On the Shard Intersection Order of a Coxeter Group

Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on discrete mathematics Vol. 27; no. 4; pp. 1880 - 1912
Main Author Petersen, T. Kyle
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Subjects
Online AccessGet full text
ISSN0895-4801
1095-7146
DOI10.1137/110847202

Cover

Abstract Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models for shard intersections of all classical types and use this understanding to prove that the shard intersection order is EL-shellable. Further, inspired by work of Simion and Ullman on the lattice of noncrossing partitions, we show that the shard intersection order on the symmetric group admits a symmetric Boolean decomposition, i.e., a partition into disjoint Boolean algebras whose middle ranks coincide with the middle rank of the poset. Our decomposition also yields a new symmetric Boolean decomposition of the noncrossing partition lattice. [PUBLICATION ABSTRACT]
AbstractList Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of noncrossing partitions $NC(W)$ as a sublattice. Building on work of Bancroft in the case of the symmetric group, we provide combinatorial models for shard intersections of all classical types and use this understanding to prove that the shard intersection order is EL-shellable. Further, inspired by work of Simion and Ullman on the lattice of noncrossing partitions, we show that the shard intersection order on the symmetric group admits a symmetric Boolean decomposition, i.e., a partition into disjoint Boolean algebras whose middle ranks coincide with the middle rank of the poset. Our decomposition also yields a new symmetric Boolean decomposition of the noncrossing partition lattice. [PUBLICATION ABSTRACT]
Author Petersen, T. Kyle
Author_xml – sequence: 1
  givenname: T. Kyle
  surname: Petersen
  fullname: Petersen, T. Kyle
BookMark eNptkMFOwzAMQCM0JLbBgT-IxIlDWZwmaXtEE2yTJvUAnKs0cbVOoxlJKsHfk2mIA-JkS362nz0jk8ENSMgtsAeAvFgAsFIUnPELMgVWyawAoSZkysqUi5LBFZmFsGcMhAA5JbweaNwhfdlpb-lmiOgDmti7gdbeoqeuo5ou3SemCl15Nx6vyWWnDwFvfuKcvD0_vS7X2bZebZaP28xwWcTMSmO0tWhshVJpVMlPtapACarqco65ZUobgYYnrS65MgmmBS5aVLI1-ZzcnecevfsYMcRm70Y_pJVNki9FLgSDRN2fKeNdCB675uj7d-2_GmDN6SXN70sSu_jDmj7q07HR6_7wT8c3BPliCw
CitedBy_id crossref_primary_10_1007_s00026_014_0218_9
crossref_primary_10_1007_s10114_015_4331_4
crossref_primary_10_1137_140972391
crossref_primary_10_1007_s10801_016_0723_5
crossref_primary_10_1016_j_ejc_2022_103521
crossref_primary_10_1007_s00012_019_0585_5
crossref_primary_10_1007_s10801_021_01056_4
Cites_doi 10.1007/BF01237393
10.1007/s00454-010-9243-6
10.1137/S0895480103432192
10.1016/0012-365X(91)90376-D
10.1006/aima.2000.1936
10.1007/s10801-010-0255-3
10.1016/S0012-365X(96)00365-2
10.37236/1866
10.1007/s00454-005-1171-5
10.1016/j.jcta.2011.01.001
10.37236/1459
10.1112/S0010437X09004023
10.1137/0132068
10.1016/j.aim.2007.09.002
10.2307/1999881
10.2307/27642003
10.1137/0604046
10.1016/0097-3165(76)90079-0
10.4171/dm/248
10.1090/S0002-9939-06-08534-0
ContentType Journal Article
Copyright 2013, Society for Industrial and Applied Mathematics
Copyright_xml – notice: 2013, Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1137/110847202
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Agricultural Science Database
Computing Database
Military Database
Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-7146
EndPage 1912
ExternalDocumentID 3117557741
10_1137_110847202
GroupedDBID .4S
.DC
123
4.4
6TJ
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
ADNWM
ADXHL
AENEX
AFFNX
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBS
EDO
EJD
EMK
EST
ESX
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TN5
TUS
UQL
YNT
YYP
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c257t-d5ccaddecd9e56ae61136b67e5169f32e3d06ac4ec2801f095051cb124be65bc3
IEDL.DBID 8FG
ISSN 0895-4801
IngestDate Sun Jul 13 04:37:39 EDT 2025
Tue Jul 01 03:33:01 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-d5ccaddecd9e56ae61136b67e5169f32e3d06ac4ec2801f095051cb124be65bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1448434401
PQPubID 666311
PageCount 33
ParticipantIDs proquest_journals_1448434401
crossref_primary_10_1137_110847202
crossref_citationtrail_10_1137_110847202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on discrete mathematics
PublicationYear 2013
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References Bancroft E. (atypb5) 1910; 2011
Brändén P. (atypb8) 2004; 11
Hersh P. (atypb15) 1999; 6
Armstrong D. (atypb2) 2009; 202
atypb19
Fomin S. (atypb11) 2007
atypb26
atypb27
atypb17
Postnikov A. (atypb22) 2008; 13
atypb18
atypb12
atypb23
atypb13
atypb24
atypb14
atypb25
atypb1
atypb3
atypb20
Wachs M. (atypb28) 2007
atypb10
atypb4
atypb7
References_xml – ident: atypb10
  doi: 10.1007/BF01237393
– ident: atypb19
  doi: 10.1007/s00454-010-9243-6
– ident: atypb4
  doi: 10.1137/S0895480103432192
– ident: atypb26
  doi: 10.1016/0012-365X(91)90376-D
– ident: atypb1
  doi: 10.1006/aima.2000.1936
– volume: 202
  start-page: 949
  year: 2009
  ident: atypb2
  publication-title: Mem. Amer. Math. Soc.
– ident: atypb23
  doi: 10.1007/s10801-010-0255-3
– ident: atypb24
  doi: 10.1016/S0012-365X(96)00365-2
– volume: 11
  start-page: 9
  year: 2004
  ident: atypb8
  publication-title: Electron. J. Combin.
  doi: 10.37236/1866
– ident: atypb12
  doi: 10.1007/s00454-005-1171-5
– ident: atypb20
  doi: 10.1016/j.jcta.2011.01.001
– start-page: 63
  year: 2007
  ident: atypb11
  publication-title: RI
– volume: 6
  start-page: R27
  year: 1999
  ident: atypb15
  publication-title: Electron. J. Combin.
  doi: 10.37236/1459
– ident: atypb17
  doi: 10.1112/S0010437X09004023
– start-page: 497
  year: 2007
  ident: atypb28
  publication-title: RI
– ident: atypb14
  doi: 10.1137/0132068
– ident: atypb27
  doi: 10.1016/j.aim.2007.09.002
– ident: atypb7
  doi: 10.2307/1999881
– ident: atypb18
  doi: 10.2307/27642003
– ident: atypb25
  doi: 10.1137/0604046
– ident: atypb13
  doi: 10.1016/0097-3165(76)90079-0
– volume: 13
  start-page: 207
  year: 2008
  ident: atypb22
  publication-title: Doc. Math.
  doi: 10.4171/dm/248
– ident: atypb3
  doi: 10.1090/S0002-9939-06-08534-0
– volume: 2011
  start-page: 1103
  year: 1910
  ident: atypb5
  publication-title: The Shard Intersection Order on Permutations
SSID ssj0014415
Score 2.0606666
Snippet Introduced by Reading, the shard intersection order of a finite Coxeter group $W$ is a lattice structure on the elements of $W$ that contains the poset of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1880
SubjectTerms Boolean
Decomposition
Reading
Title On the Shard Intersection Order of a Coxeter Group
URI https://www.proquest.com/docview/1448434401
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vXjxLVZrCeLBy9I2j32cREtrEWxFLPS2bF4n2a22gj_fScyuCOJ5c8kkM983k9n5AK7UwMqMFiZCbNYRN4phHDRI5LRCtLM2Ff4P78dZPF3wh6VYhoLbOrRV1jHRB2pdKVcj7yPxTznjmA7crN4ipxrlXleDhMY2tIeINO6ep5P75hXB5QqeRWYicmNSwmShIUv6rvudJzRUUxo8-h2OPcZM9mE3kENy-32aB7BlykPYq4UXSPDDI6DzkiBxI27asia-qLf2LVUlmbtRmqSypCCj6tP1uhBfXjqGxWT8MppGQfwgUuhFm0gLtC3GHqUzI-LCxE58RcaJcQ9bllHD9CAuFFqX4s4sMiV0LyURrqWJhVTsBFplVZpTILGyOsvsQOKWOTe6QNZkGNVCSpaIIu3AdW2CXIXJ4E6g4jX3GQJL8sZaHbhslq6-x2H8tahb2zEPHrHOf87v7P_P57BDveSEK3N0obV5_zAXCPwb2fOn24P23Xj29PwFKT-rqQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGdoALb8RgQIRA4lJtJH2sB4RgbNrYC6FN2q00j55QO9gQ8Kf4jThZW4SEuO3cqEocx_7sOP4AzkQt4j4NlYW-WVq2EgztoEIgJwV6uyiqO-aFd3_gtsf2_cSZFOArewujyyozm2gMtUyEzpFXEfjXbWZjOHA9fbE0a5S-Xc0oNBZq0VWf7xiyza46d7i_55S2mqNG20pZBSyB6jm3pIOTxkMtpK8cN1SuZjXhrqf0jVHEqGKy5oYCp03RekcIQVBvBUc_yJXrcMHwvytQsvWL1iKUbpuDh8f83kJHJwa3-o6lG7OkvYwumVfV9fa2R9P8Te4BfzsA49Vam7CewlFys9CfLSioeBs2MqoHkp78HaDDmCBUJLq_syQmjTgzRVwxGermnSSJSEgayYeuriEmobUL46UIZg-KcRKrfSCuiKTvRzWOS7ZtJUPEaYpR6XDOPCesl-EiE0Eg0l7kmhLjOTAxCfOCXFplOM2HThcNOP4aVMnkGKRncBb8aMzB_59PYLU96veCXmfQPYQ1aggvdJKlAsX565s6Qtgx58fpXhN4WrZ6fQMaf-mG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Shard+Intersection+Order+of+a+Coxeter+Group&rft.jtitle=SIAM+journal+on+discrete+mathematics&rft.au=Petersen%2C+T+Kyle&rft.date=2013-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4801&rft.eissn=1095-7146&rft.volume=27&rft.issue=4&rft.spage=1880&rft_id=info:doi/10.1137%2F110847202&rft.externalDocID=3117557741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4801&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4801&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4801&client=summon