discriminative feature learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2926208
– start-page: 14920
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b22
  article-title: 3D local convolutional neural networks for gait recognition
– start-page: 14213
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b2
  article-title: GaitPart: Temporal part-based model for gait recognition
– volume: Vol. 33
  start-page: 8126
  year: 2019
  ident: 10.1016/j.sigpro.2025.110185_b37
  article-title: GaitSet: Regarding gait as a set for cross-view gait recognition
– start-page: 20249
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b39
  article-title: Lagrange motion analysis and view embeddings for improved gait recognition
– start-page: 1
  year: 2011
  ident: 10.1016/j.sigpro.2025.110185_b17
  article-title: Model-based 3D gait biometrics
– volume: 25
  start-page: 3046
  year: 2023
  ident: 10.1016/j.sigpro.2025.110185_b19
  article-title: A strong and robust skeleton-based gait recognition method with gait periodicity priors
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2022.3154609
– start-page: 14648
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b3
  article-title: Gait recognition via effective global-local feature representation and local temporal aggregation
– start-page: 357
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b25
  article-title: Metagait: Learning to learn an omni sample adaptive representation for gait recognition
– volume: 34
  start-page: 2164
  issue: 11
  year: 2012
  ident: 10.1016/j.sigpro.2025.110185_b35
  article-title: Human identification using temporal information preserving gait template
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.260
– volume: 28
  start-page: 316
  issue: 2
  year: 2006
  ident: 10.1016/j.sigpro.2025.110185_b33
  article-title: Individual recognition using gait energy image
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.38
– start-page: 6136
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b23
  article-title: Gait recognition in the wild with multi-hop temporal switch
– volume: 98
  year: 2020
  ident: 10.1016/j.sigpro.2025.110185_b20
  article-title: A model-based gait recognition method with body pose and human prior knowledge
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107069
– start-page: 4106
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b15
  article-title: End-to-end model-based gait recognition using synchronized multi-view pose constraint
– start-page: 2314
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b13
  article-title: Gaitgraph: Graph convolutional network for skeleton-based gait recognition
– volume: 6
  start-page: 53
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2025.110185_b36
  article-title: Design of adaptive biometric gait recognition algorithm with free walking directions
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2015.0082
– volume: 636
  year: 2023
  ident: 10.1016/j.sigpro.2025.110185_b4
  article-title: GaitAMR: Cross-view gait recognition via aggregated multi-feature representation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.03.145
– volume: 30
  start-page: 2734
  year: 2021
  ident: 10.1016/j.sigpro.2025.110185_b7
  article-title: Condition-aware comparison scheme for gait recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3039888
– start-page: 596
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b11
  article-title: Gait recognition using identity-aware adversarial data augmentation
– start-page: 536
  year: 2022
  ident: 10.1016/j.sigpro.2025.110185_b21
  article-title: GaitStrip: Gait recognition via effective strip-based feature representations and multi-level framework
SSID ssj0001360
Score 2.4633603
Snippet Gait recognition aims to learn the unique walking patterns of different subjects for identity retrieval. Most methods focus on exploiting robust...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110185
SubjectTerms Dynamic motion difference extraction
Fine-grained gait representation
Gait recognition
Motion pattern augmentation
Multi-stage feature aggregation
Title Multiple motion pattern augmentation assisted gait recognition
URI https://dx.doi.org/10.1016/j.sigpro.2025.110185
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYEB8RTlUWVgNY1j57UgVRVVAbULVOoWOc65ChJpBenKb8d2HCgSYmB05Iui8-Ve_u4O4JpTmmvHWxJqUzeBEiRHFRBhuu9jxDG0FXLTWTSZ84dFuOjAqK2FMbBKp_sbnW61tXsycNwcrMty8GQKcai9RjJXS6np-Ml5bKT85uMb5kGZrRQ2m4nZ3ZbPWYzXe7nUekpHiUFo8PDUTFT-zTxtmZzxAew7X9EbNp9zCB2sjmBvq4PgMdxOHSDQa8bxeGvbL7PyxGb56sqK9EILvklrektR1t4XZmhVncB8fPc8mhA3EoFI_W_VpFCJCFHJGBVGoUhyba21DUdeYCJpnrJURDGTysRZIlCYcEwYj0WkwxpWYMBOoVutKjwDL_elpvIZL5jPRaFSJYpYv0H6VBY5xj0gLSeyddP5ImshYS9Zw7nMcC5rONeDuGVX9uMEM62c_6Q8_zflBezqlUuJXEK3ftvglXYS6rxvpaAPO8P7x8nsE2TDvb8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoaw5crcaxs12QqooqpcuFVurNchy7ChJpBen_YydOVSTEgWOWiaIXZza_mQF4ohin2vEWCFepG09xlErlIW6678uASr-qkJvOgmRBX5f-sgWDphbG0Cqt7q91eqWt7ZmeRbO3yfPemynEwdU2ktlaiskBdEx3Kr8Nnf5onMx2ChmTqljY3I-MQFNBV9G8vvKVVlU6UPR8Q4nHZqjybxZqz-oMT-HEuotOv36jM2jJ4hyO95oIXsDz1HICnXoij7OpWmYWDt-uPmxlkT7Qa99kNp0Vz0tnRxtaF5ewGL7MBwmyUxGQ0L9XiTIVcV8qEUolA59HqTbY2oxLmslI4DQmMQ9CIpQJtbinZERlRGjIAx3ZkEx65AraxbqQ1-CkrtBSLqEZcSnPVKx4FuonCBeLLJVhF1CDBNvUzS9Ywwp7ZzVyzCDHauS6EDZwsR8fkWn9_Kfkzb8lH-EwmU8nbDKajW_hSF-xGZI7aJefW3mvfYYyfbBr4hv5tcBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+motion+pattern+augmentation+assisted+gait+recognition&rft.jtitle=Signal+processing&rft.au=Huo%2C+Wei&rft.au=Tang%2C+Jun&rft.au=Bao%2C+Wenxia&rft.au=Wang%2C+Ke&rft.date=2026-01-01&rft.issn=0165-1684&rft.volume=238&rft.spage=110185&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2025_110185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon