Spatiotemporal isomorphic cross-brain region interaction network for cross-subject EEG emotion recognition
Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer interaction. The intricate architecture and functioning of the brain, along with substantial individual variances among participants, and existing...
Saved in:
Published in | Knowledge-based systems Vol. 327; p. 114115 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
09.10.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer interaction. The intricate architecture and functioning of the brain, along with substantial individual variances among participants, and existing methods are difficult to simultaneously model the temporal and spatial consistency of brain area interactions and EEG signals between subjects, which limits the generalization performance of the model in cross-subject contexts. To meet this challenge, we propose a cross-subject EEG emotion recognition model based on a spatiotemporal isomorphic cross-brain region interaction network (STCBI-Nets). In this model, we first designed the cross-brain region interaction module (CBI), which dynamically models the interaction relationship between different brain regions through a multi-head cross-attention mechanism, captures heterogeneous information flow between local brain regions, enhances the long-range dependency modeling ability of EEG time series, and effectively integrates the collaborative activation mode of the whole brain. Secondly, we design a spatiotemporal isomorphic adaptive fusion (STIAF) block, which adopts a dual branch structure to mine hierarchical and complementary information of spatiotemporal features and introduces a negative sample weighted contrastive learning mechanism and dynamic fusion strategy to improve the robustness and discriminative power of cross-view shared representations, thereby enhancing the model's adaptability to different subject features. Finally, we propose a joint optimized adaptive domain alignment strategy (JOADAS), which combines global adversarial learning with an adaptive class center alignment mechanism to reduce domain bias between different subjects from both macro and micro levels, enhance intra-class aggregation and inter-class separability, and improve the model's discriminative performance and cross-subject generalization ability. Extensive experiments on multiple datasets demonstrated the superior performance of the proposed algorithm, and STCBI-Nets outperform state-of-the-art (SOTA) methods and exhibit stronger generalization ability and stability in cross-subject EEG emotion recognition tasks. |
---|---|
AbstractList | Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer interaction. The intricate architecture and functioning of the brain, along with substantial individual variances among participants, and existing methods are difficult to simultaneously model the temporal and spatial consistency of brain area interactions and EEG signals between subjects, which limits the generalization performance of the model in cross-subject contexts. To meet this challenge, we propose a cross-subject EEG emotion recognition model based on a spatiotemporal isomorphic cross-brain region interaction network (STCBI-Nets). In this model, we first designed the cross-brain region interaction module (CBI), which dynamically models the interaction relationship between different brain regions through a multi-head cross-attention mechanism, captures heterogeneous information flow between local brain regions, enhances the long-range dependency modeling ability of EEG time series, and effectively integrates the collaborative activation mode of the whole brain. Secondly, we design a spatiotemporal isomorphic adaptive fusion (STIAF) block, which adopts a dual branch structure to mine hierarchical and complementary information of spatiotemporal features and introduces a negative sample weighted contrastive learning mechanism and dynamic fusion strategy to improve the robustness and discriminative power of cross-view shared representations, thereby enhancing the model's adaptability to different subject features. Finally, we propose a joint optimized adaptive domain alignment strategy (JOADAS), which combines global adversarial learning with an adaptive class center alignment mechanism to reduce domain bias between different subjects from both macro and micro levels, enhance intra-class aggregation and inter-class separability, and improve the model's discriminative performance and cross-subject generalization ability. Extensive experiments on multiple datasets demonstrated the superior performance of the proposed algorithm, and STCBI-Nets outperform state-of-the-art (SOTA) methods and exhibit stronger generalization ability and stability in cross-subject EEG emotion recognition tasks. |
ArticleNumber | 114115 |
Author | An, Yanling Zhang, Yuan Liu, Shuaiqi Zhang, Yudong Gu, Zhihui Hu, Shaohai |
Author_xml | – sequence: 1 givenname: Yanling surname: An fullname: An, Yanling organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China – sequence: 2 givenname: Shaohai surname: Hu fullname: Hu, Shaohai organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China – sequence: 3 givenname: Shuaiqi orcidid: 0000-0001-7520-8226 surname: Liu fullname: Liu, Shuaiqi email: shdkj-1918@163.com organization: College of Electronic and Information Engineering, Hebei University, Baoding 071002, China – sequence: 4 givenname: Zhihui surname: Gu fullname: Gu, Zhihui organization: College of Electronic and Information Engineering, Hebei University, Baoding 071002, China – sequence: 5 givenname: Yuan surname: Zhang fullname: Zhang, Yuan organization: College of Electronic and Information Engineering, Hebei University, Baoding 071002, China – sequence: 6 givenname: Yudong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yudong organization: School of Informatics, University of Leicester, Leicester LE1 7RH, UK |
BookMark | eNp9kDFPwzAUhD0UiRb4Bwz-Awm2EyfNgoSqUpAqMQCzZTvPxWljR7YB9d_TNJ2Z3g13p3vfAs2cd4DQPSU5JbR66PK98_EYc0YYzyktKeUzNCcNJ1lNOL1Gixg7QghjdDlH3fsgk_UJ-sEHecA2-t6H4ctqrIOPMVNBWocD7Kx32LoEQeo0agfp14c9Nj5crPFbdaATXq83GHp_dgXQfufsqG_RlZGHCHeXe4M-n9cfq5ds-7Z5XT1tM814nTKpSq4MrxqqKqMYa6CuK80KbpqiUlwviSkaQ6khy5YxVnJSSE7qWkraVK0xxQ0qp97zqgBGDMH2MhwFJWJkJDoxMRIjIzExOsUepxictv1YCCJqC05Da09PJNF6-3_BH8aTeJU |
Cites_doi | 10.1109/TAFFC.2024.3349770 10.1109/TNSRE.2023.3236687 10.1016/j.eswa.2023.121889 10.3389/fpsyg.2021.809459 10.1109/TCDS.2020.2999337 10.3390/brainsci13070977 10.1109/TAFFC.2020.2994159 10.1016/j.neucom.2023.126262 10.1016/j.bspc.2022.103687 10.1016/j.bspc.2024.106716 10.1016/j.compbiomed.2024.108973 10.1109/TAFFC.2017.2660485 10.1016/j.patrec.2020.07.015 10.1016/j.knosys.2025.113613 10.1109/TCYB.2025.3550191 10.1016/j.knosys.2023.111137 10.1016/j.knosys.2024.112599 10.1109/T-AFFC.2011.15 10.1109/TAFFC.2020.3013711 10.1016/j.knosys.2023.111199 10.1109/TCYB.2018.2797176 10.1109/TMM.2024.3385676 10.3389/fnhum.2020.605246 10.1016/j.neucom.2021.02.048 10.1016/j.inffus.2023.102156 10.1016/j.inffus.2023.101945 10.1109/TAFFC.2020.3025777 10.1016/j.aei.2024.102522 10.1109/TAFFC.2018.2817622 10.1109/TAFFC.2022.3199075 10.1109/TETC.2021.3087174 10.1109/TCSS.2022.3188891 10.1016/j.bspc.2023.105422 10.1109/JBHI.2021.3083525 10.1016/j.compbiomed.2022.106463 10.1109/TAFFC.2024.3514635 10.1016/j.knosys.2024.112826 10.1016/j.physa.2022.127700 10.1109/TAFFC.2025.3535542 10.1109/TCDS.2024.3470248 10.1016/j.knosys.2023.110756 10.1016/j.bspc.2023.104835 10.1109/TAFFC.2019.2922912 10.1109/JBHI.2022.3210158 10.1017/S0140525X11000446 10.1016/j.knosys.2023.110372 10.1109/TAFFC.2022.3170428 10.1109/JBHI.2024.3404146 10.1016/j.tics.2017.03.002 10.1109/TAMD.2015.2431497 10.1177/1534582304267187 10.1016/j.neubiorev.2005.01.002 10.1109/TAFFC.2024.3433470 10.1109/ACCESS.2019.2891579 10.1109/TAFFC.2022.3164516 10.1109/TIM.2025.3533618 10.3389/fnins.2021.778488 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2025.114115 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_knosys_2025_114115 S0950705125011608 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFXIZ AGQPQ AGRNS ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- RIG SBC SET UHS WUQ |
ID | FETCH-LOGICAL-c257t-ab45bf5691b6fb229e776c235f936b5c80f39f11f08d2224503a5077aa196dff3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Wed Aug 06 19:34:13 EDT 2025 Sat Aug 23 17:11:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Domain adaptation Emotion recognition Transformer Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-ab45bf5691b6fb229e776c235f936b5c80f39f11f08d2224503a5077aa196dff3 |
ORCID | 0000-0001-7520-8226 0000-0002-4870-1493 |
ParticipantIDs | crossref_primary_10_1016_j_knosys_2025_114115 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_114115 |
PublicationCentury | 2000 |
PublicationDate | 2025-10-09 |
PublicationDateYYYYMMDD | 2025-10-09 |
PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wan, Yu, Dai, Li, Hong (bib0024) 2024 Liu, Wang, Jiang (bib0017) 2024; 305 Ganin, Lempitsky (bib0031) 2015 Chen, Li, Jin, Li (bib0037) 2021 Li, Wang, Zheng (bib0063) 2020; 13 Liu, Luo, Zhu (bib0054) 2024; Early Access Zhu, Ding, Zhu (bib0041) 2022; 76 She, Zhang, Fang (bib0043) 2023; 72 Sun, Cui, Yu (bib0021) 2022; 13 Li, Chen, Chen, Zhang (bib0067) 2024; 15 Li, Chen, Li (bib0042) 2022; 14 Wei, Liu, Li (bib0020) 2023; 152 Xu, Chen, Li (bib0057) 2025; 309 Wang, Zhang, Tang (bib0045) 2024; 38 Guo, Wang (bib0056) 2024; 238 Su, Zhu, Song, Chang (bib0065) 2023; 13 Lin, Xu, Liang (bib0068) 2025; Early Access Liu, Yu, Zhao (bib0002) 2017; 9 Li, Bian, Zhao, Wang, Schuller (bib0016) 2024; 104 Zhao, Wang, Cheng (bib0014) 2023; 17 Zheng, Liu, Lu, Lu, Cichocki (bib0034) 2018; 49 Decety, Jackson (bib0008) 2004; 3 Gong, Li, Zhang, Chen (bib0005) 2023; 84 Chang, Zhang, Qian, Lin (bib0047) 2025 Ma, Zhao, Meng (bib0026) 2023; 31 Bao, Zhuang, Tong (bib0027) 2021; 14 Li, Ren, Li (bib0051) 2022; 10 Górriz, Álvarez-Illán, Álvarez-Marquina (bib0009) 2023; 100 Ye, Zhang, Teng (bib0046) 2024; 16 Shen, Liu, Hu, Zhang, Song (bib0022) 2022; 14 An, Hu, Liu (bib0049) 2025 Cao, He, Yang (bib0039) 2022; 12 Cheng, Liu, Wang, Feng, Jia (bib0058) 2025; Early Access Fan, Xie, Tao (bib0015) 2024; 87 Liu, Wang, Zhao (bib0013) 2021; 26 Yang, Yao, Zhang (bib0006) 2024 Guo, Li, Liu, Ma, Wang (bib0055) 2024; 283 Song, Zheng, Song, Cui (bib0059) 2018; 11 Guo, Cai, An (bib0019) 2022; 603 Deng, Li, Hong (bib0023) 2024; 97 Li, Fu, Li, Shi, Zheng (bib0064) 2021; 447 Chen, Jin, Li (bib0038) 2021; 15 Jin, Du, He, Cai, Li (bib0011) 2024; 26 Li, Ren, Ge (bib0052) 2023; 276 Si, Huang, Liang (bib0053) 2024; 181 Du, Ma, Zhang (bib0050) 2020; 13 Zhong, Wang, Miao (bib0061) 2020; 13 Tao, Li, Song (bib0018) 2020; 14 Liu, Wang, An (bib0003) 2023; 265 Lindquist, Wager, Kober (bib0007) 2012; 35 Zhou, Li, Li (bib0012) 2023; 544 Dai, Li, Wu (bib0070) 2025; 74 Fan, Zhu, Tao (bib0025) 2024 Hu, Wang, Bi (bib0030) 2024; 18 Chen, Xu, Qin (bib0048) 2025; Early Access Li, Zhu, Jin (bib0040) 2022; 26 Zheng, Lu (bib0033) 2015; 7 Song, Zheng, Liu (bib0062) 2021; 10 Liu, Wang, An (bib0028) 2024; 283 Li, Zheng, Wang, Zong, Cui (bib0010) 2019; 13 Paul, Harding, Mendl, Reviews (bib0001) 2005; 29 Pessoa (bib0029) 2017; 21 Song, Zheng, Lu (bib0036) 2019; 7 An, Hu, Liu (bib0044) 2024 Koelstra, Muhl, Soleymani (bib0035) 2011; 3 Song, Liu, Zheng, Zong, Cui (bib0060) 2020; 34 Fan, Wang, Huang (bib0004) 2024; 61 Shi, Chen, Li, Zhang (bib0066) 2025; 17 Chen, Chen, Zhang (bib0069) 2025; 55 Ji, Chai, Yu, Pang, Zhang (bib0032) 2020; 140 Yang (10.1016/j.knosys.2025.114115_bib0006) 2024 Zhao (10.1016/j.knosys.2025.114115_bib0014) 2023; 17 Li (10.1016/j.knosys.2025.114115_bib0052) 2023; 276 Chen (10.1016/j.knosys.2025.114115_bib0048) 2025; Early Access Su (10.1016/j.knosys.2025.114115_bib0065) 2023; 13 Fan (10.1016/j.knosys.2025.114115_bib0004) 2024; 61 An (10.1016/j.knosys.2025.114115_bib0044) 2024 Paul (10.1016/j.knosys.2025.114115_bib0001) 2005; 29 Hu (10.1016/j.knosys.2025.114115_bib0030) 2024; 18 Li (10.1016/j.knosys.2025.114115_bib0016) 2024; 104 Lin (10.1016/j.knosys.2025.114115_bib0068) 2025; Early Access Li (10.1016/j.knosys.2025.114115_bib0051) 2022; 10 Li (10.1016/j.knosys.2025.114115_bib0063) 2020; 13 Pessoa (10.1016/j.knosys.2025.114115_bib0029) 2017; 21 Wei (10.1016/j.knosys.2025.114115_bib0020) 2023; 152 Zheng (10.1016/j.knosys.2025.114115_bib0033) 2015; 7 Cao (10.1016/j.knosys.2025.114115_bib0039) 2022; 12 Li (10.1016/j.knosys.2025.114115_bib0067) 2024; 15 Chen (10.1016/j.knosys.2025.114115_bib0069) 2025; 55 Dai (10.1016/j.knosys.2025.114115_bib0070) 2025; 74 Li (10.1016/j.knosys.2025.114115_bib0064) 2021; 447 Guo (10.1016/j.knosys.2025.114115_bib0019) 2022; 603 Chen (10.1016/j.knosys.2025.114115_bib0038) 2021; 15 Decety (10.1016/j.knosys.2025.114115_bib0008) 2004; 3 Koelstra (10.1016/j.knosys.2025.114115_bib0035) 2011; 3 Song (10.1016/j.knosys.2025.114115_bib0060) 2020; 34 Chen (10.1016/j.knosys.2025.114115_bib0037) 2021 Gong (10.1016/j.knosys.2025.114115_bib0005) 2023; 84 Shi (10.1016/j.knosys.2025.114115_bib0066) 2025; 17 She (10.1016/j.knosys.2025.114115_bib0043) 2023; 72 Ji (10.1016/j.knosys.2025.114115_bib0032) 2020; 140 Chang (10.1016/j.knosys.2025.114115_bib0047) 2025 Guo (10.1016/j.knosys.2025.114115_bib0055) 2024; 283 Song (10.1016/j.knosys.2025.114115_bib0062) 2021; 10 Li (10.1016/j.knosys.2025.114115_bib0010) 2019; 13 Deng (10.1016/j.knosys.2025.114115_bib0023) 2024; 97 Li (10.1016/j.knosys.2025.114115_bib0042) 2022; 14 Song (10.1016/j.knosys.2025.114115_bib0036) 2019; 7 Zhong (10.1016/j.knosys.2025.114115_bib0061) 2020; 13 Fan (10.1016/j.knosys.2025.114115_bib0025) 2024 Wang (10.1016/j.knosys.2025.114115_bib0045) 2024; 38 Du (10.1016/j.knosys.2025.114115_bib0050) 2020; 13 Ye (10.1016/j.knosys.2025.114115_bib0046) 2024; 16 An (10.1016/j.knosys.2025.114115_bib0049) 2025 Liu (10.1016/j.knosys.2025.114115_bib0054) 2024; Early Access Liu (10.1016/j.knosys.2025.114115_bib0017) 2024; 305 Shen (10.1016/j.knosys.2025.114115_bib0022) 2022; 14 Górriz (10.1016/j.knosys.2025.114115_bib0009) 2023; 100 Guo (10.1016/j.knosys.2025.114115_bib0056) 2024; 238 Ma (10.1016/j.knosys.2025.114115_bib0026) 2023; 31 Song (10.1016/j.knosys.2025.114115_bib0059) 2018; 11 Fan (10.1016/j.knosys.2025.114115_bib0015) 2024; 87 Zhou (10.1016/j.knosys.2025.114115_bib0012) 2023; 544 Ganin (10.1016/j.knosys.2025.114115_bib0031) 2015 Tao (10.1016/j.knosys.2025.114115_bib0018) 2020; 14 Lindquist (10.1016/j.knosys.2025.114115_bib0007) 2012; 35 Jin (10.1016/j.knosys.2025.114115_bib0011) 2024; 26 Liu (10.1016/j.knosys.2025.114115_bib0028) 2024; 283 Bao (10.1016/j.knosys.2025.114115_bib0027) 2021; 14 Liu (10.1016/j.knosys.2025.114115_bib0002) 2017; 9 Liu (10.1016/j.knosys.2025.114115_bib0003) 2023; 265 Sun (10.1016/j.knosys.2025.114115_bib0021) 2022; 13 Si (10.1016/j.knosys.2025.114115_bib0053) 2024; 181 Liu (10.1016/j.knosys.2025.114115_bib0013) 2021; 26 Wan (10.1016/j.knosys.2025.114115_bib0024) 2024 Li (10.1016/j.knosys.2025.114115_bib0040) 2022; 26 Xu (10.1016/j.knosys.2025.114115_bib0057) 2025; 309 Zheng (10.1016/j.knosys.2025.114115_bib0034) 2018; 49 Zhu (10.1016/j.knosys.2025.114115_bib0041) 2022; 76 Cheng (10.1016/j.knosys.2025.114115_bib0058) 2025; Early Access |
References_xml | – volume: Early Access start-page: 1 year: 2024 end-page: 13 ident: bib0054 article-title: Enhancing EEG-based cross-subject emotion recognition via adaptive source joint domain adaptation publication-title: IEEE Trans. Affect. Comput. – volume: 265 year: 2023 ident: bib0003 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl. Based Syst. – volume: 9 start-page: 550 year: 2017 end-page: 562 ident: bib0002 article-title: Real-time movie-induced discrete emotion recognition from EEG signals publication-title: IEEE Trans. Affect Comput. – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: bib0059 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect Comput. – year: 2024 ident: bib0006 article-title: Automatically extracting and utilizing EEG channel importance based on graph convolutional network for emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 13 start-page: 977 year: 2023 ident: bib0065 article-title: Subject-independent eeg emotion recognition based on genetically optimized projection dictionary pair learning publication-title: Brain Sci. – volume: 283 year: 2024 ident: bib0055 article-title: Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition publication-title: Knowl. Based Syst. – volume: 17 start-page: 480 year: 2025 end-page: 494 ident: bib0066 article-title: Functional connectivity patterns learning for EEG-based emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 14 year: 2021 ident: bib0027 article-title: Two-level domain adaptation neural network for EEG-based emotion recognition publication-title: Front. Hum. Neurosci. – volume: 10 start-page: 376 year: 2022 end-page: 387 ident: bib0051 article-title: SSTD: a novel spatio-temporal demographic network for EEG-based emotion recognition publication-title: IEEE Trans. Comput. Soc. Syst. – year: 2024 ident: bib0025 article-title: Multi-level contrastive learning: hierarchical alleviation of heterogeneity in multimodal sentiment analysis publication-title: IEEE Trans. Affect. Comput. – volume: 283 year: 2024 ident: bib0028 article-title: DA-CapsNet: a multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition publication-title: Knowl. Based Syst. – volume: 181 year: 2024 ident: bib0053 article-title: Temporal aware mixed attention-based convolution and transformer network for cross-subject EEG emotion recognition publication-title: Comput. Biol. Med – volume: Early Access start-page: 1 year: 2025 ident: bib0068 article-title: Brain region knowledge based dual-stream transformer for EEG emotion recognition publication-title: IEEE Trans. Consum. Electron. – volume: 447 start-page: 92 year: 2021 end-page: 101 ident: bib0064 article-title: A novel transferability attention neural network model for EEG emotion recognition publication-title: Neurocomputing – volume: 29 start-page: 469 year: 2005 end-page: 491 ident: bib0001 article-title: Measuring emotional processes in animals: the utility of a cognitive approach publication-title: Neurosci. Biobehav. Rev. – volume: 31 start-page: 936 year: 2023 end-page: 943 ident: bib0026 article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 38 start-page: 628 year: 2024 end-page: 636 ident: bib0045 article-title: DMMR: cross-subject domain generalization for EEG-based emotion recognition via denoising mixed mutual reconstruction publication-title: Proc. AAAI Conf. Artif. Intell. – year: 2024 ident: bib0024 article-title: Data generation for enhancing EEG-based emotion recognition: extracting time-invariant and subject-invariant components with contrastive learning publication-title: IEEE Trans. Consum. Electron. – volume: 15 start-page: 1451 year: 2024 end-page: 1462 ident: bib0067 article-title: Gusa: graph-based unsupervised subdomain adaptation for cross-subject EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 544 year: 2023 ident: bib0012 article-title: Progressive graph convolution network for EEG emotion recognition publication-title: Neurocomputing – start-page: 6094 year: 2021 end-page: 6097 ident: bib0037 article-title: Meernet: multi-source EEG-based emotion recognition network for generalization across subjects and sessions publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 603 year: 2022 ident: bib0019 article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels publication-title: Phys. A: Stat. Mech. Appl. – volume: Early Access start-page: 1 year: 2025 end-page: 15 ident: bib0048 article-title: Cross-subject and Cross-session EEG emotion recognition based on multi-source structural deep clustering publication-title: IEEE Trans. Cogn. Dev. Syst. – year: 2025 ident: bib0047 article-title: Multi-scale hyperbolic contrastive learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 14 start-page: 2512 year: 2022 end-page: 2525 ident: bib0042 article-title: GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 14 start-page: 382 year: 2020 end-page: 393 ident: bib0018 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affect Comput. – volume: 238 year: 2024 ident: bib0056 article-title: Convolutional gated recurrent unit-driven multidimensional dynamic graph neural network for subject-independent emotion recognition publication-title: Expert Syst. Appl. – volume: 72 start-page: 1 year: 2023 end-page: 12 ident: bib0043 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 13 start-page: 2218 year: 2022 end-page: 2228 ident: bib0021 article-title: A dual-branch dynamic graph convolution based adaptive transformer feature fusion network for EEG emotion recognition publication-title: IEEE Trans. Affect Comput. – volume: 15 year: 2021 ident: bib0038 article-title: MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. – volume: 84 year: 2023 ident: bib0005 article-title: EEG emotion recognition using attention-based convolutional transformer neural network publication-title: Biomed. Signal. Process. Control – start-page: 1180 year: 2015 end-page: 1189 ident: bib0031 article-title: Unsupervised domain adaptation by backpropagation publication-title: International Conference on Machine Learning – volume: 26 start-page: 5964 year: 2022 end-page: 5973 ident: bib0040 article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 309 year: 2025 ident: bib0057 article-title: The mitigation of heterogeneity in temporal scale among different cortical regions for EEG emotion recognition publication-title: Knowl. Based Syst. – volume: 13 start-page: 354 year: 2020 end-page: 367 ident: bib0063 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 14 start-page: 2496 year: 2022 end-page: 2511 ident: bib0022 article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 97 year: 2024 ident: bib0023 article-title: A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in eeg data publication-title: Biomed. Signal. Process Control – volume: 3 start-page: 71 year: 2004 end-page: 100 ident: bib0008 article-title: The functional architecture of human empathy publication-title: Behav. Cogn. Neurosci. Rev. – start-page: 12981 year: 2024 end-page: 12985 ident: bib0044 article-title: Cross-subject EEG emotion recognition based on interconnected dynamic domain adaptation publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 26 start-page: 9070 year: 2024 end-page: 9082 ident: bib0011 article-title: PGCN: pyramidal graph convolutional network for EEG emotion recognition publication-title: IEEE Trans. Multimed. – year: 2025 ident: bib0049 article-title: LGDAAN-nets: a local and global domain adversarial attention neural networks for EEG emotion recognition publication-title: Knowl. Based Syst. – volume: 87 year: 2024 ident: bib0015 article-title: ICaps-ResLSTM: improved capsule network and residual LSTM for EEG emotion recognition publication-title: Biomed. Signal. Process Control – volume: 13 start-page: 1290 year: 2020 end-page: 1301 ident: bib0061 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 76 year: 2022 ident: bib0041 article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition publication-title: Biomed. Signal. Process Control – volume: 34 start-page: 2701 year: 2020 end-page: 2708 ident: bib0060 article-title: Instance-adaptive graph for EEG emotion recognition publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: bib0034 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 7 start-page: 12177 year: 2019 end-page: 12191 ident: bib0036 article-title: MPED: a multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access – volume: 3 start-page: 18 year: 2011 end-page: 31 ident: bib0035 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect Comput. – volume: 140 start-page: 81 year: 2020 end-page: 87 ident: bib0032 article-title: Improved prototypical networks for few-shot learning publication-title: Pattern Recognit. Lett. – volume: 100 year: 2023 ident: bib0009 article-title: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends publication-title: Inf. Fusion – volume: 17 year: 2023 ident: bib0014 article-title: A mutli-scale spatial-temporal convolutional neural network with contrastive learning for motor imagery EEG classification publication-title: Med. Nov. Technol. Devices – volume: 74 year: 2025 ident: bib0070 article-title: Contrastive learning of EEG representation of brain area for emotion recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 35 start-page: 121 year: 2012 end-page: 143 ident: bib0007 article-title: The brain basis of emotion: a meta-analytic review publication-title: Behav. Brain Sci. – volume: 12 year: 2022 ident: bib0039 article-title: Multi-source and multi-representation adaptation for cross-domain electroencephalography emotion recognition publication-title: Front. Psychol. – volume: Early Access start-page: 1 year: 2025 end-page: 14 ident: bib0058 article-title: DISD-Net: a dynamic interactive network with self-distillation for cross-subject multi-modal emotion recognition publication-title: IEEE Trans Multimed. – volume: 10 start-page: 1399 year: 2021 end-page: 1413 ident: bib0062 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 26 start-page: 5321 year: 2021 end-page: 5331 ident: bib0013 article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 13 start-page: 1528 year: 2020 end-page: 1540 ident: bib0050 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect Comput. – volume: 305 year: 2024 ident: bib0017 article-title: MAS-DGAT-Net: a dynamic graph attention network with multibranch feature extraction and staged fusion for EEG emotion recognition publication-title: Knowl Based Syst. – volume: 18 year: 2024 ident: bib0030 article-title: HASTF: a hybrid attention spatio-temporal feature fusion network for EEG emotion recognition publication-title: Front. Neurosci. – volume: 55 start-page: 2038 year: 2025 end-page: 2051 ident: bib0069 article-title: AdamGraph: adaptive attention-modulated graph network for EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 13 start-page: 568 year: 2019 end-page: 578 ident: bib0010 article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 152 year: 2023 ident: bib0020 article-title: TC-net: a transformer capsule network for EEG-based emotion recognition publication-title: Comput. Biol. Med. – volume: 61 year: 2024 ident: bib0004 article-title: Light-weight residual convolution-based capsule network for EEG emotion recognition publication-title: Adv. Eng. Inform. – volume: 21 start-page: 357 year: 2017 end-page: 371 ident: bib0029 article-title: A network model of the emotional brain publication-title: Trends Cogn. Sci. (Regul. Ed.) – volume: 16 start-page: 290 year: 2024 end-page: 305 ident: bib0046 article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 276 year: 2023 ident: bib0052 article-title: MTLFuseNet: a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning publication-title: Knowl Based Syst – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: bib0033 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Aut. Ment Dev – volume: 104 year: 2024 ident: bib0016 article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition publication-title: Inf. Fusion – volume: 15 start-page: 1451 issue: 3 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0067 article-title: Gusa: graph-based unsupervised subdomain adaptation for cross-subject EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2024.3349770 – volume: 31 start-page: 936 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0026 article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3236687 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0043 article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition publication-title: IEEE Trans. Instrum. Meas. – volume: 238 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0056 article-title: Convolutional gated recurrent unit-driven multidimensional dynamic graph neural network for subject-independent emotion recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121889 – volume: 12 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0039 article-title: Multi-source and multi-representation adaptation for cross-domain electroencephalography emotion recognition publication-title: Front. Psychol. doi: 10.3389/fpsyg.2021.809459 – volume: 13 start-page: 354 issue: 2 year: 2020 ident: 10.1016/j.knosys.2025.114115_bib0063 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2999337 – volume: 38 start-page: 628 issue: 1 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0045 article-title: DMMR: cross-subject domain generalization for EEG-based emotion recognition via denoising mixed mutual reconstruction publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 13 start-page: 977 issue: 7 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0065 article-title: Subject-independent eeg emotion recognition based on genetically optimized projection dictionary pair learning publication-title: Brain Sci. doi: 10.3390/brainsci13070977 – volume: 13 start-page: 1290 issue: 3 year: 2020 ident: 10.1016/j.knosys.2025.114115_bib0061 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.2994159 – volume: 544 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0012 article-title: Progressive graph convolution network for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126262 – volume: 76 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0041 article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition publication-title: Biomed. Signal. Process Control doi: 10.1016/j.bspc.2022.103687 – volume: 97 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0023 article-title: A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in eeg data publication-title: Biomed. Signal. Process Control doi: 10.1016/j.bspc.2024.106716 – volume: 181 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0053 article-title: Temporal aware mixed attention-based convolution and transformer network for cross-subject EEG emotion recognition publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2024.108973 – volume: 9 start-page: 550 issue: 4 year: 2017 ident: 10.1016/j.knosys.2025.114115_bib0002 article-title: Real-time movie-induced discrete emotion recognition from EEG signals publication-title: IEEE Trans. Affect Comput. doi: 10.1109/TAFFC.2017.2660485 – year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0024 article-title: Data generation for enhancing EEG-based emotion recognition: extracting time-invariant and subject-invariant components with contrastive learning publication-title: IEEE Trans. Consum. Electron. – volume: 140 start-page: 81 year: 2020 ident: 10.1016/j.knosys.2025.114115_bib0032 article-title: Improved prototypical networks for few-shot learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.07.015 – year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0049 article-title: LGDAAN-nets: a local and global domain adversarial attention neural networks for EEG emotion recognition publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2025.113613 – volume: 55 start-page: 2038 issue: 5 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0069 article-title: AdamGraph: adaptive attention-modulated graph network for EEG emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2025.3550191 – volume: 283 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0028 article-title: DA-CapsNet: a multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.111137 – start-page: 1180 year: 2015 ident: 10.1016/j.knosys.2025.114115_bib0031 article-title: Unsupervised domain adaptation by backpropagation – volume: 305 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0017 article-title: MAS-DGAT-Net: a dynamic graph attention network with multibranch feature extraction and staged fusion for EEG emotion recognition publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2024.112599 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.knosys.2025.114115_bib0035 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect Comput. doi: 10.1109/T-AFFC.2011.15 – year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0025 article-title: Multi-level contrastive learning: hierarchical alleviation of heterogeneity in multimodal sentiment analysis publication-title: IEEE Trans. Affect. Comput. – volume: 18 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0030 article-title: HASTF: a hybrid attention spatio-temporal feature fusion network for EEG emotion recognition publication-title: Front. Neurosci. – volume: 13 start-page: 1528 issue: 3 year: 2020 ident: 10.1016/j.knosys.2025.114115_bib0050 article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals publication-title: IEEE Trans. Affect Comput. doi: 10.1109/TAFFC.2020.3013711 – volume: 283 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0055 article-title: Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.111199 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 10.1016/j.knosys.2025.114115_bib0034 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – volume: 26 start-page: 9070 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0011 article-title: PGCN: pyramidal graph convolutional network for EEG emotion recognition publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2024.3385676 – volume: 14 year: 2021 ident: 10.1016/j.knosys.2025.114115_bib0027 article-title: Two-level domain adaptation neural network for EEG-based emotion recognition publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.605246 – volume: Early Access start-page: 1 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0058 article-title: DISD-Net: a dynamic interactive network with self-distillation for cross-subject multi-modal emotion recognition publication-title: IEEE Trans Multimed. – volume: 447 start-page: 92 year: 2021 ident: 10.1016/j.knosys.2025.114115_bib0064 article-title: A novel transferability attention neural network model for EEG emotion recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.048 – volume: 104 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0016 article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102156 – volume: 100 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0009 article-title: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101945 – volume: 14 start-page: 382 issue: 1 year: 2020 ident: 10.1016/j.knosys.2025.114115_bib0018 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affect Comput. doi: 10.1109/TAFFC.2020.3025777 – volume: 61 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0004 article-title: Light-weight residual convolution-based capsule network for EEG emotion recognition publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102522 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.knosys.2025.114115_bib0059 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect Comput. doi: 10.1109/TAFFC.2018.2817622 – volume: 13 start-page: 2218 issue: 4 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0021 article-title: A dual-branch dynamic graph convolution based adaptive transformer feature fusion network for EEG emotion recognition publication-title: IEEE Trans. Affect Comput. doi: 10.1109/TAFFC.2022.3199075 – volume: 10 start-page: 1399 issue: 3 year: 2021 ident: 10.1016/j.knosys.2025.114115_bib0062 article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2021.3087174 – volume: Early Access start-page: 1 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0048 article-title: Cross-subject and Cross-session EEG emotion recognition based on multi-source structural deep clustering publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 10 start-page: 376 issue: 1 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0051 article-title: SSTD: a novel spatio-temporal demographic network for EEG-based emotion recognition publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2022.3188891 – volume: 87 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0015 article-title: ICaps-ResLSTM: improved capsule network and residual LSTM for EEG emotion recognition publication-title: Biomed. Signal. Process Control doi: 10.1016/j.bspc.2023.105422 – start-page: 12981 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0044 article-title: Cross-subject EEG emotion recognition based on interconnected dynamic domain adaptation – volume: 26 start-page: 5321 issue: 11 year: 2021 ident: 10.1016/j.knosys.2025.114115_bib0013 article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2021.3083525 – volume: 17 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0014 article-title: A mutli-scale spatial-temporal convolutional neural network with contrastive learning for motor imagery EEG classification publication-title: Med. Nov. Technol. Devices – volume: 152 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0020 article-title: TC-net: a transformer capsule network for EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106463 – volume: Early Access start-page: 1 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0054 article-title: Enhancing EEG-based cross-subject emotion recognition via adaptive source joint domain adaptation publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2024.3514635 – volume: 309 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0057 article-title: The mitigation of heterogeneity in temporal scale among different cortical regions for EEG emotion recognition publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.112826 – volume: 34 start-page: 2701 issue: 03 year: 2020 ident: 10.1016/j.knosys.2025.114115_bib0060 article-title: Instance-adaptive graph for EEG emotion recognition publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 603 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0019 article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2022.127700 – year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0047 article-title: Multi-scale hyperbolic contrastive learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2025.3535542 – volume: 17 start-page: 480 issue: 3 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0066 article-title: Functional connectivity patterns learning for EEG-based emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2024.3470248 – volume: Early Access start-page: 1 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0068 article-title: Brain region knowledge based dual-stream transformer for EEG emotion recognition publication-title: IEEE Trans. Consum. Electron. – volume: 276 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0052 article-title: MTLFuseNet: a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.110756 – volume: 84 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0005 article-title: EEG emotion recognition using attention-based convolutional transformer neural network publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2023.104835 – volume: 13 start-page: 568 issue: 2 year: 2019 ident: 10.1016/j.knosys.2025.114115_bib0010 article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2019.2922912 – volume: 26 start-page: 5964 issue: 12 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0040 article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3210158 – volume: 35 start-page: 121 issue: 3 year: 2012 ident: 10.1016/j.knosys.2025.114115_bib0007 article-title: The brain basis of emotion: a meta-analytic review publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X11000446 – volume: 265 year: 2023 ident: 10.1016/j.knosys.2025.114115_bib0003 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110372 – volume: 14 start-page: 2512 issue: 3 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0042 article-title: GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3170428 – year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0006 article-title: Automatically extracting and utilizing EEG channel importance based on graph convolutional network for emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2024.3404146 – volume: 21 start-page: 357 issue: 5 year: 2017 ident: 10.1016/j.knosys.2025.114115_bib0029 article-title: A network model of the emotional brain publication-title: Trends Cogn. Sci. (Regul. Ed.) doi: 10.1016/j.tics.2017.03.002 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.knosys.2025.114115_bib0033 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Aut. Ment Dev doi: 10.1109/TAMD.2015.2431497 – volume: 3 start-page: 71 issue: 2 year: 2004 ident: 10.1016/j.knosys.2025.114115_bib0008 article-title: The functional architecture of human empathy publication-title: Behav. Cogn. Neurosci. Rev. doi: 10.1177/1534582304267187 – volume: 29 start-page: 469 issue: 3 year: 2005 ident: 10.1016/j.knosys.2025.114115_bib0001 article-title: Measuring emotional processes in animals: the utility of a cognitive approach publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2005.01.002 – volume: 16 start-page: 290 issue: 1 year: 2024 ident: 10.1016/j.knosys.2025.114115_bib0046 article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2024.3433470 – volume: 7 start-page: 12177 year: 2019 ident: 10.1016/j.knosys.2025.114115_bib0036 article-title: MPED: a multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – start-page: 6094 year: 2021 ident: 10.1016/j.knosys.2025.114115_bib0037 article-title: Meernet: multi-source EEG-based emotion recognition network for generalization across subjects and sessions – volume: 14 start-page: 2496 issue: 3 year: 2022 ident: 10.1016/j.knosys.2025.114115_bib0022 article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3164516 – volume: 74 year: 2025 ident: 10.1016/j.knosys.2025.114115_bib0070 article-title: Contrastive learning of EEG representation of brain area for emotion recognition publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2025.3533618 – volume: 15 year: 2021 ident: 10.1016/j.knosys.2025.114115_bib0038 article-title: MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.778488 |
SSID | ssj0002218 |
Score | 2.4339213 |
Snippet | Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114115 |
SubjectTerms | Contrastive learning Domain adaptation Emotion recognition Transformer |
Title | Spatiotemporal isomorphic cross-brain region interaction network for cross-subject EEG emotion recognition |
URI | https://dx.doi.org/10.1016/j.knosys.2025.114115 |
Volume | 327 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNHHsJB6rqqWA6FIqdYvsxJZSIKn6GFj47fgVHhJiYExkK9GX891n57s7AK6ZCGKeYIUwL3Jk9l-I6yitiRxJWYyxCJQ50H-cxOMZuZ_TeQsMmlwYI6v0vt_5dOut_Z2eR7O3LMveVJMDba86YFHzM8Em_BKSGCu_ef-SeWBsz_jMYGRGN-lzVuP1XNXrN1O0G1NTNDc0zXF_C0_fQs7oAOx5rgj77nUOQUtWR2C_6cMA_bI8BouplUX7KlMvsFzXr7XGr8yhfQoSpg8END0Y6gqaAhErl84AKycCh5q5-qHrrTAnM3A4vIXStfiBnyKjujoBs9HwaTBGvocCyvVi3CAuCBWKxiwUsRIYM5kkcY4jqlgUC5qngYqYCkMVpIWmCoQGEdewJpzrpVkoFZ2CdlVX8gxAKTgpUqU5TBqQguZMb9ZkLBOldzE8KoIOQA102dKVysgaDdkic1BnBurMQd0BSYNv9uOTZ9qb_znz_N8zL8CuubJqPHYJ2pvVVl5pVrERXWs2XbDTv3sYTz4AejbOZQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b4MwELaiZGiXvqumTw9drYDBBsYoSkqax5JEyoZswBJpC1EeQ_99fWCiVqo6dAWfQB_23Wfz3R1Cz4G0uPCoIlQkMYH9FxE6Smsi5_oBp1RaCg70J1MeLtzXJVs2UK_OhQFZpfH9lU8vvbW50jFodtZZ1plpcqDnqw5YDH4mQMJvC6pTsSZqdYejcHpwyJSWx3wwnoBBnUFXyrze8mL7CXW7KYO6uTb0x_0tQn2LOoMzdGLoIu5Wb3SOGml-gU7rVgzYrMxLtJqVymhTaOodZ9vio9AQZjEun0IktILA0IahyDHUiNhUGQ04r3TgWJNXM3S7l3A4g_v9F5xWXX7wQWdU5FdoMejPeyExbRRIrNfjjgjpMqkYD2zJlaQ0SD2Px9RhKnC4ZLFvKSdQtq0sP9FswWWWIzSynhB6dSZKOdeomRd5eoNwKoWb-ErTGN9yExYHer-W8tRTeiMjnMRqI1JDF62rahlRLSNbRRXUEUAdVVC3kVfjG_346pF26H9a3v7b8gkdhfPJOBoPp6M7dAx3SnFecI-au80-fdAkYycfzST6Apdc0RY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+isomorphic+cross-brain+region+interaction+network+for+cross-subject+EEG+emotion+recognition&rft.jtitle=Knowledge-based+systems&rft.au=An%2C+Yanling&rft.au=Hu%2C+Shaohai&rft.au=Liu%2C+Shuaiqi&rft.au=Gu%2C+Zhihui&rft.date=2025-10-09&rft.issn=0950-7051&rft.volume=327&rft.spage=114115&rft_id=info:doi/10.1016%2Fj.knosys.2025.114115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2025_114115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |