A Innovative Strategy for Identifying Subtypes Through the Analysis of Multi-Omics Data with Adversarial Autoencoders

Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. Wi...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational biology Vol. 32; no. 9; pp. 879 - 895
Main Authors Chen, Xia, Nie, Hao, Chen, Quanwei, Zhang, Xiang, He, Zixing, Chao, Xiuxiu, Ou, Weihao, Fu, Xiangzheng, Chen, Haowen
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc., publishers 01.09.2025
Subjects
Online AccessGet full text
ISSN1557-8666
1557-8666
DOI10.1089/cmb.2024.0927

Cover

Loading…
Abstract Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments.
AbstractList Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments.
Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments.Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments.
Author Ou, Weihao
Chen, Xia
Nie, Hao
Chen, Haowen
Chen, Quanwei
Fu, Xiangzheng
He, Zixing
Chao, Xiuxiu
Zhang, Xiang
Author_xml – sequence: 1
  givenname: Xia
  surname: Chen
  fullname: Chen, Xia
– sequence: 2
  givenname: Hao
  surname: Nie
  fullname: Nie, Hao
– sequence: 3
  givenname: Quanwei
  surname: Chen
  fullname: Chen, Quanwei
– sequence: 4
  givenname: Xiang
  surname: Zhang
  fullname: Zhang, Xiang
– sequence: 5
  givenname: Zixing
  surname: He
  fullname: He, Zixing
– sequence: 6
  givenname: Xiuxiu
  surname: Chao
  fullname: Chao, Xiuxiu
– sequence: 7
  givenname: Weihao
  surname: Ou
  fullname: Ou, Weihao
– sequence: 8
  givenname: Xiangzheng
  surname: Fu
  fullname: Fu, Xiangzheng
– sequence: 9
  givenname: Haowen
  orcidid: 0000-0002-4777-7525
  surname: Chen
  fullname: Chen, Haowen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40566761$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P3DAQBmALUQFLe-wV-dhLFttZf-QY0QIrgThAz5HtTHaNEntrO1vl35PVUtQbpxmNnpnDvAt06oMHhL5TsqREVdd2MEtG2GpJKiZP0AXlXBZKCHH6X3-OFim9EkJLQeQZOl8RLoQU9AKNNV57H_Y6uz3g5xx1hs2EuxDxugWfXTc5v8HPo8nTDhJ-2cYwbrY4bwHXXvdTcgmHDj-OfXbF0-Bswj911vivy1tct3uISUene1yPOYC3oZ0nX9GXTvcJvr3XS_T79tfLzX3x8HS3vqkfCsu4zIUxrOUgjWplRVfKiJJ2SlupSFtZrqgghDDCTSUp49pQy4jViolSMAW8U-Ul-nG8u4vhzwgpN4NLFvpeewhjakrGVkwQyqqZXr3T0QzQNrvoBh2n5t-rZlAcgY0hpQjdB6GkOUTRzFE0hyiaQxSzL4_-YLT3vQMDMX-y9QYHKY0Z
Cites_doi 10.1158/1078-0432.CCR-17-0853
10.1016/S0959-8049(02)00210-1
10.1186/1471-2164-7-231
10.1158/1078-0432.CCR-18-2495
10.3390/cancers13092013
10.3322/caac.21492
10.1007/s11427-019-9570-y
10.1186/s13059-014-0550-8
10.1016/j.canlet.2016.04.006
10.1109/TCBB.2022.3203185
10.5114/wo.2014.47136
10.1016/j.molcel.2015.05.004
10.1038/nrc.2016.126
10.1016/j.csbj.2021.01.009
10.18632/oncotarget.7437
10.1109/TNNLS.2020.2979670
10.1186/bcr55
10.1093/jn/135.12.2953S
10.1007/s00432-018-02834-7
10.2202/1544-6115.1470
10.1093/bioinformatics/btv244
10.1038/nrc2212
10.1093/bioinformatics/17.6.520
10.1109/JBHI.2021.3093027
10.1016/j.cell.2018.03.022
10.1177/1177932219899051
10.1158/0008-5472.CAN-18-3264
10.26508/lsa.201900517
10.1038/nmeth.2810
10.1530/JME-18-0055
10.1016/j.humpath.2018.11.005
10.1093/bioinformatics/btz058
10.1089/omi.2011.0118
10.1038/s41540-023-00267-8
10.1186/s12864-015-2223-8
10.1016/j.envres.2016.07.011
10.1093/nar/gky889
10.1093/bioinformatics/bty1049
10.1016/j.fss.2006.07.006
10.1186/s13046-017-0648-4
10.1109/ACCESS.2019.2898723
10.1007/s10549-012-2266-3
10.1093/bioinformatics/btab109
10.1080/01621459.2015.1086354
10.1016/j.csbj.2021.06.030
10.1371/journal.pcbi.1009224
10.2217/epi-2019-0207
10.1093/bioinformatics/btx339
10.1038/s41586-021-04278-5
10.1096/fj.201903281R
ContentType Journal Article
Copyright 2025, Mary Ann Liebert, Inc., publishers
Copyright_xml – notice: 2025, Mary Ann Liebert, Inc., publishers
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1089/cmb.2024.0927
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1557-8666
EndPage 895
ExternalDocumentID 40566761
10_1089_cmb_2024_0927
Genre Journal Article
GroupedDBID ---
0R~
29K
4.4
53G
5GY
ABBKN
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BNQNF
CS3
D-I
DIK
DU5
EBS
F5P
IAO
IHR
IM4
MV1
NQHIM
O9-
P2P
RML
RNS
SCNPE
TN5
TR2
UE5
AAYXX
CITATION
34G
39C
ABEFU
AI.
CAG
CGR
COF
CUY
CVF
ECM
EIF
EJD
IER
IGS
ITC
NPM
R.V
RMSOB
VH1
7X8
ID FETCH-LOGICAL-c257t-bb2d5e7b8d79148b631f8ac780d9c5816000205b97125ab1c20ca8263628e5f83
ISSN 1557-8666
IngestDate Fri Sep 05 15:48:58 EDT 2025
Fri Aug 29 02:29:57 EDT 2025
Wed Aug 27 16:38:57 EDT 2025
Wed Aug 27 07:13:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords molecular subtypes
high-throughput genomics technologies
MultiDAAE
cancer diagnosis and treatment
Language English
License https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-bb2d5e7b8d79148b631f8ac780d9c5816000205b97125ab1c20ca8263628e5f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4777-7525
PMID 40566761
PQID 3224260129
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3224260129
pubmed_primary_40566761
crossref_primary_10_1089_cmb_2024_0927
maryannliebert_primary_10_1089_cmb_2024_0927
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational biology
PublicationTitleAlternate J Comput Biol
PublicationYear 2025
Publisher Mary Ann Liebert, Inc., publishers
Publisher_xml – name: Mary Ann Liebert, Inc., publishers
References B20
B23
B24
Kumar A (B22) 2011; 24
B25
B26
Tschannen M (B51) 2018
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B2
B3
B4
Gulli A (B15) 2017
B5
B7
B8
B9
B40
B41
B42
B44
B45
B46
B47
B48
B49
Van der Maaten L (B52) 2008; 9
Frank EH (B11) 2015
B50
B53
B10
B55
B12
B56
B57
B14
B58
Ghojogh B (B13) 2021
B59
B16
B17
B18
Abadi M (B1) 2016
B19
Dai X (B6) 2015; 5
B60
B61
Kingma DP (B21) 2014
References_xml – ident: B5
  doi: 10.1158/1078-0432.CCR-17-0853
– volume-title: Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis
  year: 2015
  ident: B11
– ident: B18
  doi: 10.1016/S0959-8049(02)00210-1
– ident: B20
  doi: 10.1186/1471-2164-7-231
– ident: B57
  doi: 10.1158/1078-0432.CCR-18-2495
– ident: B10
  doi: 10.3390/cancers13092013
– ident: B3
  doi: 10.3322/caac.21492
– ident: B29
  doi: 10.1007/s11427-019-9570-y
– ident: B28
  doi: 10.1186/s13059-014-0550-8
– ident: B60
  doi: 10.1016/j.canlet.2016.04.006
– ident: B25
  doi: 10.1109/TCBB.2022.3203185
– ident: B48
  doi: 10.5114/wo.2014.47136
– ident: B38
  doi: 10.1016/j.molcel.2015.05.004
– ident: B7
  doi: 10.1038/nrc.2016.126
– ident: B30
  doi: 10.1016/j.csbj.2021.01.009
– ident: B44
  doi: 10.18632/oncotarget.7437
– ident: B33
  doi: 10.1109/TNNLS.2020.2979670
– ident: B2
  doi: 10.1186/bcr55
– volume-title: Deep Learning with Keras
  year: 2017
  ident: B15
– year: 2014
  ident: B21
  publication-title: arXiv Preprint arXiv:1412.6980
– ident: B41
  doi: 10.1093/jn/135.12.2953S
– ident: B19
  doi: 10.1007/s00432-018-02834-7
– ident: B55
  doi: 10.2202/1544-6115.1470
– ident: B45
  doi: 10.1093/bioinformatics/btv244
– ident: B46
  doi: 10.1038/nrc2212
– ident: B50
  doi: 10.1093/bioinformatics/17.6.520
– ident: B24
  doi: 10.1109/JBHI.2021.3093027
– year: 2021
  ident: B13
  publication-title: arXiv Preprint arXiv:2111.13282
– ident: B16
  doi: 10.1016/j.cell.2018.03.022
– ident: B47
  doi: 10.1177/1177932219899051
– volume: 24
  year: 2011
  ident: B22
  publication-title: Advances in Neural Information Processing Systems
– ident: B34
  doi: 10.1158/0008-5472.CAN-18-3264
– year: 2018
  ident: B51
  publication-title: arXiv Preprint arXiv:1812.05069
– ident: B40
  doi: 10.26508/lsa.201900517
– ident: B53
  doi: 10.1038/nmeth.2810
– ident: B31
  doi: 10.1530/JME-18-0055
– ident: B49
  doi: 10.1016/j.humpath.2018.11.005
– ident: B37
  doi: 10.1093/bioinformatics/btz058
– ident: B61
  doi: 10.1089/omi.2011.0118
– ident: B26
  doi: 10.1038/s41540-023-00267-8
– ident: B56
  doi: 10.1186/s12864-015-2223-8
– ident: B14
  doi: 10.1016/j.envres.2016.07.011
– ident: B36
  doi: 10.1093/nar/gky889
– ident: B32
  doi: 10.1093/bioinformatics/bty1049
– ident: B4
  doi: 10.1016/j.fss.2006.07.006
– ident: B12
  doi: 10.1186/s13046-017-0648-4
– ident: B58
  doi: 10.1109/ACCESS.2019.2898723
– ident: B39
  doi: 10.1007/s10549-012-2266-3
– year: 2016
  ident: B1
  publication-title: arXiv Preprint arXiv:1603.04467
– ident: B59
  doi: 10.1093/bioinformatics/btab109
– volume: 5
  start-page: 2929
  issue: 10
  year: 2015
  ident: B6
  publication-title: Am J Cancer Res
– ident: B17
  doi: 10.1080/01621459.2015.1086354
– ident: B35
  doi: 10.1016/j.csbj.2021.06.030
– ident: B8
  doi: 10.1371/journal.pcbi.1009224
– ident: B9
  doi: 10.2217/epi-2019-0207
– ident: B23
  doi: 10.1093/bioinformatics/btx339
– ident: B42
  doi: 10.1038/s41586-021-04278-5
– ident: B27
  doi: 10.1096/fj.201903281R
– volume: 9
  issue: 11
  year: 2008
  ident: B52
  publication-title: Journal of Machine Learning Research
SSID ssj0013607
Score 2.4414823
Snippet Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional...
SourceID proquest
pubmed
crossref
maryannliebert
SourceType Aggregation Database
Index Database
Publisher
StartPage 879
SubjectTerms Algorithms
Autoencoder
Computational Biology - methods
Generative Adversarial Networks
Genomics - methods
Humans
Multiomics
Neoplasms - classification
Neoplasms - genetics
Original Articles
Title A Innovative Strategy for Identifying Subtypes Through the Analysis of Multi-Omics Data with Adversarial Autoencoders
URI https://www.liebertpub.com/doi/abs/10.1089/cmb.2024.0927
https://www.ncbi.nlm.nih.gov/pubmed/40566761
https://www.proquest.com/docview/3224260129
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiSQQLBc5ZKREC8QSNM6sR8rFlRAuwipK_Ut8hVpHzZBJAHBT-HXMmM7R3eLWHiJqjR2j_nsOTzzDSHPUjzKEpJFAoMbi8KksObsItJJkajMzuF9DA0cHqWr48WHDdtMJr9GWUtto17pnzvrSv5HqnAP5IpVsv8g2X5SuAGvQb5wBQnD9UIyXsLy9k1Nv2FGoGN98AmYvv7W1zDB3oCB1vrFOvTkcdUkIzISV4QbfTpFwuYD2UgfnHWtmmvpunos26ZCxksT8uV3mLPatYfoQouB22lIHvC72-ak1wJH_mBkJauzD31uZfndnpwLacPgoGZDlCJhfRpWv7Ey0IZpGmivd9wLu_EQ7Wy7fPM66GUx1tK-Nec5BRBz5E_Vpwpc_wQpbD3zwDbR9hkF2KclugN5LnIYnuPwHIdfIpcTcEGwLcjB-4_DCVXqSvH73xD4W2H4661P37J3rmM5oixLcC8wbf7PXo2zbtY3yY0gR7r0GLtFJrbcJ1d8o9If--TaYc_uW98m7ZIOuKMd7ijgjo5wRzvc0YA7ClPQDne0KugIdxRxRxF3dIQ7OsbdHXL87u36zSoK7TtgobOsiZRKDLOZ4iYT4HSrdD4ruNQZj43QjM9SdwzOlMjAyJZqppNYS_B2waTilhV8fpfslVVp7xNagFFrpChiBeqDx1plRnEhbFxkxgDapuR59yfnXzxLS75TmFPyclsEf3v8aSegHLZdPEuTpa3aOgc9iL0dwFqekntecv1U4ANh5vjswUW_1UNydVgzj8he87W1j8HWbdQTB7rfjAarAA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Innovative+Strategy+for+Identifying+Subtypes+Through+the+Analysis+of+Multi-Omics+Data+with+Adversarial+Autoencoders&rft.jtitle=Journal+of+computational+biology&rft.au=Chen%2C+Xia&rft.au=Nie%2C+Hao&rft.au=Chen%2C+Quanwei&rft.au=Zhang%2C+Xiang&rft.date=2025-09-01&rft.issn=1557-8666&rft.eissn=1557-8666&rft.volume=32&rft.issue=9&rft.spage=879&rft.epage=895&rft_id=info:doi/10.1089%2Fcmb.2024.0927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1089_cmb_2024_0927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon