NEMO–IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS–STING Pathway
Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)–stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In...
Saved in:
Published in | The Journal of immunology (1950) Vol. 199; no. 9; pp. 3222 - 3233 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Immunologists
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)–stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS–STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1–IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS–STING activation. |
---|---|
AbstractList | Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)–stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS–STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1–IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS–STING activation. Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS-STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1-IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS-STING activation.Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS-STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1-IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS-STING activation. |
Author | Lv, Mengze Yu, Xiaoyu Bi, Sheng Gao, Pengfei Fang, Run Wang, Chenguang Zhang, Rui Feng, Ji-Ming Jiang, Zhengfan Jiang, Qifei Mu, Ping |
Author_xml | – sequence: 1 givenname: Run surname: Fang fullname: Fang, Run – sequence: 2 givenname: Chenguang orcidid: 0000-0003-3464-4923 surname: Wang fullname: Wang, Chenguang – sequence: 3 givenname: Qifei surname: Jiang fullname: Jiang, Qifei – sequence: 4 givenname: Mengze orcidid: 0000-0002-8509-7969 surname: Lv fullname: Lv, Mengze – sequence: 5 givenname: Pengfei surname: Gao fullname: Gao, Pengfei – sequence: 6 givenname: Xiaoyu surname: Yu fullname: Yu, Xiaoyu – sequence: 7 givenname: Ping surname: Mu fullname: Mu, Ping – sequence: 8 givenname: Rui surname: Zhang fullname: Zhang, Rui – sequence: 9 givenname: Sheng surname: Bi fullname: Bi, Sheng – sequence: 10 givenname: Ji-Ming orcidid: 0000-0001-7956-2126 surname: Feng fullname: Feng, Ji-Ming – sequence: 11 givenname: Zhengfan surname: Jiang fullname: Jiang, Zhengfan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28939760$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1OHDEUha0IFBaSPlVkKQ3NgO3x-KfcoN3NCrJEAWrL67kjvJofYnsS0eUd8iYpeQgegieJE3YbpDT3NN85ujrnEO31Qw8IvaPkhBOuTze-68Z-aE-oJERo_QpNaFWRQggi9tCEEMYKKoU8QIcxbkhmCOOv0QFTutRSkAm6Wc0-Xz79_LU8P3_8jacB8CxG6JO3LW6GgJdf5yW2fY1X8-Lx4SOeuuS_2-SHHvsep1vAbjG9ygFX18vVAn-x6faHvX-D9hvbRni71SN0M59dn30qLi4Xy7PpReFYJVO-tKyBqpI1mqs1bTStQYEUoLhd1xIIUMGlEpYIEKoSwJ2r-LphDSNQu_IIHT_n3oXh2wgxmc5HB21rexjGaKjmTBJFVJnRDy_QzTCGPn-XKcVLJrVWmXq_pcZ1B7W5C76z4d7sCsuAeAZcGGIM0Bjn078-UrC-NZSYv8uY3TJmu0w2khfGXfZ_LX8AM42TEg |
CitedBy_id | crossref_primary_10_1016_j_neuropharm_2025_110383 crossref_primary_10_3389_fimmu_2024_1402817 crossref_primary_10_1002_JLB_4MIR1018_397RR crossref_primary_10_1016_j_micinf_2025_105499 crossref_primary_10_3389_fphar_2022_1033982 crossref_primary_10_1038_s41418_018_0268_3 crossref_primary_10_1016_j_celrep_2020_03_056 crossref_primary_10_1016_j_abb_2023_109691 crossref_primary_10_1021_acs_jmedchem_9b01062 crossref_primary_10_7554_eLife_60821 crossref_primary_10_3389_fcimb_2020_576263 crossref_primary_10_1016_j_isci_2021_103434 crossref_primary_10_3389_fimmu_2022_808607 crossref_primary_10_1128_JVI_01913_17 crossref_primary_10_1111_febs_16137 crossref_primary_10_1016_j_cmet_2019_08_003 crossref_primary_10_1016_j_immuni_2018_03_017 crossref_primary_10_3390_cells7090139 crossref_primary_10_1002_mco2_349 crossref_primary_10_1016_j_gene_2021_145469 crossref_primary_10_1039_D0CP05993E crossref_primary_10_1016_j_colsurfb_2025_114573 crossref_primary_10_3390_ijms232314601 crossref_primary_10_3389_fimmu_2024_1503087 crossref_primary_10_3390_v13101986 crossref_primary_10_1093_burnst_tkad050 crossref_primary_10_1016_j_bcp_2020_113831 crossref_primary_10_1016_j_celrep_2020_108053 crossref_primary_10_1016_j_cyto_2025_156873 crossref_primary_10_1016_j_it_2024_04_009 crossref_primary_10_1016_j_immuni_2021_08_018 crossref_primary_10_1038_s41467_023_43419_4 crossref_primary_10_1016_j_molmed_2019_02_007 crossref_primary_10_1016_j_antiviral_2022_105406 crossref_primary_10_1016_j_immuni_2021_03_011 crossref_primary_10_1016_j_biopha_2024_116698 crossref_primary_10_1038_s41417_021_00302_y crossref_primary_10_1002_adhm_202300260 crossref_primary_10_3389_fimmu_2018_01297 crossref_primary_10_3389_fimmu_2019_02889 crossref_primary_10_3389_fimmu_2020_613079 crossref_primary_10_3390_ijms22157963 crossref_primary_10_1016_j_ijbiomac_2022_08_019 crossref_primary_10_1128_jvi_01476_22 crossref_primary_10_1073_pnas_2413018121 crossref_primary_10_1038_s41419_021_04304_4 crossref_primary_10_3390_cells10020355 crossref_primary_10_1038_s41577_018_0117_0 crossref_primary_10_3389_fimmu_2021_774807 crossref_primary_10_3390_v14030575 crossref_primary_10_1002_ange_202016805 crossref_primary_10_1242_jcs_259738 crossref_primary_10_1080_10799893_2024_2325353 crossref_primary_10_3389_fimmu_2021_775346 crossref_primary_10_1016_j_virusres_2018_05_001 crossref_primary_10_3389_fimmu_2020_01430 crossref_primary_10_3389_fimmu_2019_03006 crossref_primary_10_1080_1744666X_2020_1822168 crossref_primary_10_1002_cmdc_201800481 crossref_primary_10_1007_s11010_020_03967_5 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_2174_1389450124666230831160820 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1016_j_intimp_2019_105791 crossref_primary_10_3390_pathogens11091061 crossref_primary_10_1096_fj_202201600R crossref_primary_10_15252_msb_202110387 crossref_primary_10_1073_pnas_2101848119 crossref_primary_10_26508_lsa_202302036 crossref_primary_10_1002_anie_202016805 crossref_primary_10_1016_j_canlet_2024_216858 crossref_primary_10_3389_fcimb_2021_628275 crossref_primary_10_1038_s41418_018_0251_z crossref_primary_10_1080_14728222_2019_1601702 crossref_primary_10_1016_j_virusres_2021_198658 crossref_primary_10_1016_j_celrep_2019_03_098 crossref_primary_10_1097_ID9_0000000000000144 crossref_primary_10_1146_annurev_virology_092917_043323 crossref_primary_10_3390_ijms24055046 crossref_primary_10_2139_ssrn_3346980 crossref_primary_10_1016_j_intimp_2021_108255 crossref_primary_10_1126_sciadv_aau8857 crossref_primary_10_1016_j_ejmech_2020_113113 crossref_primary_10_1016_j_transproceed_2019_11_033 crossref_primary_10_1371_journal_pone_0305962 crossref_primary_10_3389_fimmu_2020_568412 crossref_primary_10_3390_ijms232214232 crossref_primary_10_1016_j_pt_2020_07_001 crossref_primary_10_1016_j_jhazmat_2021_125984 crossref_primary_10_1038_s41556_021_00659_0 crossref_primary_10_1038_s41423_021_00669_w crossref_primary_10_1016_j_lfs_2022_121116 crossref_primary_10_1371_journal_ppat_1007778 crossref_primary_10_1080_21655979_2021_1923354 crossref_primary_10_4049_jimmunol_2200351 crossref_primary_10_1074_jbc_RA119_009898 crossref_primary_10_3389_fcimb_2022_954581 crossref_primary_10_1016_j_freeradbiomed_2021_08_019 crossref_primary_10_3390_v16060996 crossref_primary_10_1016_j_jep_2020_113246 crossref_primary_10_1038_s41590_024_01966_y crossref_primary_10_1016_j_jaut_2019_06_005 crossref_primary_10_3390_nu14091985 crossref_primary_10_1096_fj_201902833R crossref_primary_10_3390_biomedicines6020043 crossref_primary_10_1016_j_cclet_2025_110990 crossref_primary_10_1111_febs_15640 crossref_primary_10_15252_embr_202255536 crossref_primary_10_1080_08820139_2024_2392587 crossref_primary_10_2147_DMSO_S487815 crossref_primary_10_1126_sciimmunol_ade2860 crossref_primary_10_3390_ph16121675 crossref_primary_10_1186_s12929_022_00793_3 crossref_primary_10_3892_ijmm_2019_4083 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_1002_cbic_202200005 crossref_primary_10_3389_fimmu_2024_1380517 crossref_primary_10_1111_imr_12898 crossref_primary_10_3389_fcvm_2022_965726 crossref_primary_10_3389_fimmu_2021_741599 crossref_primary_10_1002_jmv_29403 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_1016_j_lfs_2020_118985 crossref_primary_10_3389_fimmu_2019_00705 crossref_primary_10_1128_mSphere_00658_21 crossref_primary_10_3389_fphar_2021_711238 crossref_primary_10_1186_s12964_020_00637_3 crossref_primary_10_12677_hjbm_2024_143056 crossref_primary_10_3390_molecules29133121 crossref_primary_10_1016_j_nbd_2022_105859 crossref_primary_10_1038_s41467_023_44052_x crossref_primary_10_1016_j_molcel_2019_02_013 crossref_primary_10_3389_fcell_2021_828657 crossref_primary_10_1016_j_bbrc_2018_10_103 crossref_primary_10_1016_j_immuni_2023_02_004 crossref_primary_10_3389_fimmu_2018_01327 crossref_primary_10_1016_j_cpcardiol_2023_102189 crossref_primary_10_1007_s13238_021_00869_0 crossref_primary_10_1016_j_physbeh_2021_113593 crossref_primary_10_1016_j_dnarep_2023_103591 crossref_primary_10_1111_febs_17127 crossref_primary_10_1038_s41421_024_00763_z crossref_primary_10_3390_biom13020324 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_1128_jvi_00108_23 crossref_primary_10_1007_s10555_024_10226_2 crossref_primary_10_3390_v14010089 crossref_primary_10_1186_s40360_022_00631_0 crossref_primary_10_1002_advs_202103701 crossref_primary_10_1007_s00281_023_00993_5 crossref_primary_10_1038_s41435_025_00323_9 crossref_primary_10_1016_j_isci_2023_108760 crossref_primary_10_1038_s41392_021_00477_8 crossref_primary_10_2174_0929867326666190620103105 crossref_primary_10_1111_liv_70063 crossref_primary_10_1021_acsomega_4c10865 crossref_primary_10_1038_s41417_023_00678_z crossref_primary_10_1038_s41419_022_05047_6 crossref_primary_10_1021_acs_biochem_1c00692 crossref_primary_10_1002_jmv_70062 crossref_primary_10_3390_ijms19103266 crossref_primary_10_1016_j_mce_2020_110890 crossref_primary_10_1016_j_cell_2021_07_026 crossref_primary_10_1038_s41392_020_0198_7 crossref_primary_10_1016_j_fsi_2024_109781 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1038_s12276_020_0416_y crossref_primary_10_1080_25785826_2025_2475626 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_3390_ijms252011262 |
Cites_doi | 10.1038/ni.2491 10.1016/j.cell.2013.04.046 10.1038/nri3845 10.1038/ncb3496 10.1146/annurev.immunol.16.1.225 10.1038/nature04193 10.1038/ni1243 10.1038/ni1465 10.1038/nature08476 10.1016/j.immuni.2010.10.013 10.1038/ni.1815 10.1038/ni.1979 10.1016/j.tim.2013.04.004 10.1126/science.1229963 10.1073/pnas.0900850106 10.1172/JCI79100 10.1016/S1097-2765(00)80262-2 10.1016/j.immuni.2014.11.011 10.1016/j.it.2004.03.008 10.1016/S0092-8674(02)00703-1 10.7554/eLife.00785 10.1016/j.molcel.2006.03.026 10.1146/annurev-immunol-032713-120156 10.1038/nature12305 10.1016/j.immuni.2008.09.003 10.4049/jimmunol.0901648 10.1073/pnas.0603082103 10.1056/NEJMoa1312625 10.1093/emboj/19.18.4976 10.1002/iub.1566 10.1038/nrm3644 10.1016/j.immuni.2017.02.011 10.1074/jbc.M311629200 10.1016/j.cell.2005.08.012 10.1146/annurev-biochem-051810-094654 10.1016/j.cell.2011.09.022 10.1126/science.aab3291 10.1038/ni1207 10.1371/journal.pone.0015142 10.1074/jbc.M205069200 10.1016/j.cell.2009.03.007 10.1016/j.it.2015.02.003 10.1016/j.immuni.2014.10.005 10.1038/nature04641 10.1016/j.immuni.2014.10.019 10.1038/nrm3394 10.1074/jbc.M112.362608 10.1038/35008109 10.1038/ni1087 10.1038/ncb1384 10.1016/S1097-2765(00)80445-1 10.1038/nature12306 10.1016/j.molcel.2013.01.039 10.1128/JVI.00037-14 10.1084/jem.20040520 10.1016/j.jaci.2011.04.059 10.1038/ncb0805-758 10.1016/j.molcel.2005.08.014 10.1016/j.molcel.2009.01.012 10.1016/j.immuni.2005.12.003 10.1016/j.molcel.2009.09.037 10.1042/BJ20101701 10.1038/nature07317 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by The American Association of Immunologists, Inc. Copyright American Association of Immunologists Nov 1, 2017 |
Copyright_xml | – notice: Copyright © 2017 by The American Association of Immunologists, Inc. – notice: Copyright American Association of Immunologists Nov 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.4049/jimmunol.1700699 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 3233 |
ExternalDocumentID | 28939760 10_4049_jimmunol_1700699 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XSW XTH YHG CGR CUY CVF ECM EIF KOP NPM 7QP 7QR 7T5 7TK 7TM 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c257t-c213de1832f948b1f91de8e76e84abd7e0e164786a06e6856e4cc54bf2f20edc3 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Tue Aug 05 09:52:34 EDT 2025 Fri Jul 25 19:51:34 EDT 2025 Mon Jul 21 06:00:40 EDT 2025 Tue Jul 01 05:28:35 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Copyright © 2017 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-c213de1832f948b1f91de8e76e84abd7e0e164786a06e6856e4cc54bf2f20edc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8509-7969 0000-0003-3464-4923 0000-0001-7956-2126 |
PMID | 28939760 |
PQID | 1984327998 |
PQPubID | 105689 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1942708083 proquest_journals_1984327998 pubmed_primary_28939760 crossref_citationtrail_10_4049_jimmunol_1700699 crossref_primary_10_4049_jimmunol_1700699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2017 |
Publisher | American Association of Immunologists |
Publisher_xml | – name: American Association of Immunologists |
References | Hoshino (2025030614494816500_r33) 2006; 440 Chen (2025030614494816500_r39) 2011; 147 Ablasser (2025030614494816500_r13) 2013; 498 Zitvogel (2025030614494816500_r21) 2015; 15 Audry (2025030614494816500_r62) 2011; 128 Bonizzi (2025030614494816500_r31) 2004; 25 Jeremiah (2025030614494816500_r23) 2014; 124 Zhang (2025030614494816500_r56) 2012; 287 Wang (2025030614494816500_r60) 2014; 41 Hemmi (2025030614494816500_r35) 2004; 199 Liu (2025030614494816500_r22) 2014; 371 Peters (2025030614494816500_r57) 2000; 5 Kulathu (2025030614494816500_r47) 2012; 13 Wu (2025030614494816500_r11) 2013; 339 Ea (2025030614494816500_r50) 2006; 22 Gitlin (2025030614494816500_r5) 2006; 103 Burdette (2025030614494816500_r3) 2013; 14 Jin (2025030614494816500_r18) 2010; 5 Civril (2025030614494816500_r14) 2013; 498 Meylan (2025030614494816500_r8) 2005; 437 Kawai (2025030614494816500_r7) 2005; 6 Stetson (2025030614494816500_r28) 2006; 24 Zeng (2025030614494816500_r61) 2009; 36 Ghosh (2025030614494816500_r36) 2002; 109 Woo (2025030614494816500_r19) 2015; 36 Zhao (2025030614494816500_r42) 2007; 8 Gürtler (2025030614494816500_r1) 2013; 21 Yoneyama (2025030614494816500_r4) 2004; 5 Sun (2025030614494816500_r16) 2009; 106 Tsuchida (2025030614494816500_r55) 2010; 33 Ishikawa (2025030614494816500_r15) 2008; 455 Deng (2025030614494816500_r20) 2014; 41 Xu (2025030614494816500_r10) 2005; 19 Lo (2025030614494816500_r48) 2009; 33 Tojima (2025030614494816500_r58) 2000; 404 Zhang (2025030614494816500_r59) 2017; 19 Chen (2025030614494816500_r53) 2005; 7 Wang (2025030614494816500_r38) 2017; 46 Lau (2025030614494816500_r25) 2015; 350 Hornung (2025030614494816500_r27) 2014; 41 Liu (2025030614494816500_r52) 2013; 2 Abe (2025030614494816500_r30) 2014; 88 Makris (2025030614494816500_r37) 2000; 5 Ishikawa (2025030614494816500_r29) 2009; 461 Züst (2025030614494816500_r6) 2011; 12 Han (2025030614494816500_r44) 2004; 279 Wu (2025030614494816500_r51) 2006; 8 Chariot (2025030614494816500_r63) 2002; 277 Seth (2025030614494816500_r9) 2005; 122 Clark (2025030614494816500_r43) 2011; 434 You (2025030614494816500_r40) 2009; 10 Gao (2025030614494816500_r12) 2013; 153 Hoshino (2025030614494816500_r32) 2010; 184 Ghosh (2025030614494816500_r45) 1998; 16 Clark (2025030614494816500_r54) 2013; 14 Wu (2025030614494816500_r2) 2014; 32 Zhong (2025030614494816500_r17) 2008; 29 Bonnard (2025030614494816500_r34) 2000; 19 Abe (2025030614494816500_r26) 2013; 50 Tao (2025030614494816500_r24) 2016; 68 Husnjak (2025030614494816500_r46) 2012; 81 Rahighi (2025030614494816500_r49) 2009; 136 Jiang (2025030614494816500_r41) 2005; 6 |
References_xml | – volume: 14 start-page: 19 year: 2013 ident: 2025030614494816500_r3 article-title: STING and the innate immune response to nucleic acids in the cytosol publication-title: Nat. Immunol. doi: 10.1038/ni.2491 – volume: 153 start-page: 1094 year: 2013 ident: 2025030614494816500_r12 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 15 start-page: 405 year: 2015 ident: 2025030614494816500_r21 article-title: Type I interferons in anticancer immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3845 – volume: 19 start-page: 362 year: 2017 ident: 2025030614494816500_r59 article-title: Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade publication-title: Nat. Cell Biol. doi: 10.1038/ncb3496 – volume: 16 start-page: 225 year: 1998 ident: 2025030614494816500_r45 article-title: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.16.1.225 – volume: 437 start-page: 1167 year: 2005 ident: 2025030614494816500_r8 article-title: Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus publication-title: Nature doi: 10.1038/nature04193 – volume: 6 start-page: 981 year: 2005 ident: 2025030614494816500_r7 article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction publication-title: Nat. Immunol. doi: 10.1038/ni1243 – volume: 8 start-page: 592 year: 2007 ident: 2025030614494816500_r42 article-title: The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways publication-title: Nat. Immunol. doi: 10.1038/ni1465 – volume: 461 start-page: 788 year: 2009 ident: 2025030614494816500_r29 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 33 start-page: 765 year: 2010 ident: 2025030614494816500_r55 article-title: The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA publication-title: Immunity doi: 10.1016/j.immuni.2010.10.013 – volume: 10 start-page: 1300 year: 2009 ident: 2025030614494816500_r40 article-title: PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4 publication-title: Nat. Immunol. doi: 10.1038/ni.1815 – volume: 12 start-page: 137 year: 2011 ident: 2025030614494816500_r6 article-title: Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5 publication-title: Nat. Immunol. doi: 10.1038/ni.1979 – volume: 21 start-page: 413 year: 2013 ident: 2025030614494816500_r1 article-title: Innate immune detection of microbial nucleic acids publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.04.004 – volume: 339 start-page: 826 year: 2013 ident: 2025030614494816500_r11 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 106 start-page: 8653 year: 2009 ident: 2025030614494816500_r16 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 124 start-page: 5516 year: 2014 ident: 2025030614494816500_r23 article-title: Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations publication-title: J. Clin. Invest. doi: 10.1172/JCI79100 – volume: 5 start-page: 969 year: 2000 ident: 2025030614494816500_r37 article-title: Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80262-2 – volume: 41 start-page: 919 year: 2014 ident: 2025030614494816500_r60 article-title: The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING publication-title: Immunity doi: 10.1016/j.immuni.2014.11.011 – volume: 25 start-page: 280 year: 2004 ident: 2025030614494816500_r31 article-title: The two NF-kappaB activation pathways and their role in innate and adaptive immunity publication-title: Trends Immunol. doi: 10.1016/j.it.2004.03.008 – volume: 109 start-page: S81 year: 2002 ident: 2025030614494816500_r36 article-title: Missing pieces in the NF-kappaB puzzle publication-title: Cell doi: 10.1016/S0092-8674(02)00703-1 – volume: 2 start-page: e00785 year: 2013 ident: 2025030614494816500_r52 article-title: MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades publication-title: eLife doi: 10.7554/eLife.00785 – volume: 22 start-page: 245 year: 2006 ident: 2025030614494816500_r50 article-title: Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.03.026 – volume: 32 start-page: 461 year: 2014 ident: 2025030614494816500_r2 article-title: Innate immune sensing and signaling of cytosolic nucleic acids publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120156 – volume: 498 start-page: 332 year: 2013 ident: 2025030614494816500_r14 article-title: Structural mechanism of cytosolic DNA sensing by cGAS publication-title: Nature doi: 10.1038/nature12305 – volume: 29 start-page: 538 year: 2008 ident: 2025030614494816500_r17 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 184 start-page: 3341 year: 2010 ident: 2025030614494816500_r32 article-title: Critical role of IkappaB kinase alpha in TLR7/9-induced type I IFN production by conventional dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0901648 – volume: 103 start-page: 8459 year: 2006 ident: 2025030614494816500_r5 article-title: Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603082103 – volume: 371 start-page: 507 year: 2014 ident: 2025030614494816500_r22 article-title: Activated STING in a vascular and pulmonary syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1312625 – volume: 19 start-page: 4976 year: 2000 ident: 2025030614494816500_r34 article-title: Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription publication-title: EMBO J. doi: 10.1093/emboj/19.18.4976 – volume: 68 start-page: 858 year: 2016 ident: 2025030614494816500_r24 article-title: cGAS-cGAMP-STING: the three musketeers of cytosolic DNA sensing and signaling publication-title: IUBMB Life doi: 10.1002/iub.1566 – volume: 14 start-page: 673 year: 2013 ident: 2025030614494816500_r54 article-title: Molecular control of the NEMO family of ubiquitin-binding proteins publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3644 – volume: 46 start-page: 393 year: 2017 ident: 2025030614494816500_r38 article-title: Inflammasome activation triggers caspase-1–mediated cleavage of cGAS to regulate responses to DNA virus infection publication-title: Immunity doi: 10.1016/j.immuni.2017.02.011 – volume: 279 start-page: 15652 year: 2004 ident: 2025030614494816500_r44 article-title: Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M311629200 – volume: 122 start-page: 669 year: 2005 ident: 2025030614494816500_r9 article-title: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3 publication-title: Cell doi: 10.1016/j.cell.2005.08.012 – volume: 81 start-page: 291 year: 2012 ident: 2025030614494816500_r46 article-title: Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-051810-094654 – volume: 147 start-page: 436 year: 2011 ident: 2025030614494816500_r39 article-title: Activation of STAT6 by STING is critical for antiviral innate immunity publication-title: Cell doi: 10.1016/j.cell.2011.09.022 – volume: 350 start-page: 568 year: 2015 ident: 2025030614494816500_r25 article-title: DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway publication-title: Science doi: 10.1126/science.aab3291 – volume: 6 start-page: 565 year: 2005 ident: 2025030614494816500_r41 article-title: CD14 is required for MyD88-independent LPS signaling publication-title: Nat. Immunol. doi: 10.1038/ni1207 – volume: 5 start-page: e15142 year: 2010 ident: 2025030614494816500_r18 article-title: Cellular reactive oxygen species inhibit MPYS induction of IFNbeta publication-title: PLoS One doi: 10.1371/journal.pone.0015142 – volume: 277 start-page: 37029 year: 2002 ident: 2025030614494816500_r63 article-title: Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205069200 – volume: 136 start-page: 1098 year: 2009 ident: 2025030614494816500_r49 article-title: Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation publication-title: Cell doi: 10.1016/j.cell.2009.03.007 – volume: 36 start-page: 250 year: 2015 ident: 2025030614494816500_r19 article-title: The STING pathway and the T cell-inflamed tumor microenvironment publication-title: Trends Immunol. doi: 10.1016/j.it.2015.02.003 – volume: 41 start-page: 868 year: 2014 ident: 2025030614494816500_r27 article-title: SnapShot: nucleic acid immune sensors, part 1 publication-title: Immunity doi: 10.1016/j.immuni.2014.10.005 – volume: 440 start-page: 949 year: 2006 ident: 2025030614494816500_r33 article-title: IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9 publication-title: Nature doi: 10.1038/nature04641 – volume: 41 start-page: 843 year: 2014 ident: 2025030614494816500_r20 article-title: STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors publication-title: Immunity doi: 10.1016/j.immuni.2014.10.019 – volume: 13 start-page: 508 year: 2012 ident: 2025030614494816500_r47 article-title: Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3394 – volume: 287 start-page: 28646 year: 2012 ident: 2025030614494816500_r56 article-title: TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.362608 – volume: 404 start-page: 778 year: 2000 ident: 2025030614494816500_r58 article-title: NAK is an IkappaB kinase-activating kinase publication-title: Nature doi: 10.1038/35008109 – volume: 5 start-page: 730 year: 2004 ident: 2025030614494816500_r4 article-title: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses publication-title: Nat. Immunol. doi: 10.1038/ni1087 – volume: 8 start-page: 398 year: 2006 ident: 2025030614494816500_r51 article-title: Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. [Published erratum appears in 2006 Nat. Cell Biol. 8: 424.] publication-title: Nat. Cell Biol. doi: 10.1038/ncb1384 – volume: 5 start-page: 513 year: 2000 ident: 2025030614494816500_r57 article-title: IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80445-1 – volume: 498 start-page: 380 year: 2013 ident: 2025030614494816500_r13 article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature doi: 10.1038/nature12306 – volume: 50 start-page: 5 year: 2013 ident: 2025030614494816500_r26 article-title: STING recognition of cytoplasmic DNA instigates cellular defense publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.039 – volume: 88 start-page: 5328 year: 2014 ident: 2025030614494816500_r30 article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1 publication-title: J. Virol. doi: 10.1128/JVI.00037-14 – volume: 199 start-page: 1641 year: 2004 ident: 2025030614494816500_r35 article-title: The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection publication-title: J. Exp. Med. doi: 10.1084/jem.20040520 – volume: 128 start-page: 610 year: 2011 ident: 2025030614494816500_r62 article-title: NEMO is a key component of NF-kappaB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2011.04.059 – volume: 7 start-page: 758 year: 2005 ident: 2025030614494816500_r53 article-title: Ubiquitin signalling in the NF-kappaB pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb0805-758 – volume: 19 start-page: 727 year: 2005 ident: 2025030614494816500_r10 article-title: VISA is an adapter protein required for virus-triggered IFN-beta signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.08.014 – volume: 33 start-page: 602 year: 2009 ident: 2025030614494816500_r48 article-title: Structural basis for recognition of diubiquitins by NEMO publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.012 – volume: 24 start-page: 93 year: 2006 ident: 2025030614494816500_r28 article-title: Recognition of cytosolic DNA activates an IRF3-dependent innate immune response publication-title: Immunity doi: 10.1016/j.immuni.2005.12.003 – volume: 36 start-page: 315 year: 2009 ident: 2025030614494816500_r61 article-title: Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3 publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.09.037 – volume: 434 start-page: 93 year: 2011 ident: 2025030614494816500_r43 article-title: Novel cross-talk within the IKK family controls innate immunity publication-title: Biochem. J. doi: 10.1042/BJ20101701 – volume: 455 start-page: 674 year: 2008 ident: 2025030614494816500_r15 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 |
SSID | ssj0006024 |
Score | 2.6050537 |
Snippet | Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)–stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of... Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3222 |
SubjectTerms | AMP Animals Cell culture Cyclic GMP Cytokines HeLa Cells Humans I-kappa B Kinase - genetics I-kappa B Kinase - immunology Immune response Interferon Interferon regulatory factor 3 Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - immunology Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - immunology MCF-7 Cells Membrane Proteins - genetics Membrane Proteins - immunology Mice NF-kappa B - genetics NF-kappa B - immunology NF-κB protein Nucleotidyltransferases - genetics Nucleotidyltransferases - immunology Signal Transduction - genetics Signal Transduction - immunology Ubiquitin |
Title | NEMO–IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS–STING Pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28939760 https://www.proquest.com/docview/1984327998 https://www.proquest.com/docview/1942708083 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdgCMQFwYBRGMhI9ICqbInjpM4xrVo2xgrbOtFbFDvPIhJk09aC2MfiyIfYZ-I5cZIWbQi4WJXt2qrfr8_vvwl5FTAVaTeSDlMZdziTmZOmOnNApdrcl4LJMkB2Eu4c87ezYNaGjZXZJXO5pS6uzCv5H6piH9LVZMn-A2WbRbEDPyN9sUUKY_tXNJ6M9t87u3t73eGoO2C9-Ax6o3OTTZRXaYm93cOxX7oHJmOnnBQPerGqXzSrYxzVm_jIOZoau9UHFAi_pSuu3jZ5rKovYRJKqsJN3dI95i4ZE8bW-ny4aDD30XYNP4GxjNqL0sTs5HbkINeQ173vvpYmWpx7AcsWCbzlvMYiAZaLBqiThm64wmarh5AsnqIlpmmcPVdxc47ai-Hm9odtmVKCYbXKEnFPv5TURcXRiFZue6810Yb10E1yi6EyUaaEz9pAoBDFlMqBbTbc_n07Uy7aLrAqu1yjkJSCyfQ-uWdJQ-MKHg_IDSjWye3qjdHv6-TOvo2eeEgOarxc_sDpQBusUMQKNVihiBWKWLn8OaAtTmheUMQJbXFCLU4ekePxaDrcceyTGo5C3jzH1vMzMGxcR1xIT0deBgL6IQieyqwPLpgCcyJM3RBCEYTAlQq41EwzFzLlPyZrxUkBTwgVzAPQQniBiLjSTCotAQVOECjUK8_tkO36sBJl682bZ08-J6h3mpNO6pNO7El3yOvmG6dVrZU_zN2szz-x_8jzxIsE91k_ikSHvGyGkV8aJ1hawMnCzOGsj2qS8Dtko6Jbs1lN56fXjjwjd1vEb5K1-dkCnqNUOpcvSlD9An6LhrU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NEMO-IKK%CE%B2+Are+Essential+for+IRF3+and+NF-%CE%BAB+Activation+in+the+cGAS-STING+Pathway&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Fang%2C+Run&rft.au=Wang%2C+Chenguang&rft.au=Jiang%2C+Qifei&rft.au=Lv%2C+Mengze&rft.date=2017-11-01&rft.eissn=1550-6606&rft.volume=199&rft.issue=9&rft.spage=3222&rft_id=info:doi/10.4049%2Fjimmunol.1700699&rft_id=info%3Apmid%2F28939760&rft.externalDocID=28939760 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |