On the Shard Intersection Order of a Coxeter Group
Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models...
Saved in:
Published in | SIAM journal on discrete mathematics Vol. 27; no. 4; pp. 1880 - 1912 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0895-4801 1095-7146 |
DOI | 10.1137/110847202 |
Cover
Abstract | Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models for shard intersections of all classical types and use this understanding to prove that the shard intersection order is EL-shellable. Further, inspired by work of Simion and Ullman on the lattice of noncrossing partitions, we show that the shard intersection order on the symmetric group admits a symmetric Boolean decomposition, i.e., a partition into disjoint Boolean algebras whose middle ranks coincide with the middle rank of the poset. Our decomposition also yields a new symmetric Boolean decomposition of the noncrossing partition lattice. [PUBLICATION ABSTRACT] |
---|---|
AbstractList | Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models for shard intersections of all classical types and use this understanding to prove that the shard intersection order is EL-shellable. Further, inspired by work of Simion and Ullman on the lattice of noncrossing partitions, we show that the shard intersection order on the symmetric group admits a symmetric Boolean decomposition, i.e., a partition into disjoint Boolean algebras whose middle ranks coincide with the middle rank of the poset. Our decomposition also yields a new symmetric Boolean decomposition of the noncrossing partition lattice. [PUBLICATION ABSTRACT] |
Author | Petersen, T. Kyle |
Author_xml | – sequence: 1 givenname: T. Kyle surname: Petersen fullname: Petersen, T. Kyle |
BookMark | eNptkMFOwzAMQCM0JLbBgT-IxIlDWZwmaXtEE2yTJvUAnKs0cbVOoxlJKsHfk2mIA-JkS362nz0jk8ENSMgtsAeAvFgAsFIUnPELMgVWyawAoSZkysqUi5LBFZmFsGcMhAA5JbweaNwhfdlpb-lmiOgDmti7gdbeoqeuo5ou3SemCl15Nx6vyWWnDwFvfuKcvD0_vS7X2bZebZaP28xwWcTMSmO0tWhshVJpVMlPtapACarqco65ZUobgYYnrS65MgmmBS5aVLI1-ZzcnecevfsYMcRm70Y_pJVNki9FLgSDRN2fKeNdCB675uj7d-2_GmDN6SXN70sSu_jDmj7q07HR6_7wT8c3BPliCw |
CitedBy_id | crossref_primary_10_1007_s00026_014_0218_9 crossref_primary_10_1007_s10114_015_4331_4 crossref_primary_10_1137_140972391 crossref_primary_10_1007_s10801_016_0723_5 crossref_primary_10_1016_j_ejc_2022_103521 crossref_primary_10_1007_s00012_019_0585_5 crossref_primary_10_1007_s10801_021_01056_4 |
Cites_doi | 10.1007/BF01237393 10.1007/s00454-010-9243-6 10.1137/S0895480103432192 10.1016/0012-365X(91)90376-D 10.1006/aima.2000.1936 10.1007/s10801-010-0255-3 10.1016/S0012-365X(96)00365-2 10.37236/1866 10.1007/s00454-005-1171-5 10.1016/j.jcta.2011.01.001 10.37236/1459 10.1112/S0010437X09004023 10.1137/0132068 10.1016/j.aim.2007.09.002 10.2307/1999881 10.2307/27642003 10.1137/0604046 10.1016/0097-3165(76)90079-0 10.4171/dm/248 10.1090/S0002-9939-06-08534-0 |
ContentType | Journal Article |
Copyright | 2013, Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: 2013, Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1137/110847202 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Agricultural Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1095-7146 |
EndPage | 1912 |
ExternalDocumentID | 3117557741 10_1137_110847202 |
GroupedDBID | .4S .DC 123 4.4 6TJ 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV ADNWM ADXHL AENEX AFFNX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBS EDO EJD EMK EST ESX FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TN5 TUS UQL YNT YYP 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c257t-d5ccaddecd9e56ae61136b67e5169f32e3d06ac4ec2801f095051cb124be65bc3 |
IEDL.DBID | 8FG |
ISSN | 0895-4801 |
IngestDate | Sun Jul 13 04:37:39 EDT 2025 Tue Jul 01 03:33:01 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-d5ccaddecd9e56ae61136b67e5169f32e3d06ac4ec2801f095051cb124be65bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1448434401 |
PQPubID | 666311 |
PageCount | 33 |
ParticipantIDs | proquest_journals_1448434401 crossref_primary_10_1137_110847202 crossref_citationtrail_10_1137_110847202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | SIAM journal on discrete mathematics |
PublicationYear | 2013 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | Bancroft E. (atypb5) 1910; 2011 Brändén P. (atypb8) 2004; 11 Hersh P. (atypb15) 1999; 6 Armstrong D. (atypb2) 2009; 202 atypb19 Fomin S. (atypb11) 2007 atypb26 atypb27 atypb17 Postnikov A. (atypb22) 2008; 13 atypb18 atypb12 atypb23 atypb13 atypb24 atypb14 atypb25 atypb1 atypb3 atypb20 Wachs M. (atypb28) 2007 atypb10 atypb4 atypb7 |
References_xml | – ident: atypb10 doi: 10.1007/BF01237393 – ident: atypb19 doi: 10.1007/s00454-010-9243-6 – ident: atypb4 doi: 10.1137/S0895480103432192 – ident: atypb26 doi: 10.1016/0012-365X(91)90376-D – ident: atypb1 doi: 10.1006/aima.2000.1936 – volume: 202 start-page: 949 year: 2009 ident: atypb2 publication-title: Mem. Amer. Math. Soc. – ident: atypb23 doi: 10.1007/s10801-010-0255-3 – ident: atypb24 doi: 10.1016/S0012-365X(96)00365-2 – volume: 11 start-page: 9 year: 2004 ident: atypb8 publication-title: Electron. J. Combin. doi: 10.37236/1866 – ident: atypb12 doi: 10.1007/s00454-005-1171-5 – ident: atypb20 doi: 10.1016/j.jcta.2011.01.001 – start-page: 63 year: 2007 ident: atypb11 publication-title: RI – volume: 6 start-page: R27 year: 1999 ident: atypb15 publication-title: Electron. J. Combin. doi: 10.37236/1459 – ident: atypb17 doi: 10.1112/S0010437X09004023 – start-page: 497 year: 2007 ident: atypb28 publication-title: RI – ident: atypb14 doi: 10.1137/0132068 – ident: atypb27 doi: 10.1016/j.aim.2007.09.002 – ident: atypb7 doi: 10.2307/1999881 – ident: atypb18 doi: 10.2307/27642003 – ident: atypb25 doi: 10.1137/0604046 – ident: atypb13 doi: 10.1016/0097-3165(76)90079-0 – volume: 13 start-page: 207 year: 2008 ident: atypb22 publication-title: Doc. Math. doi: 10.4171/dm/248 – ident: atypb3 doi: 10.1090/S0002-9939-06-08534-0 – volume: 2011 start-page: 1103 year: 1910 ident: atypb5 publication-title: The Shard Intersection Order on Permutations |
SSID | ssj0014415 |
Score | 2.0606666 |
Snippet | Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1880 |
SubjectTerms | Boolean Decomposition Reading |
Title | On the Shard Intersection Order of a Coxeter Group |
URI | https://www.proquest.com/docview/1448434401 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vXjxLVZrCeLBy9I2j32cREtrEWxFLPS2bF4n2a22gj_fScyuCOJ5c8kkM983k9n5AK7UwMqMFiZCbNYRN4phHDRI5LRCtLM2Ff4P78dZPF3wh6VYhoLbOrRV1jHRB2pdKVcj7yPxTznjmA7crN4ipxrlXleDhMY2tIeINO6ep5P75hXB5QqeRWYicmNSwmShIUv6rvudJzRUUxo8-h2OPcZM9mE3kENy-32aB7BlykPYq4UXSPDDI6DzkiBxI27asia-qLf2LVUlmbtRmqSypCCj6tP1uhBfXjqGxWT8MppGQfwgUuhFm0gLtC3GHqUzI-LCxE58RcaJcQ9bllHD9CAuFFqX4s4sMiV0LyURrqWJhVTsBFplVZpTILGyOsvsQOKWOTe6QNZkGNVCSpaIIu3AdW2CXIXJ4E6g4jX3GQJL8sZaHbhslq6-x2H8tahb2zEPHrHOf87v7P_P57BDveSEK3N0obV5_zAXCPwb2fOn24P23Xj29PwFKT-rqQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGdoALb8RgQIRA4lJtJH2sB4RgbNrYC6FN2q00j55QO9gQ8Kf4jThZW4SEuO3cqEocx_7sOP4AzkQt4j4NlYW-WVq2EgztoEIgJwV6uyiqO-aFd3_gtsf2_cSZFOArewujyyozm2gMtUyEzpFXEfjXbWZjOHA9fbE0a5S-Xc0oNBZq0VWf7xiyza46d7i_55S2mqNG20pZBSyB6jm3pIOTxkMtpK8cN1SuZjXhrqf0jVHEqGKy5oYCp03RekcIQVBvBUc_yJXrcMHwvytQsvWL1iKUbpuDh8f83kJHJwa3-o6lG7OkvYwumVfV9fa2R9P8Te4BfzsA49Vam7CewlFys9CfLSioeBs2MqoHkp78HaDDmCBUJLq_syQmjTgzRVwxGermnSSJSEgayYeuriEmobUL46UIZg-KcRKrfSCuiKTvRzWOS7ZtJUPEaYpR6XDOPCesl-EiE0Eg0l7kmhLjOTAxCfOCXFplOM2HThcNOP4aVMnkGKRncBb8aMzB_59PYLU96veCXmfQPYQ1aggvdJKlAsX565s6Qtgx58fpXhN4WrZ6fQMaf-mG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Shard+Intersection+Order+of+a+Coxeter+Group&rft.jtitle=SIAM+journal+on+discrete+mathematics&rft.au=Petersen%2C+T+Kyle&rft.date=2013-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4801&rft.eissn=1095-7146&rft.volume=27&rft.issue=4&rft.spage=1880&rft_id=info:doi/10.1137%2F110847202&rft.externalDocID=3117557741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4801&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4801&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4801&client=summon |