Spatiotemporal isomorphic cross-brain region interaction network for cross-subject EEG emotion recognition

Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer interaction. The intricate architecture and functioning of the brain, along with substantial individual variances among participants, and existing...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 327; p. 114115
Main Authors An, Yanling, Hu, Shaohai, Liu, Shuaiqi, Gu, Zhihui, Zhang, Yuan, Zhang, Yudong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 09.10.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer interaction. The intricate architecture and functioning of the brain, along with substantial individual variances among participants, and existing methods are difficult to simultaneously model the temporal and spatial consistency of brain area interactions and EEG signals between subjects, which limits the generalization performance of the model in cross-subject contexts. To meet this challenge, we propose a cross-subject EEG emotion recognition model based on a spatiotemporal isomorphic cross-brain region interaction network (STCBI-Nets). In this model, we first designed the cross-brain region interaction module (CBI), which dynamically models the interaction relationship between different brain regions through a multi-head cross-attention mechanism, captures heterogeneous information flow between local brain regions, enhances the long-range dependency modeling ability of EEG time series, and effectively integrates the collaborative activation mode of the whole brain. Secondly, we design a spatiotemporal isomorphic adaptive fusion (STIAF) block, which adopts a dual branch structure to mine hierarchical and complementary information of spatiotemporal features and introduces a negative sample weighted contrastive learning mechanism and dynamic fusion strategy to improve the robustness and discriminative power of cross-view shared representations, thereby enhancing the model's adaptability to different subject features. Finally, we propose a joint optimized adaptive domain alignment strategy (JOADAS), which combines global adversarial learning with an adaptive class center alignment mechanism to reduce domain bias between different subjects from both macro and micro levels, enhance intra-class aggregation and inter-class separability, and improve the model's discriminative performance and cross-subject generalization ability. Extensive experiments on multiple datasets demonstrated the superior performance of the proposed algorithm, and STCBI-Nets outperform state-of-the-art (SOTA) methods and exhibit stronger generalization ability and stability in cross-subject EEG emotion recognition tasks.
AbstractList Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer interaction. The intricate architecture and functioning of the brain, along with substantial individual variances among participants, and existing methods are difficult to simultaneously model the temporal and spatial consistency of brain area interactions and EEG signals between subjects, which limits the generalization performance of the model in cross-subject contexts. To meet this challenge, we propose a cross-subject EEG emotion recognition model based on a spatiotemporal isomorphic cross-brain region interaction network (STCBI-Nets). In this model, we first designed the cross-brain region interaction module (CBI), which dynamically models the interaction relationship between different brain regions through a multi-head cross-attention mechanism, captures heterogeneous information flow between local brain regions, enhances the long-range dependency modeling ability of EEG time series, and effectively integrates the collaborative activation mode of the whole brain. Secondly, we design a spatiotemporal isomorphic adaptive fusion (STIAF) block, which adopts a dual branch structure to mine hierarchical and complementary information of spatiotemporal features and introduces a negative sample weighted contrastive learning mechanism and dynamic fusion strategy to improve the robustness and discriminative power of cross-view shared representations, thereby enhancing the model's adaptability to different subject features. Finally, we propose a joint optimized adaptive domain alignment strategy (JOADAS), which combines global adversarial learning with an adaptive class center alignment mechanism to reduce domain bias between different subjects from both macro and micro levels, enhance intra-class aggregation and inter-class separability, and improve the model's discriminative performance and cross-subject generalization ability. Extensive experiments on multiple datasets demonstrated the superior performance of the proposed algorithm, and STCBI-Nets outperform state-of-the-art (SOTA) methods and exhibit stronger generalization ability and stability in cross-subject EEG emotion recognition tasks.
ArticleNumber 114115
Author An, Yanling
Zhang, Yuan
Liu, Shuaiqi
Zhang, Yudong
Gu, Zhihui
Hu, Shaohai
Author_xml – sequence: 1
  givenname: Yanling
  surname: An
  fullname: An, Yanling
  organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China
– sequence: 2
  givenname: Shaohai
  surname: Hu
  fullname: Hu, Shaohai
  organization: School of Computer Science and Technology, Beijing Jiaotong University, Beijing 100044, China
– sequence: 3
  givenname: Shuaiqi
  orcidid: 0000-0001-7520-8226
  surname: Liu
  fullname: Liu, Shuaiqi
  email: shdkj-1918@163.com
  organization: College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
– sequence: 4
  givenname: Zhihui
  surname: Gu
  fullname: Gu, Zhihui
  organization: College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
– sequence: 5
  givenname: Yuan
  surname: Zhang
  fullname: Zhang, Yuan
  organization: College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
– sequence: 6
  givenname: Yudong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yudong
  organization: School of Informatics, University of Leicester, Leicester LE1 7RH, UK
BookMark eNp9kDFPwzAUhD0UiRb4Bwz-Awm2EyfNgoSqUpAqMQCzZTvPxWljR7YB9d_TNJ2Z3g13p3vfAs2cd4DQPSU5JbR66PK98_EYc0YYzyktKeUzNCcNJ1lNOL1Gixg7QghjdDlH3fsgk_UJ-sEHecA2-t6H4ctqrIOPMVNBWocD7Kx32LoEQeo0agfp14c9Nj5crPFbdaATXq83GHp_dgXQfufsqG_RlZGHCHeXe4M-n9cfq5ds-7Z5XT1tM814nTKpSq4MrxqqKqMYa6CuK80KbpqiUlwviSkaQ6khy5YxVnJSSE7qWkraVK0xxQ0qp97zqgBGDMH2MhwFJWJkJDoxMRIjIzExOsUepxictv1YCCJqC05Da09PJNF6-3_BH8aTeJU
Cites_doi 10.1109/TAFFC.2024.3349770
10.1109/TNSRE.2023.3236687
10.1016/j.eswa.2023.121889
10.3389/fpsyg.2021.809459
10.1109/TCDS.2020.2999337
10.3390/brainsci13070977
10.1109/TAFFC.2020.2994159
10.1016/j.neucom.2023.126262
10.1016/j.bspc.2022.103687
10.1016/j.bspc.2024.106716
10.1016/j.compbiomed.2024.108973
10.1109/TAFFC.2017.2660485
10.1016/j.patrec.2020.07.015
10.1016/j.knosys.2025.113613
10.1109/TCYB.2025.3550191
10.1016/j.knosys.2023.111137
10.1016/j.knosys.2024.112599
10.1109/T-AFFC.2011.15
10.1109/TAFFC.2020.3013711
10.1016/j.knosys.2023.111199
10.1109/TCYB.2018.2797176
10.1109/TMM.2024.3385676
10.3389/fnhum.2020.605246
10.1016/j.neucom.2021.02.048
10.1016/j.inffus.2023.102156
10.1016/j.inffus.2023.101945
10.1109/TAFFC.2020.3025777
10.1016/j.aei.2024.102522
10.1109/TAFFC.2018.2817622
10.1109/TAFFC.2022.3199075
10.1109/TETC.2021.3087174
10.1109/TCSS.2022.3188891
10.1016/j.bspc.2023.105422
10.1109/JBHI.2021.3083525
10.1016/j.compbiomed.2022.106463
10.1109/TAFFC.2024.3514635
10.1016/j.knosys.2024.112826
10.1016/j.physa.2022.127700
10.1109/TAFFC.2025.3535542
10.1109/TCDS.2024.3470248
10.1016/j.knosys.2023.110756
10.1016/j.bspc.2023.104835
10.1109/TAFFC.2019.2922912
10.1109/JBHI.2022.3210158
10.1017/S0140525X11000446
10.1016/j.knosys.2023.110372
10.1109/TAFFC.2022.3170428
10.1109/JBHI.2024.3404146
10.1016/j.tics.2017.03.002
10.1109/TAMD.2015.2431497
10.1177/1534582304267187
10.1016/j.neubiorev.2005.01.002
10.1109/TAFFC.2024.3433470
10.1109/ACCESS.2019.2891579
10.1109/TAFFC.2022.3164516
10.1109/TIM.2025.3533618
10.3389/fnins.2021.778488
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.114115
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_114115
S0950705125011608
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFXIZ
AGQPQ
AGRNS
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
RIG
SBC
SET
UHS
WUQ
ID FETCH-LOGICAL-c257t-ab45bf5691b6fb229e776c235f936b5c80f39f11f08d2224503a5077aa196dff3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Wed Aug 06 19:34:13 EDT 2025
Sat Aug 23 17:11:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Domain adaptation
Emotion recognition
Transformer
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-ab45bf5691b6fb229e776c235f936b5c80f39f11f08d2224503a5077aa196dff3
ORCID 0000-0001-7520-8226
0000-0002-4870-1493
ParticipantIDs crossref_primary_10_1016_j_knosys_2025_114115
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_114115
PublicationCentury 2000
PublicationDate 2025-10-09
PublicationDateYYYYMMDD 2025-10-09
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-09
  day: 09
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wan, Yu, Dai, Li, Hong (bib0024) 2024
Liu, Wang, Jiang (bib0017) 2024; 305
Ganin, Lempitsky (bib0031) 2015
Chen, Li, Jin, Li (bib0037) 2021
Li, Wang, Zheng (bib0063) 2020; 13
Liu, Luo, Zhu (bib0054) 2024; Early Access
Zhu, Ding, Zhu (bib0041) 2022; 76
She, Zhang, Fang (bib0043) 2023; 72
Sun, Cui, Yu (bib0021) 2022; 13
Li, Chen, Chen, Zhang (bib0067) 2024; 15
Li, Chen, Li (bib0042) 2022; 14
Wei, Liu, Li (bib0020) 2023; 152
Xu, Chen, Li (bib0057) 2025; 309
Wang, Zhang, Tang (bib0045) 2024; 38
Guo, Wang (bib0056) 2024; 238
Su, Zhu, Song, Chang (bib0065) 2023; 13
Lin, Xu, Liang (bib0068) 2025; Early Access
Liu, Yu, Zhao (bib0002) 2017; 9
Li, Bian, Zhao, Wang, Schuller (bib0016) 2024; 104
Zhao, Wang, Cheng (bib0014) 2023; 17
Zheng, Liu, Lu, Lu, Cichocki (bib0034) 2018; 49
Decety, Jackson (bib0008) 2004; 3
Gong, Li, Zhang, Chen (bib0005) 2023; 84
Chang, Zhang, Qian, Lin (bib0047) 2025
Ma, Zhao, Meng (bib0026) 2023; 31
Bao, Zhuang, Tong (bib0027) 2021; 14
Li, Ren, Li (bib0051) 2022; 10
Górriz, Álvarez-Illán, Álvarez-Marquina (bib0009) 2023; 100
Ye, Zhang, Teng (bib0046) 2024; 16
Shen, Liu, Hu, Zhang, Song (bib0022) 2022; 14
An, Hu, Liu (bib0049) 2025
Cao, He, Yang (bib0039) 2022; 12
Cheng, Liu, Wang, Feng, Jia (bib0058) 2025; Early Access
Fan, Xie, Tao (bib0015) 2024; 87
Liu, Wang, Zhao (bib0013) 2021; 26
Yang, Yao, Zhang (bib0006) 2024
Guo, Li, Liu, Ma, Wang (bib0055) 2024; 283
Song, Zheng, Song, Cui (bib0059) 2018; 11
Guo, Cai, An (bib0019) 2022; 603
Deng, Li, Hong (bib0023) 2024; 97
Li, Fu, Li, Shi, Zheng (bib0064) 2021; 447
Chen, Jin, Li (bib0038) 2021; 15
Jin, Du, He, Cai, Li (bib0011) 2024; 26
Li, Ren, Ge (bib0052) 2023; 276
Si, Huang, Liang (bib0053) 2024; 181
Du, Ma, Zhang (bib0050) 2020; 13
Zhong, Wang, Miao (bib0061) 2020; 13
Tao, Li, Song (bib0018) 2020; 14
Liu, Wang, An (bib0003) 2023; 265
Lindquist, Wager, Kober (bib0007) 2012; 35
Zhou, Li, Li (bib0012) 2023; 544
Dai, Li, Wu (bib0070) 2025; 74
Fan, Zhu, Tao (bib0025) 2024
Hu, Wang, Bi (bib0030) 2024; 18
Chen, Xu, Qin (bib0048) 2025; Early Access
Li, Zhu, Jin (bib0040) 2022; 26
Zheng, Lu (bib0033) 2015; 7
Song, Zheng, Liu (bib0062) 2021; 10
Liu, Wang, An (bib0028) 2024; 283
Li, Zheng, Wang, Zong, Cui (bib0010) 2019; 13
Paul, Harding, Mendl, Reviews (bib0001) 2005; 29
Pessoa (bib0029) 2017; 21
Song, Zheng, Lu (bib0036) 2019; 7
An, Hu, Liu (bib0044) 2024
Koelstra, Muhl, Soleymani (bib0035) 2011; 3
Song, Liu, Zheng, Zong, Cui (bib0060) 2020; 34
Fan, Wang, Huang (bib0004) 2024; 61
Shi, Chen, Li, Zhang (bib0066) 2025; 17
Chen, Chen, Zhang (bib0069) 2025; 55
Ji, Chai, Yu, Pang, Zhang (bib0032) 2020; 140
Yang (10.1016/j.knosys.2025.114115_bib0006) 2024
Zhao (10.1016/j.knosys.2025.114115_bib0014) 2023; 17
Li (10.1016/j.knosys.2025.114115_bib0052) 2023; 276
Chen (10.1016/j.knosys.2025.114115_bib0048) 2025; Early Access
Su (10.1016/j.knosys.2025.114115_bib0065) 2023; 13
Fan (10.1016/j.knosys.2025.114115_bib0004) 2024; 61
An (10.1016/j.knosys.2025.114115_bib0044) 2024
Paul (10.1016/j.knosys.2025.114115_bib0001) 2005; 29
Hu (10.1016/j.knosys.2025.114115_bib0030) 2024; 18
Li (10.1016/j.knosys.2025.114115_bib0016) 2024; 104
Lin (10.1016/j.knosys.2025.114115_bib0068) 2025; Early Access
Li (10.1016/j.knosys.2025.114115_bib0051) 2022; 10
Li (10.1016/j.knosys.2025.114115_bib0063) 2020; 13
Pessoa (10.1016/j.knosys.2025.114115_bib0029) 2017; 21
Wei (10.1016/j.knosys.2025.114115_bib0020) 2023; 152
Zheng (10.1016/j.knosys.2025.114115_bib0033) 2015; 7
Cao (10.1016/j.knosys.2025.114115_bib0039) 2022; 12
Li (10.1016/j.knosys.2025.114115_bib0067) 2024; 15
Chen (10.1016/j.knosys.2025.114115_bib0069) 2025; 55
Dai (10.1016/j.knosys.2025.114115_bib0070) 2025; 74
Li (10.1016/j.knosys.2025.114115_bib0064) 2021; 447
Guo (10.1016/j.knosys.2025.114115_bib0019) 2022; 603
Chen (10.1016/j.knosys.2025.114115_bib0038) 2021; 15
Decety (10.1016/j.knosys.2025.114115_bib0008) 2004; 3
Koelstra (10.1016/j.knosys.2025.114115_bib0035) 2011; 3
Song (10.1016/j.knosys.2025.114115_bib0060) 2020; 34
Chen (10.1016/j.knosys.2025.114115_bib0037) 2021
Gong (10.1016/j.knosys.2025.114115_bib0005) 2023; 84
Shi (10.1016/j.knosys.2025.114115_bib0066) 2025; 17
She (10.1016/j.knosys.2025.114115_bib0043) 2023; 72
Ji (10.1016/j.knosys.2025.114115_bib0032) 2020; 140
Chang (10.1016/j.knosys.2025.114115_bib0047) 2025
Guo (10.1016/j.knosys.2025.114115_bib0055) 2024; 283
Song (10.1016/j.knosys.2025.114115_bib0062) 2021; 10
Li (10.1016/j.knosys.2025.114115_bib0010) 2019; 13
Deng (10.1016/j.knosys.2025.114115_bib0023) 2024; 97
Li (10.1016/j.knosys.2025.114115_bib0042) 2022; 14
Song (10.1016/j.knosys.2025.114115_bib0036) 2019; 7
Zhong (10.1016/j.knosys.2025.114115_bib0061) 2020; 13
Fan (10.1016/j.knosys.2025.114115_bib0025) 2024
Wang (10.1016/j.knosys.2025.114115_bib0045) 2024; 38
Du (10.1016/j.knosys.2025.114115_bib0050) 2020; 13
Ye (10.1016/j.knosys.2025.114115_bib0046) 2024; 16
An (10.1016/j.knosys.2025.114115_bib0049) 2025
Liu (10.1016/j.knosys.2025.114115_bib0054) 2024; Early Access
Liu (10.1016/j.knosys.2025.114115_bib0017) 2024; 305
Shen (10.1016/j.knosys.2025.114115_bib0022) 2022; 14
Górriz (10.1016/j.knosys.2025.114115_bib0009) 2023; 100
Guo (10.1016/j.knosys.2025.114115_bib0056) 2024; 238
Ma (10.1016/j.knosys.2025.114115_bib0026) 2023; 31
Song (10.1016/j.knosys.2025.114115_bib0059) 2018; 11
Fan (10.1016/j.knosys.2025.114115_bib0015) 2024; 87
Zhou (10.1016/j.knosys.2025.114115_bib0012) 2023; 544
Ganin (10.1016/j.knosys.2025.114115_bib0031) 2015
Tao (10.1016/j.knosys.2025.114115_bib0018) 2020; 14
Lindquist (10.1016/j.knosys.2025.114115_bib0007) 2012; 35
Jin (10.1016/j.knosys.2025.114115_bib0011) 2024; 26
Liu (10.1016/j.knosys.2025.114115_bib0028) 2024; 283
Bao (10.1016/j.knosys.2025.114115_bib0027) 2021; 14
Liu (10.1016/j.knosys.2025.114115_bib0002) 2017; 9
Liu (10.1016/j.knosys.2025.114115_bib0003) 2023; 265
Sun (10.1016/j.knosys.2025.114115_bib0021) 2022; 13
Si (10.1016/j.knosys.2025.114115_bib0053) 2024; 181
Liu (10.1016/j.knosys.2025.114115_bib0013) 2021; 26
Wan (10.1016/j.knosys.2025.114115_bib0024) 2024
Li (10.1016/j.knosys.2025.114115_bib0040) 2022; 26
Xu (10.1016/j.knosys.2025.114115_bib0057) 2025; 309
Zheng (10.1016/j.knosys.2025.114115_bib0034) 2018; 49
Zhu (10.1016/j.knosys.2025.114115_bib0041) 2022; 76
Cheng (10.1016/j.knosys.2025.114115_bib0058) 2025; Early Access
References_xml – volume: Early Access
  start-page: 1
  year: 2024
  end-page: 13
  ident: bib0054
  article-title: Enhancing EEG-based cross-subject emotion recognition via adaptive source joint domain adaptation
  publication-title: IEEE Trans. Affect. Comput.
– volume: 265
  year: 2023
  ident: bib0003
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl. Based Syst.
– volume: 9
  start-page: 550
  year: 2017
  end-page: 562
  ident: bib0002
  article-title: Real-time movie-induced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect Comput.
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: bib0059
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect Comput.
– year: 2024
  ident: bib0006
  article-title: Automatically extracting and utilizing EEG channel importance based on graph convolutional network for emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 13
  start-page: 977
  year: 2023
  ident: bib0065
  article-title: Subject-independent eeg emotion recognition based on genetically optimized projection dictionary pair learning
  publication-title: Brain Sci.
– volume: 283
  year: 2024
  ident: bib0055
  article-title: Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition
  publication-title: Knowl. Based Syst.
– volume: 17
  start-page: 480
  year: 2025
  end-page: 494
  ident: bib0066
  article-title: Functional connectivity patterns learning for EEG-based emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 14
  year: 2021
  ident: bib0027
  article-title: Two-level domain adaptation neural network for EEG-based emotion recognition
  publication-title: Front. Hum. Neurosci.
– volume: 10
  start-page: 376
  year: 2022
  end-page: 387
  ident: bib0051
  article-title: SSTD: a novel spatio-temporal demographic network for EEG-based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
– year: 2024
  ident: bib0025
  article-title: Multi-level contrastive learning: hierarchical alleviation of heterogeneity in multimodal sentiment analysis
  publication-title: IEEE Trans. Affect. Comput.
– volume: 283
  year: 2024
  ident: bib0028
  article-title: DA-CapsNet: a multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition
  publication-title: Knowl. Based Syst.
– volume: 181
  year: 2024
  ident: bib0053
  article-title: Temporal aware mixed attention-based convolution and transformer network for cross-subject EEG emotion recognition
  publication-title: Comput. Biol. Med
– volume: Early Access
  start-page: 1
  year: 2025
  ident: bib0068
  article-title: Brain region knowledge based dual-stream transformer for EEG emotion recognition
  publication-title: IEEE Trans. Consum. Electron.
– volume: 447
  start-page: 92
  year: 2021
  end-page: 101
  ident: bib0064
  article-title: A novel transferability attention neural network model for EEG emotion recognition
  publication-title: Neurocomputing
– volume: 29
  start-page: 469
  year: 2005
  end-page: 491
  ident: bib0001
  article-title: Measuring emotional processes in animals: the utility of a cognitive approach
  publication-title: Neurosci. Biobehav. Rev.
– volume: 31
  start-page: 936
  year: 2023
  end-page: 943
  ident: bib0026
  article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 38
  start-page: 628
  year: 2024
  end-page: 636
  ident: bib0045
  article-title: DMMR: cross-subject domain generalization for EEG-based emotion recognition via denoising mixed mutual reconstruction
  publication-title: Proc. AAAI Conf. Artif. Intell.
– year: 2024
  ident: bib0024
  article-title: Data generation for enhancing EEG-based emotion recognition: extracting time-invariant and subject-invariant components with contrastive learning
  publication-title: IEEE Trans. Consum. Electron.
– volume: 15
  start-page: 1451
  year: 2024
  end-page: 1462
  ident: bib0067
  article-title: Gusa: graph-based unsupervised subdomain adaptation for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 544
  year: 2023
  ident: bib0012
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
– start-page: 6094
  year: 2021
  end-page: 6097
  ident: bib0037
  article-title: Meernet: multi-source EEG-based emotion recognition network for generalization across subjects and sessions
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 603
  year: 2022
  ident: bib0019
  article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: Early Access
  start-page: 1
  year: 2025
  end-page: 15
  ident: bib0048
  article-title: Cross-subject and Cross-session EEG emotion recognition based on multi-source structural deep clustering
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– year: 2025
  ident: bib0047
  article-title: Multi-scale hyperbolic contrastive learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 14
  start-page: 2512
  year: 2022
  end-page: 2525
  ident: bib0042
  article-title: GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 14
  start-page: 382
  year: 2020
  end-page: 393
  ident: bib0018
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affect Comput.
– volume: 238
  year: 2024
  ident: bib0056
  article-title: Convolutional gated recurrent unit-driven multidimensional dynamic graph neural network for subject-independent emotion recognition
  publication-title: Expert Syst. Appl.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 12
  ident: bib0043
  article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 13
  start-page: 2218
  year: 2022
  end-page: 2228
  ident: bib0021
  article-title: A dual-branch dynamic graph convolution based adaptive transformer feature fusion network for EEG emotion recognition
  publication-title: IEEE Trans. Affect Comput.
– volume: 15
  year: 2021
  ident: bib0038
  article-title: MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 84
  year: 2023
  ident: bib0005
  article-title: EEG emotion recognition using attention-based convolutional transformer neural network
  publication-title: Biomed. Signal. Process. Control
– start-page: 1180
  year: 2015
  end-page: 1189
  ident: bib0031
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: International Conference on Machine Learning
– volume: 26
  start-page: 5964
  year: 2022
  end-page: 5973
  ident: bib0040
  article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 309
  year: 2025
  ident: bib0057
  article-title: The mitigation of heterogeneity in temporal scale among different cortical regions for EEG emotion recognition
  publication-title: Knowl. Based Syst.
– volume: 13
  start-page: 354
  year: 2020
  end-page: 367
  ident: bib0063
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 14
  start-page: 2496
  year: 2022
  end-page: 2511
  ident: bib0022
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 97
  year: 2024
  ident: bib0023
  article-title: A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in eeg data
  publication-title: Biomed. Signal. Process Control
– volume: 3
  start-page: 71
  year: 2004
  end-page: 100
  ident: bib0008
  article-title: The functional architecture of human empathy
  publication-title: Behav. Cogn. Neurosci. Rev.
– start-page: 12981
  year: 2024
  end-page: 12985
  ident: bib0044
  article-title: Cross-subject EEG emotion recognition based on interconnected dynamic domain adaptation
  publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 26
  start-page: 9070
  year: 2024
  end-page: 9082
  ident: bib0011
  article-title: PGCN: pyramidal graph convolutional network for EEG emotion recognition
  publication-title: IEEE Trans. Multimed.
– year: 2025
  ident: bib0049
  article-title: LGDAAN-nets: a local and global domain adversarial attention neural networks for EEG emotion recognition
  publication-title: Knowl. Based Syst.
– volume: 87
  year: 2024
  ident: bib0015
  article-title: ICaps-ResLSTM: improved capsule network and residual LSTM for EEG emotion recognition
  publication-title: Biomed. Signal. Process Control
– volume: 13
  start-page: 1290
  year: 2020
  end-page: 1301
  ident: bib0061
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 76
  year: 2022
  ident: bib0041
  article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition
  publication-title: Biomed. Signal. Process Control
– volume: 34
  start-page: 2701
  year: 2020
  end-page: 2708
  ident: bib0060
  article-title: Instance-adaptive graph for EEG emotion recognition
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: bib0034
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 7
  start-page: 12177
  year: 2019
  end-page: 12191
  ident: bib0036
  article-title: MPED: a multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
– volume: 3
  start-page: 18
  year: 2011
  end-page: 31
  ident: bib0035
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect Comput.
– volume: 140
  start-page: 81
  year: 2020
  end-page: 87
  ident: bib0032
  article-title: Improved prototypical networks for few-shot learning
  publication-title: Pattern Recognit. Lett.
– volume: 100
  year: 2023
  ident: bib0009
  article-title: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends
  publication-title: Inf. Fusion
– volume: 17
  year: 2023
  ident: bib0014
  article-title: A mutli-scale spatial-temporal convolutional neural network with contrastive learning for motor imagery EEG classification
  publication-title: Med. Nov. Technol. Devices
– volume: 74
  year: 2025
  ident: bib0070
  article-title: Contrastive learning of EEG representation of brain area for emotion recognition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 35
  start-page: 121
  year: 2012
  end-page: 143
  ident: bib0007
  article-title: The brain basis of emotion: a meta-analytic review
  publication-title: Behav. Brain Sci.
– volume: 12
  year: 2022
  ident: bib0039
  article-title: Multi-source and multi-representation adaptation for cross-domain electroencephalography emotion recognition
  publication-title: Front. Psychol.
– volume: Early Access
  start-page: 1
  year: 2025
  end-page: 14
  ident: bib0058
  article-title: DISD-Net: a dynamic interactive network with self-distillation for cross-subject multi-modal emotion recognition
  publication-title: IEEE Trans Multimed.
– volume: 10
  start-page: 1399
  year: 2021
  end-page: 1413
  ident: bib0062
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 26
  start-page: 5321
  year: 2021
  end-page: 5331
  ident: bib0013
  article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 13
  start-page: 1528
  year: 2020
  end-page: 1540
  ident: bib0050
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affect Comput.
– volume: 305
  year: 2024
  ident: bib0017
  article-title: MAS-DGAT-Net: a dynamic graph attention network with multibranch feature extraction and staged fusion for EEG emotion recognition
  publication-title: Knowl Based Syst.
– volume: 18
  year: 2024
  ident: bib0030
  article-title: HASTF: a hybrid attention spatio-temporal feature fusion network for EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 55
  start-page: 2038
  year: 2025
  end-page: 2051
  ident: bib0069
  article-title: AdamGraph: adaptive attention-modulated graph network for EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 13
  start-page: 568
  year: 2019
  end-page: 578
  ident: bib0010
  article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 152
  year: 2023
  ident: bib0020
  article-title: TC-net: a transformer capsule network for EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
– volume: 61
  year: 2024
  ident: bib0004
  article-title: Light-weight residual convolution-based capsule network for EEG emotion recognition
  publication-title: Adv. Eng. Inform.
– volume: 21
  start-page: 357
  year: 2017
  end-page: 371
  ident: bib0029
  article-title: A network model of the emotional brain
  publication-title: Trends Cogn. Sci. (Regul. Ed.)
– volume: 16
  start-page: 290
  year: 2024
  end-page: 305
  ident: bib0046
  article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 276
  year: 2023
  ident: bib0052
  article-title: MTLFuseNet: a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning
  publication-title: Knowl Based Syst
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: bib0033
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Aut. Ment Dev
– volume: 104
  year: 2024
  ident: bib0016
  article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition
  publication-title: Inf. Fusion
– volume: 15
  start-page: 1451
  issue: 3
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0067
  article-title: Gusa: graph-based unsupervised subdomain adaptation for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2024.3349770
– volume: 31
  start-page: 936
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0026
  article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3236687
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0043
  article-title: Multisource associate domain adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 238
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0056
  article-title: Convolutional gated recurrent unit-driven multidimensional dynamic graph neural network for subject-independent emotion recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121889
– volume: 12
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0039
  article-title: Multi-source and multi-representation adaptation for cross-domain electroencephalography emotion recognition
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2021.809459
– volume: 13
  start-page: 354
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2025.114115_bib0063
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2999337
– volume: 38
  start-page: 628
  issue: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0045
  article-title: DMMR: cross-subject domain generalization for EEG-based emotion recognition via denoising mixed mutual reconstruction
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 13
  start-page: 977
  issue: 7
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0065
  article-title: Subject-independent eeg emotion recognition based on genetically optimized projection dictionary pair learning
  publication-title: Brain Sci.
  doi: 10.3390/brainsci13070977
– volume: 13
  start-page: 1290
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2025.114115_bib0061
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.2994159
– volume: 544
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0012
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126262
– volume: 76
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0041
  article-title: Multisource wasserstein adaptation coding network for EEG emotion recognition
  publication-title: Biomed. Signal. Process Control
  doi: 10.1016/j.bspc.2022.103687
– volume: 97
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0023
  article-title: A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in eeg data
  publication-title: Biomed. Signal. Process Control
  doi: 10.1016/j.bspc.2024.106716
– volume: 181
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0053
  article-title: Temporal aware mixed attention-based convolution and transformer network for cross-subject EEG emotion recognition
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2024.108973
– volume: 9
  start-page: 550
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2025.114115_bib0002
  article-title: Real-time movie-induced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2017.2660485
– year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0024
  article-title: Data generation for enhancing EEG-based emotion recognition: extracting time-invariant and subject-invariant components with contrastive learning
  publication-title: IEEE Trans. Consum. Electron.
– volume: 140
  start-page: 81
  year: 2020
  ident: 10.1016/j.knosys.2025.114115_bib0032
  article-title: Improved prototypical networks for few-shot learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.015
– year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0049
  article-title: LGDAAN-nets: a local and global domain adversarial attention neural networks for EEG emotion recognition
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2025.113613
– volume: 55
  start-page: 2038
  issue: 5
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0069
  article-title: AdamGraph: adaptive attention-modulated graph network for EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2025.3550191
– volume: 283
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0028
  article-title: DA-CapsNet: a multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.111137
– start-page: 1180
  year: 2015
  ident: 10.1016/j.knosys.2025.114115_bib0031
  article-title: Unsupervised domain adaptation by backpropagation
– volume: 305
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0017
  article-title: MAS-DGAT-Net: a dynamic graph attention network with multibranch feature extraction and staged fusion for EEG emotion recognition
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2024.112599
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2025.114115_bib0035
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/T-AFFC.2011.15
– year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0025
  article-title: Multi-level contrastive learning: hierarchical alleviation of heterogeneity in multimodal sentiment analysis
  publication-title: IEEE Trans. Affect. Comput.
– volume: 18
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0030
  article-title: HASTF: a hybrid attention spatio-temporal feature fusion network for EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 13
  start-page: 1528
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2025.114115_bib0050
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2020.3013711
– volume: 283
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0055
  article-title: Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.111199
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 10.1016/j.knosys.2025.114115_bib0034
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 26
  start-page: 9070
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0011
  article-title: PGCN: pyramidal graph convolutional network for EEG emotion recognition
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2024.3385676
– volume: 14
  year: 2021
  ident: 10.1016/j.knosys.2025.114115_bib0027
  article-title: Two-level domain adaptation neural network for EEG-based emotion recognition
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.605246
– volume: Early Access
  start-page: 1
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0058
  article-title: DISD-Net: a dynamic interactive network with self-distillation for cross-subject multi-modal emotion recognition
  publication-title: IEEE Trans Multimed.
– volume: 447
  start-page: 92
  year: 2021
  ident: 10.1016/j.knosys.2025.114115_bib0064
  article-title: A novel transferability attention neural network model for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.048
– volume: 104
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0016
  article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102156
– volume: 100
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0009
  article-title: Computational approaches to explainable artificial intelligence: advances in theory, applications and trends
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.101945
– volume: 14
  start-page: 382
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2025.114115_bib0018
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2020.3025777
– volume: 61
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0004
  article-title: Light-weight residual convolution-based capsule network for EEG emotion recognition
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102522
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.knosys.2025.114115_bib0059
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 13
  start-page: 2218
  issue: 4
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0021
  article-title: A dual-branch dynamic graph convolution based adaptive transformer feature fusion network for EEG emotion recognition
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/TAFFC.2022.3199075
– volume: 10
  start-page: 1399
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2025.114115_bib0062
  article-title: Graph-embedded convolutional neural network for image-based EEG emotion recognition
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2021.3087174
– volume: Early Access
  start-page: 1
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0048
  article-title: Cross-subject and Cross-session EEG emotion recognition based on multi-source structural deep clustering
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 10
  start-page: 376
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0051
  article-title: SSTD: a novel spatio-temporal demographic network for EEG-based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3188891
– volume: 87
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0015
  article-title: ICaps-ResLSTM: improved capsule network and residual LSTM for EEG emotion recognition
  publication-title: Biomed. Signal. Process Control
  doi: 10.1016/j.bspc.2023.105422
– start-page: 12981
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0044
  article-title: Cross-subject EEG emotion recognition based on interconnected dynamic domain adaptation
– volume: 26
  start-page: 5321
  issue: 11
  year: 2021
  ident: 10.1016/j.knosys.2025.114115_bib0013
  article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2021.3083525
– volume: 17
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0014
  article-title: A mutli-scale spatial-temporal convolutional neural network with contrastive learning for motor imagery EEG classification
  publication-title: Med. Nov. Technol. Devices
– volume: 152
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0020
  article-title: TC-net: a transformer capsule network for EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106463
– volume: Early Access
  start-page: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0054
  article-title: Enhancing EEG-based cross-subject emotion recognition via adaptive source joint domain adaptation
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2024.3514635
– volume: 309
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0057
  article-title: The mitigation of heterogeneity in temporal scale among different cortical regions for EEG emotion recognition
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.112826
– volume: 34
  start-page: 2701
  issue: 03
  year: 2020
  ident: 10.1016/j.knosys.2025.114115_bib0060
  article-title: Instance-adaptive graph for EEG emotion recognition
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 603
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0019
  article-title: A transformer based neural network for emotion recognition and visualizations of crucial EEG channels
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2022.127700
– year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0047
  article-title: Multi-scale hyperbolic contrastive learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2025.3535542
– volume: 17
  start-page: 480
  issue: 3
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0066
  article-title: Functional connectivity patterns learning for EEG-based emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2024.3470248
– volume: Early Access
  start-page: 1
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0068
  article-title: Brain region knowledge based dual-stream transformer for EEG emotion recognition
  publication-title: IEEE Trans. Consum. Electron.
– volume: 276
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0052
  article-title: MTLFuseNet: a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.110756
– volume: 84
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0005
  article-title: EEG emotion recognition using attention-based convolutional transformer neural network
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2023.104835
– volume: 13
  start-page: 568
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2025.114115_bib0010
  article-title: From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2019.2922912
– volume: 26
  start-page: 5964
  issue: 12
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0040
  article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3210158
– volume: 35
  start-page: 121
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2025.114115_bib0007
  article-title: The brain basis of emotion: a meta-analytic review
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X11000446
– volume: 265
  year: 2023
  ident: 10.1016/j.knosys.2025.114115_bib0003
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110372
– volume: 14
  start-page: 2512
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0042
  article-title: GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3170428
– year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0006
  article-title: Automatically extracting and utilizing EEG channel importance based on graph convolutional network for emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2024.3404146
– volume: 21
  start-page: 357
  issue: 5
  year: 2017
  ident: 10.1016/j.knosys.2025.114115_bib0029
  article-title: A network model of the emotional brain
  publication-title: Trends Cogn. Sci. (Regul. Ed.)
  doi: 10.1016/j.tics.2017.03.002
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.knosys.2025.114115_bib0033
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Aut. Ment Dev
  doi: 10.1109/TAMD.2015.2431497
– volume: 3
  start-page: 71
  issue: 2
  year: 2004
  ident: 10.1016/j.knosys.2025.114115_bib0008
  article-title: The functional architecture of human empathy
  publication-title: Behav. Cogn. Neurosci. Rev.
  doi: 10.1177/1534582304267187
– volume: 29
  start-page: 469
  issue: 3
  year: 2005
  ident: 10.1016/j.knosys.2025.114115_bib0001
  article-title: Measuring emotional processes in animals: the utility of a cognitive approach
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2005.01.002
– volume: 16
  start-page: 290
  issue: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114115_bib0046
  article-title: Semi-supervised dual-stream self-attentive adversarial graph contrastive learning for cross-subject eeg-based emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2024.3433470
– volume: 7
  start-page: 12177
  year: 2019
  ident: 10.1016/j.knosys.2025.114115_bib0036
  article-title: MPED: a multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– start-page: 6094
  year: 2021
  ident: 10.1016/j.knosys.2025.114115_bib0037
  article-title: Meernet: multi-source EEG-based emotion recognition network for generalization across subjects and sessions
– volume: 14
  start-page: 2496
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2025.114115_bib0022
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3164516
– volume: 74
  year: 2025
  ident: 10.1016/j.knosys.2025.114115_bib0070
  article-title: Contrastive learning of EEG representation of brain area for emotion recognition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2025.3533618
– volume: 15
  year: 2021
  ident: 10.1016/j.knosys.2025.114115_bib0038
  article-title: MS-MDA: multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.778488
SSID ssj0002218
Score 2.4339213
Snippet Electroencephalogram (EEG) has high temporal resolution and low cost and has become one of the important tools for emotion recognition in human-computer...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114115
SubjectTerms Contrastive learning
Domain adaptation
Emotion recognition
Transformer
Title Spatiotemporal isomorphic cross-brain region interaction network for cross-subject EEG emotion recognition
URI https://dx.doi.org/10.1016/j.knosys.2025.114115
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNHHsJB6rqqWA6FIqdYvsxJZSIKn6GFj47fgVHhJiYExkK9GX891n57s7AK6ZCGKeYIUwL3Jk9l-I6yitiRxJWYyxCJQ50H-cxOMZuZ_TeQsMmlwYI6v0vt_5dOut_Z2eR7O3LMveVJMDba86YFHzM8Em_BKSGCu_ef-SeWBsz_jMYGRGN-lzVuP1XNXrN1O0G1NTNDc0zXF_C0_fQs7oAOx5rgj77nUOQUtWR2C_6cMA_bI8BouplUX7KlMvsFzXr7XGr8yhfQoSpg8END0Y6gqaAhErl84AKycCh5q5-qHrrTAnM3A4vIXStfiBnyKjujoBs9HwaTBGvocCyvVi3CAuCBWKxiwUsRIYM5kkcY4jqlgUC5qngYqYCkMVpIWmCoQGEdewJpzrpVkoFZ2CdlVX8gxAKTgpUqU5TBqQguZMb9ZkLBOldzE8KoIOQA102dKVysgaDdkic1BnBurMQd0BSYNv9uOTZ9qb_znz_N8zL8CuubJqPHYJ2pvVVl5pVrERXWs2XbDTv3sYTz4AejbOZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b4MwELaiZGiXvqumTw9drYDBBsYoSkqax5JEyoZswBJpC1EeQ_99fWCiVqo6dAWfQB_23Wfz3R1Cz4G0uPCoIlQkMYH9FxE6Smsi5_oBp1RaCg70J1MeLtzXJVs2UK_OhQFZpfH9lU8vvbW50jFodtZZ1plpcqDnqw5YDH4mQMJvC6pTsSZqdYejcHpwyJSWx3wwnoBBnUFXyrze8mL7CXW7KYO6uTb0x_0tQn2LOoMzdGLoIu5Wb3SOGml-gU7rVgzYrMxLtJqVymhTaOodZ9vio9AQZjEun0IktILA0IahyDHUiNhUGQ04r3TgWJNXM3S7l3A4g_v9F5xWXX7wQWdU5FdoMejPeyExbRRIrNfjjgjpMqkYD2zJlaQ0SD2Px9RhKnC4ZLFvKSdQtq0sP9FswWWWIzSynhB6dSZKOdeomRd5eoNwKoWb-ErTGN9yExYHer-W8tRTeiMjnMRqI1JDF62rahlRLSNbRRXUEUAdVVC3kVfjG_346pF26H9a3v7b8gkdhfPJOBoPp6M7dAx3SnFecI-au80-fdAkYycfzST6Apdc0RY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+isomorphic+cross-brain+region+interaction+network+for+cross-subject+EEG+emotion+recognition&rft.jtitle=Knowledge-based+systems&rft.au=An%2C+Yanling&rft.au=Hu%2C+Shaohai&rft.au=Liu%2C+Shuaiqi&rft.au=Gu%2C+Zhihui&rft.date=2025-10-09&rft.issn=0950-7051&rft.volume=327&rft.spage=114115&rft_id=info:doi/10.1016%2Fj.knosys.2025.114115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2025_114115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon