A Innovative Strategy for Identifying Subtypes Through the Analysis of Multi-Omics Data with Adversarial Autoencoders
Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. Wi...
Saved in:
Published in | Journal of computational biology Vol. 32; no. 9; pp. 879 - 895 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc., publishers
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1557-8666 1557-8666 |
DOI | 10.1089/cmb.2024.0927 |
Cover
Loading…
Abstract | Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments. |
---|---|
AbstractList | Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments. Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments.Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional methods of cancer identification, which rely on clinical and histopathological criteria, have limitations in identifying key molecular subtypes. With the advancement of high-throughput genomics technologies, the field of cancer research has undergone a transformation, enabling detailed analysis of tumor molecular characteristics on a large scale. The integration of multiple types of genomic data is expected to provide a more comprehensive understanding of the molecular mechanisms of cancer and to promote the discovery of new diagnostic and therapeutic targets. However, achieving this requires the development of new computational techniques. In order to facilitate more efficient feature extraction and dimensionality reduction of multi-omics data, we present MultiDAAE (Multi-omics Double Adversarial Autoencoder), a novel technique that combines autoencoders with two discriminators to form two generative adversarial networks. On several cancer datasets, our method shows outstanding clustering performance when compared to state-of-the-art techniques. To sum up, MultiDAAE can help identify possible molecular pathways and provide information for the development of tailored cancer treatments. |
Author | Ou, Weihao Chen, Xia Nie, Hao Chen, Haowen Chen, Quanwei Fu, Xiangzheng He, Zixing Chao, Xiuxiu Zhang, Xiang |
Author_xml | – sequence: 1 givenname: Xia surname: Chen fullname: Chen, Xia – sequence: 2 givenname: Hao surname: Nie fullname: Nie, Hao – sequence: 3 givenname: Quanwei surname: Chen fullname: Chen, Quanwei – sequence: 4 givenname: Xiang surname: Zhang fullname: Zhang, Xiang – sequence: 5 givenname: Zixing surname: He fullname: He, Zixing – sequence: 6 givenname: Xiuxiu surname: Chao fullname: Chao, Xiuxiu – sequence: 7 givenname: Weihao surname: Ou fullname: Ou, Weihao – sequence: 8 givenname: Xiangzheng surname: Fu fullname: Fu, Xiangzheng – sequence: 9 givenname: Haowen orcidid: 0000-0002-4777-7525 surname: Chen fullname: Chen, Haowen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40566761$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1P3DAQBmALUQFLe-wV-dhLFttZf-QY0QIrgThAz5HtTHaNEntrO1vl35PVUtQbpxmNnpnDvAt06oMHhL5TsqREVdd2MEtG2GpJKiZP0AXlXBZKCHH6X3-OFim9EkJLQeQZOl8RLoQU9AKNNV57H_Y6uz3g5xx1hs2EuxDxugWfXTc5v8HPo8nTDhJ-2cYwbrY4bwHXXvdTcgmHDj-OfXbF0-Bswj911vivy1tct3uISUene1yPOYC3oZ0nX9GXTvcJvr3XS_T79tfLzX3x8HS3vqkfCsu4zIUxrOUgjWplRVfKiJJ2SlupSFtZrqgghDDCTSUp49pQy4jViolSMAW8U-Ul-nG8u4vhzwgpN4NLFvpeewhjakrGVkwQyqqZXr3T0QzQNrvoBh2n5t-rZlAcgY0hpQjdB6GkOUTRzFE0hyiaQxSzL4_-YLT3vQMDMX-y9QYHKY0Z |
Cites_doi | 10.1158/1078-0432.CCR-17-0853 10.1016/S0959-8049(02)00210-1 10.1186/1471-2164-7-231 10.1158/1078-0432.CCR-18-2495 10.3390/cancers13092013 10.3322/caac.21492 10.1007/s11427-019-9570-y 10.1186/s13059-014-0550-8 10.1016/j.canlet.2016.04.006 10.1109/TCBB.2022.3203185 10.5114/wo.2014.47136 10.1016/j.molcel.2015.05.004 10.1038/nrc.2016.126 10.1016/j.csbj.2021.01.009 10.18632/oncotarget.7437 10.1109/TNNLS.2020.2979670 10.1186/bcr55 10.1093/jn/135.12.2953S 10.1007/s00432-018-02834-7 10.2202/1544-6115.1470 10.1093/bioinformatics/btv244 10.1038/nrc2212 10.1093/bioinformatics/17.6.520 10.1109/JBHI.2021.3093027 10.1016/j.cell.2018.03.022 10.1177/1177932219899051 10.1158/0008-5472.CAN-18-3264 10.26508/lsa.201900517 10.1038/nmeth.2810 10.1530/JME-18-0055 10.1016/j.humpath.2018.11.005 10.1093/bioinformatics/btz058 10.1089/omi.2011.0118 10.1038/s41540-023-00267-8 10.1186/s12864-015-2223-8 10.1016/j.envres.2016.07.011 10.1093/nar/gky889 10.1093/bioinformatics/bty1049 10.1016/j.fss.2006.07.006 10.1186/s13046-017-0648-4 10.1109/ACCESS.2019.2898723 10.1007/s10549-012-2266-3 10.1093/bioinformatics/btab109 10.1080/01621459.2015.1086354 10.1016/j.csbj.2021.06.030 10.1371/journal.pcbi.1009224 10.2217/epi-2019-0207 10.1093/bioinformatics/btx339 10.1038/s41586-021-04278-5 10.1096/fj.201903281R |
ContentType | Journal Article |
Copyright | 2025, Mary Ann Liebert, Inc., publishers |
Copyright_xml | – notice: 2025, Mary Ann Liebert, Inc., publishers |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1089/cmb.2024.0927 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
EndPage | 895 |
ExternalDocumentID | 40566761 10_1089_cmb_2024_0927 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29K 4.4 53G 5GY ABBKN ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CS3 D-I DIK DU5 EBS F5P IAO IHR IM4 MV1 NQHIM O9- P2P RML RNS SCNPE TN5 TR2 UE5 AAYXX CITATION 34G 39C ABEFU AI. CAG CGR COF CUY CVF ECM EIF EJD IER IGS ITC NPM R.V RMSOB VH1 7X8 |
ID | FETCH-LOGICAL-c257t-bb2d5e7b8d79148b631f8ac780d9c5816000205b97125ab1c20ca8263628e5f83 |
ISSN | 1557-8666 |
IngestDate | Fri Sep 05 15:48:58 EDT 2025 Fri Aug 29 02:29:57 EDT 2025 Wed Aug 27 16:38:57 EDT 2025 Wed Aug 27 07:13:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | molecular subtypes high-throughput genomics technologies MultiDAAE cancer diagnosis and treatment |
Language | English |
License | https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-bb2d5e7b8d79148b631f8ac780d9c5816000205b97125ab1c20ca8263628e5f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4777-7525 |
PMID | 40566761 |
PQID | 3224260129 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3224260129 pubmed_primary_40566761 crossref_primary_10_1089_cmb_2024_0927 maryannliebert_primary_10_1089_cmb_2024_0927 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2025 |
Publisher | Mary Ann Liebert, Inc., publishers |
Publisher_xml | – name: Mary Ann Liebert, Inc., publishers |
References | B20 B23 B24 Kumar A (B22) 2011; 24 B25 B26 Tschannen M (B51) 2018 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B2 B3 B4 Gulli A (B15) 2017 B5 B7 B8 B9 B40 B41 B42 B44 B45 B46 B47 B48 B49 Van der Maaten L (B52) 2008; 9 Frank EH (B11) 2015 B50 B53 B10 B55 B12 B56 B57 B14 B58 Ghojogh B (B13) 2021 B59 B16 B17 B18 Abadi M (B1) 2016 B19 Dai X (B6) 2015; 5 B60 B61 Kingma DP (B21) 2014 |
References_xml | – ident: B5 doi: 10.1158/1078-0432.CCR-17-0853 – volume-title: Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis year: 2015 ident: B11 – ident: B18 doi: 10.1016/S0959-8049(02)00210-1 – ident: B20 doi: 10.1186/1471-2164-7-231 – ident: B57 doi: 10.1158/1078-0432.CCR-18-2495 – ident: B10 doi: 10.3390/cancers13092013 – ident: B3 doi: 10.3322/caac.21492 – ident: B29 doi: 10.1007/s11427-019-9570-y – ident: B28 doi: 10.1186/s13059-014-0550-8 – ident: B60 doi: 10.1016/j.canlet.2016.04.006 – ident: B25 doi: 10.1109/TCBB.2022.3203185 – ident: B48 doi: 10.5114/wo.2014.47136 – ident: B38 doi: 10.1016/j.molcel.2015.05.004 – ident: B7 doi: 10.1038/nrc.2016.126 – ident: B30 doi: 10.1016/j.csbj.2021.01.009 – ident: B44 doi: 10.18632/oncotarget.7437 – ident: B33 doi: 10.1109/TNNLS.2020.2979670 – ident: B2 doi: 10.1186/bcr55 – volume-title: Deep Learning with Keras year: 2017 ident: B15 – year: 2014 ident: B21 publication-title: arXiv Preprint arXiv:1412.6980 – ident: B41 doi: 10.1093/jn/135.12.2953S – ident: B19 doi: 10.1007/s00432-018-02834-7 – ident: B55 doi: 10.2202/1544-6115.1470 – ident: B45 doi: 10.1093/bioinformatics/btv244 – ident: B46 doi: 10.1038/nrc2212 – ident: B50 doi: 10.1093/bioinformatics/17.6.520 – ident: B24 doi: 10.1109/JBHI.2021.3093027 – year: 2021 ident: B13 publication-title: arXiv Preprint arXiv:2111.13282 – ident: B16 doi: 10.1016/j.cell.2018.03.022 – ident: B47 doi: 10.1177/1177932219899051 – volume: 24 year: 2011 ident: B22 publication-title: Advances in Neural Information Processing Systems – ident: B34 doi: 10.1158/0008-5472.CAN-18-3264 – year: 2018 ident: B51 publication-title: arXiv Preprint arXiv:1812.05069 – ident: B40 doi: 10.26508/lsa.201900517 – ident: B53 doi: 10.1038/nmeth.2810 – ident: B31 doi: 10.1530/JME-18-0055 – ident: B49 doi: 10.1016/j.humpath.2018.11.005 – ident: B37 doi: 10.1093/bioinformatics/btz058 – ident: B61 doi: 10.1089/omi.2011.0118 – ident: B26 doi: 10.1038/s41540-023-00267-8 – ident: B56 doi: 10.1186/s12864-015-2223-8 – ident: B14 doi: 10.1016/j.envres.2016.07.011 – ident: B36 doi: 10.1093/nar/gky889 – ident: B32 doi: 10.1093/bioinformatics/bty1049 – ident: B4 doi: 10.1016/j.fss.2006.07.006 – ident: B12 doi: 10.1186/s13046-017-0648-4 – ident: B58 doi: 10.1109/ACCESS.2019.2898723 – ident: B39 doi: 10.1007/s10549-012-2266-3 – year: 2016 ident: B1 publication-title: arXiv Preprint arXiv:1603.04467 – ident: B59 doi: 10.1093/bioinformatics/btab109 – volume: 5 start-page: 2929 issue: 10 year: 2015 ident: B6 publication-title: Am J Cancer Res – ident: B17 doi: 10.1080/01621459.2015.1086354 – ident: B35 doi: 10.1016/j.csbj.2021.06.030 – ident: B8 doi: 10.1371/journal.pcbi.1009224 – ident: B9 doi: 10.2217/epi-2019-0207 – ident: B23 doi: 10.1093/bioinformatics/btx339 – ident: B42 doi: 10.1038/s41586-021-04278-5 – ident: B27 doi: 10.1096/fj.201903281R – volume: 9 issue: 11 year: 2008 ident: B52 publication-title: Journal of Machine Learning Research |
SSID | ssj0013607 |
Score | 2.4414823 |
Snippet | Cancer is a disease that is both complex and diverse, and effective diagnosis and treatment require an accurate depiction of tumor subtypes. Traditional... |
SourceID | proquest pubmed crossref maryannliebert |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 879 |
SubjectTerms | Algorithms Autoencoder Computational Biology - methods Generative Adversarial Networks Genomics - methods Humans Multiomics Neoplasms - classification Neoplasms - genetics Original Articles |
Title | A Innovative Strategy for Identifying Subtypes Through the Analysis of Multi-Omics Data with Adversarial Autoencoders |
URI | https://www.liebertpub.com/doi/abs/10.1089/cmb.2024.0927 https://www.ncbi.nlm.nih.gov/pubmed/40566761 https://www.proquest.com/docview/3224260129 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELbKIiSQQLBc5ZKREC8QSNM6sR8rFlRAuwipK_Ut8hVpHzZBJAHBT-HXMmM7R3eLWHiJqjR2j_nsOTzzDSHPUjzKEpJFAoMbi8KksObsItJJkajMzuF9DA0cHqWr48WHDdtMJr9GWUtto17pnzvrSv5HqnAP5IpVsv8g2X5SuAGvQb5wBQnD9UIyXsLy9k1Nv2FGoGN98AmYvv7W1zDB3oCB1vrFOvTkcdUkIzISV4QbfTpFwuYD2UgfnHWtmmvpunos26ZCxksT8uV3mLPatYfoQouB22lIHvC72-ak1wJH_mBkJauzD31uZfndnpwLacPgoGZDlCJhfRpWv7Ey0IZpGmivd9wLu_EQ7Wy7fPM66GUx1tK-Nec5BRBz5E_Vpwpc_wQpbD3zwDbR9hkF2KclugN5LnIYnuPwHIdfIpcTcEGwLcjB-4_DCVXqSvH73xD4W2H4661P37J3rmM5oixLcC8wbf7PXo2zbtY3yY0gR7r0GLtFJrbcJ1d8o9If--TaYc_uW98m7ZIOuKMd7ijgjo5wRzvc0YA7ClPQDne0KugIdxRxRxF3dIQ7OsbdHXL87u36zSoK7TtgobOsiZRKDLOZ4iYT4HSrdD4ruNQZj43QjM9SdwzOlMjAyJZqppNYS_B2waTilhV8fpfslVVp7xNagFFrpChiBeqDx1plRnEhbFxkxgDapuR59yfnXzxLS75TmFPyclsEf3v8aSegHLZdPEuTpa3aOgc9iL0dwFqekntecv1U4ANh5vjswUW_1UNydVgzj8he87W1j8HWbdQTB7rfjAarAA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Innovative+Strategy+for+Identifying+Subtypes+Through+the+Analysis+of+Multi-Omics+Data+with+Adversarial+Autoencoders&rft.jtitle=Journal+of+computational+biology&rft.au=Chen%2C+Xia&rft.au=Nie%2C+Hao&rft.au=Chen%2C+Quanwei&rft.au=Zhang%2C+Xiang&rft.date=2025-09-01&rft.issn=1557-8666&rft.eissn=1557-8666&rft.volume=32&rft.issue=9&rft.spage=879&rft.epage=895&rft_id=info:doi/10.1089%2Fcmb.2024.0927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1089_cmb_2024_0927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon |