Subject-adaptive meta-learning for personalized BCI: A fusion of resting-state EEG signal and task-specific information

Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing brain-computer interfaces (BCI) applications. Deep learning based approaches have demonstrated exceptional proficiency in classifying EEG signa...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 125; p. 103501
Main Authors An, Sion, Kang, Myeongkyun, Kim, Soopil, Chikontwe, Philip, Shen, Li, Park, Sang Hyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing brain-computer interfaces (BCI) applications. Deep learning based approaches have demonstrated exceptional proficiency in classifying EEG signals. However, their applications are often restricted by the large variation of signals between individuals, i.e., inter-subject variability. To mitigate this issue, some studies have employed task-specific (TS) EEG signals recorded from the target subject, thereby improving classification performance. Despite this progress, collecting TS EEG data remains a major limitation due to its time-consuming and labor-intensive process. Conversely, resting state (RS) EEG signals present a promising alternative, as they can be acquired more easily and contain rich subject information. In this paper, we propose a subject-adaptive learning approach using RS EEG signals within a meta-learning framework. The model learns to adapt to each subject using only their RS EEG signals for personalized EEG MI classification. Our learning framework consists of two iterative phases. In the subject-specific training phase, we fuse RS EEG signals with TS information while retaining individual subject characteristics and use the fused signals to adapt the model to the target subject. In the meta-training phase, the model predicts the MI class corresponding to the given TS EEG signals and computes the loss to update the meta-parameters for rapid target adaptation. Our method achieves an average accuracy improvement of 10.05% across two encoders and three benchmark datasets. Furthermore, visualization results show that the fused RS EEG signals combined with TS information exhibit characteristics similar to real TS EEG signals. These findings highlight the potential of leveraging RS EEG signals to advance practical BCI systems. •We introduce subject-adaptive meta-learning for EEG motor imagery classification.•We propose a fusion method of resting state EEG with task-specific information.•We achieve state-of-the-art accuracy on three benchmarks.
AbstractList Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing brain-computer interfaces (BCI) applications. Deep learning based approaches have demonstrated exceptional proficiency in classifying EEG signals. However, their applications are often restricted by the large variation of signals between individuals, i.e., inter-subject variability. To mitigate this issue, some studies have employed task-specific (TS) EEG signals recorded from the target subject, thereby improving classification performance. Despite this progress, collecting TS EEG data remains a major limitation due to its time-consuming and labor-intensive process. Conversely, resting state (RS) EEG signals present a promising alternative, as they can be acquired more easily and contain rich subject information. In this paper, we propose a subject-adaptive learning approach using RS EEG signals within a meta-learning framework. The model learns to adapt to each subject using only their RS EEG signals for personalized EEG MI classification. Our learning framework consists of two iterative phases. In the subject-specific training phase, we fuse RS EEG signals with TS information while retaining individual subject characteristics and use the fused signals to adapt the model to the target subject. In the meta-training phase, the model predicts the MI class corresponding to the given TS EEG signals and computes the loss to update the meta-parameters for rapid target adaptation. Our method achieves an average accuracy improvement of 10.05% across two encoders and three benchmark datasets. Furthermore, visualization results show that the fused RS EEG signals combined with TS information exhibit characteristics similar to real TS EEG signals. These findings highlight the potential of leveraging RS EEG signals to advance practical BCI systems. •We introduce subject-adaptive meta-learning for EEG motor imagery classification.•We propose a fusion method of resting state EEG with task-specific information.•We achieve state-of-the-art accuracy on three benchmarks.
ArticleNumber 103501
Author Shen, Li
Kim, Soopil
Park, Sang Hyun
Kang, Myeongkyun
Chikontwe, Philip
An, Sion
Author_xml – sequence: 1
  givenname: Sion
  orcidid: 0000-0002-3800-7158
  surname: An
  fullname: An, Sion
  email: sion_an@dgist.ac.kr
  organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
– sequence: 2
  givenname: Myeongkyun
  orcidid: 0000-0002-9165-870X
  surname: Kang
  fullname: Kang, Myeongkyun
  email: mkkang@dgist.ac.kr
  organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
– sequence: 3
  givenname: Soopil
  orcidid: 0000-0001-8937-6263
  surname: Kim
  fullname: Kim, Soopil
  email: soopilkim@dgist.ac.kr
  organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
– sequence: 4
  givenname: Philip
  orcidid: 0000-0002-6995-2312
  surname: Chikontwe
  fullname: Chikontwe, Philip
  email: Philip_Chikontwe@hms.harvard.edu
  organization: Department of Biomedical Informatics, Harvard Medical School, MA, United States of America
– sequence: 5
  givenname: Li
  orcidid: 0000-0002-5443-0503
  surname: Shen
  fullname: Shen, Li
  email: Li.Shen@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, PA, United States of America
– sequence: 6
  givenname: Sang Hyun
  orcidid: 0000-0001-7476-1046
  surname: Park
  fullname: Park, Sang Hyun
  email: shpark13135@dgist.ac.kr
  organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
BookMark eNp9kMFOwzAQRH0oEm3hDzj4B1JsJ05TDkilKqVSJQ7A2do4m8qhtSPbLYKvx1U4c1ppNDM7ehMyss4iIXeczTjj5X03M7ZtT2EmmJBJyiXjIzLmsiwzIXN5TSYhdIzxOcv5mHy9neoOdcyggT6aM9IjRsgOCN4au6et87RHH5yFg_nBhj6ttg90SdMH4yx1LfUYYnJmIUJEul5vaDD75KZgGxohfGahR21ao2la5vwRYkrekKsWDgFv_-6UfDyv31cv2e51s10td5kWcp5WFZXkeaF1ATnKRV3gnHNelZjLalFhwQG1KKEFUYmmFFXV1Hny17zQFTZQ5lNSDL3auxA8tqr35gj-W3GmLsBUpwZg6gJMDcBS7HGIYdp2NuhV0Aatxsb4REs1zvxf8At2u3tF
Cites_doi 10.1109/CVPR.2019.00049
10.1109/5.939829
10.1016/j.inffus.2023.03.022
10.1016/j.inffus.2023.102156
10.1002/hbm.23730
10.1109/TBME.2019.2913914
10.1016/j.inffus.2023.102006
10.1088/1741-2552/acfe9c
10.1109/TAMD.2015.2431497
10.1016/j.inffus.2025.103022
10.1109/TCYB.2019.2905157
10.1109/TNNLS.2021.3100583
10.1109/TNSRE.2024.3481886
10.1016/j.inffus.2022.12.019
10.1109/TBME.2021.3137184
10.1109/CVPR.2015.7298682
10.1088/1741-2552/ab405f
10.1088/1741-2552/aace8c
10.1016/j.eswa.2023.121986
10.1016/j.inffus.2025.102971
10.1109/CVPR42600.2020.00874
10.1088/1741-2552/abe39b
10.1038/nature04968
10.1109/LSP.2019.2906824
10.1109/TCDS.2022.3174660
10.1016/j.inffus.2025.103023
10.1109/CVPR52688.2022.01415
10.1038/s42256-023-00714-5
10.1109/JBHI.2023.3238421
10.1109/JBHI.2020.2967128
10.1016/j.patcog.2022.109292
10.26599/BDMA.2024.9020071
10.1109/TNSRE.2023.3259730
10.1093/gigascience/giz002
10.1109/CVPR.2015.7299155
10.1016/j.compbiomed.2023.107235
10.1109/TNSRE.2022.3230250
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2025.103501
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_inffus_2025_103501
S1566253525005731
GrantInformation_xml – fundername: Ministry of Health & Welfare, Republic of Korea
  grantid: RS-2024-00512239)
– fundername: Daegu Digital Innovation Promotion Agency (DIP)
– fundername: Korea government(MSIT)
  grantid: No. RS-2025-02219277
– fundername: Korean National Police Agency
  grantid: 220222M01
  funderid: http://dx.doi.org/10.13039/501100003600
– fundername: National IT Industry Promotion Agency(NIPA)
– fundername: Korea Health Industry Development Institute (KHIDI
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
RIG
ID FETCH-LOGICAL-c257t-a485134cc4a3e59b4e711186e35898e41aec26afa282d6288db3134b14c8eda63
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Thu Jul 31 00:02:22 EDT 2025
Sat Aug 23 17:11:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalography (EEG)
Cross-subject
Meta-learning
Resting state EEG
Brain-computer interfaces (BCI)
Personalized
Motor imagery task
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-a485134cc4a3e59b4e711186e35898e41aec26afa282d6288db3134b14c8eda63
ORCID 0000-0002-5443-0503
0000-0002-9165-870X
0000-0002-6995-2312
0000-0002-3800-7158
0000-0001-7476-1046
0000-0001-8937-6263
ParticipantIDs crossref_primary_10_1016_j_inffus_2025_103501
elsevier_sciencedirect_doi_10_1016_j_inffus_2025_103501
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Bian, Zhao, Wang, Schuller (b3) 2024; 104
Yang, Jia (b31) 2024
F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
Mordvintsev, Olah, Tyka (b22) 2015
Tasci, Tasci, Barua, Dogan, Tuncer, Palmer, Fujita, Acharya (b1) 2023; 96
Jeon, Ko, Yoon, Suk (b14) 2023; 34
P. Chikontwe, S. Kim, S.H. Park, CAD: Co-adapting discriminative features for improved few-shot classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14554–14563.
A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5188–5196.
Houlsby, Giurgiu, Jastrzebski, Morrone, De Laroussilhe, Gesmundo, Attariyan, Gelly (b43) 2019; vol. 97
Zhang, Yu, Wang, Shen, Lu, Liu, Zeng, Hu (b34) 2023; 15
Kim, Chikontwe, An, Park (b40) 2023; 137
Leeb, Brunner, Müller-Putz, Schlögl, Pfurtscheller (b51) 2008; 16
Wang, Zhao, Luo, Zhou, Jiang, Li, Li, Pan (b57) 2025
An, Kim, Chikontwe, Park (b37) 2020
Dai, Zhou, Huang, Wang (b12) 2020; 17
Huang, Choi, Zhou, Zhang, Chen, Pedrycz (b17) 2023
Zhang, Yu, Li, Wu, Zeng, Hu (b30) 2024; 32
He, Wu (b19) 2020; 67
Zhang, Chen, Jian, Yao (b33) 2020; 24
E.J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: Low-Rank Adaptation of Large Language Models, in: International Conference on Learning Representations, 2022.
Zheng, Lu (b54) 2015; 7
Zhong, Wang, Liu, Liao, Yang, Duan, Ding, Sun (b35) 2023; 163
Zhang, Yao, Chen, Wang, Chang, Liu (b13) 2020; 50
H. Yin, P. Molchanov, J.M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N.K. Jha, J. Kautz, Dreaming to distill: Data-free knowledge transfer via deepinversion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8715–8724.
Zhang, Yao, Chen, Monaghan (b32) 2019; 26
Li, Wang, Zhao, Xu, Zhou, Hu (b16) 2023; 31
An, Kim, Chikontwe, Park (b18) 2023
Défossez, Caucheteux, Rapin, Kabeli, King (b5) 2023; 5
Kim, An, Chikontwe, Park (b38) 2021; vol. 35
Jin, Zhu, Shen, Jeon, Camacho (b59) 2025; 8
Xie, Wang, Meng, Yue, Meng, Yi, Jung, Xu, Ming (b36) 2023; 20
Han, Bak, Kim, Choi, Shin, Son, Kam (b15) 2024; 238
Finn, Abbeel, Levine (b21) 2017
Song, Zheng, Liu, Gao (b29) 2022; 31
Ang, Chin, Zhang, Guan (b27) 2008
Hahne, Wilke, Koppe, Farina, Schilling (b55) 2020; 14 - 2020
Q. Sun, Y. Liu, T.S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412.
Kwak, Kong, Song, Kim (b20) 2023; 27
Brunner, Leeb, Müller-Putz, Schlögl, Pfurtscheller (b50) 2008; 16
Jiang, Zhang, Han, Liu, Gwak, Gu, Shankar, Maple (b58) 2025; 44
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b10) 2017; 38
Varone, Boulila, Driss, Kumari, Khan, Gadekallu, Hussain (b9) 2024; 101
Chikontwe, Kang, Luna, Nam, Park (b47) 2024
Yu, Rao, Chen, Liu, Jiang (b56) 2025
Wang, Mao, Liu, Cambria, Ming (b4) 2025; 118
Huang, Wang, Luo (b6) 2025; 119
Park, Lee, Kim, Ryu, Jeong, Sagong, Park (b41) 2022
Demir, Koike-Akino, Wang, Haruna, Erdogmus (b28) 2021
Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli, Lee (b52) 2019; 8
An, Kang, Kim, Chikontwe, Shen, Park (b25) 2024
Liu, Yang, Meng, Zhang, Gao, Zan, Xia (b8) 2025; 119
Santhanam, Ryu, Yu, Afshar, Shenoy (b7) 2006; 442
Yang, Song, Ma, Su, Xie (b48) 2021; 18
Lester, Al-Rfou, Constant (b45) 2021
Nam, Namgung, Jeong, Luna, Kim, Chikontwe, Park (b46) 2024
Autthasan, Chaisaen, Sudhawiyangkul, Rangpong, Kiatthaveephong, Dilokthanakul, Bhakdisongkhram, Phan, Guan, Wilaiprasitporn (b53) 2021; 69
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b11) 2018; 15
Pfurtscheller, Neuper (b26) 2001; 89
Hassan, Hussain, Qaisar (b2) 2023; 92
Wang (10.1016/j.inffus.2025.103501_b57) 2025
10.1016/j.inffus.2025.103501_b49
An (10.1016/j.inffus.2025.103501_b25) 2024
Santhanam (10.1016/j.inffus.2025.103501_b7) 2006; 442
Pfurtscheller (10.1016/j.inffus.2025.103501_b26) 2001; 89
Défossez (10.1016/j.inffus.2025.103501_b5) 2023; 5
Huang (10.1016/j.inffus.2025.103501_b17) 2023
10.1016/j.inffus.2025.103501_b42
Li (10.1016/j.inffus.2025.103501_b3) 2024; 104
10.1016/j.inffus.2025.103501_b44
Autthasan (10.1016/j.inffus.2025.103501_b53) 2021; 69
An (10.1016/j.inffus.2025.103501_b18) 2023
Yu (10.1016/j.inffus.2025.103501_b56) 2025
Lawhern (10.1016/j.inffus.2025.103501_b11) 2018; 15
Mordvintsev (10.1016/j.inffus.2025.103501_b22) 2015
Zhong (10.1016/j.inffus.2025.103501_b35) 2023; 163
Lee (10.1016/j.inffus.2025.103501_b52) 2019; 8
Zheng (10.1016/j.inffus.2025.103501_b54) 2015; 7
10.1016/j.inffus.2025.103501_b39
Jin (10.1016/j.inffus.2025.103501_b59) 2025; 8
Liu (10.1016/j.inffus.2025.103501_b8) 2025; 119
He (10.1016/j.inffus.2025.103501_b19) 2020; 67
Chikontwe (10.1016/j.inffus.2025.103501_b47) 2024
Zhang (10.1016/j.inffus.2025.103501_b34) 2023; 15
Han (10.1016/j.inffus.2025.103501_b15) 2024; 238
Zhang (10.1016/j.inffus.2025.103501_b32) 2019; 26
Ang (10.1016/j.inffus.2025.103501_b27) 2008
Jeon (10.1016/j.inffus.2025.103501_b14) 2023; 34
Finn (10.1016/j.inffus.2025.103501_b21) 2017
Xie (10.1016/j.inffus.2025.103501_b36) 2023; 20
Kim (10.1016/j.inffus.2025.103501_b40) 2023; 137
Yang (10.1016/j.inffus.2025.103501_b48) 2021; 18
Brunner (10.1016/j.inffus.2025.103501_b50) 2008; 16
Yang (10.1016/j.inffus.2025.103501_b31) 2024
Song (10.1016/j.inffus.2025.103501_b29) 2022; 31
Lester (10.1016/j.inffus.2025.103501_b45) 2021
10.1016/j.inffus.2025.103501_b23
10.1016/j.inffus.2025.103501_b24
Houlsby (10.1016/j.inffus.2025.103501_b43) 2019; vol. 97
Kwak (10.1016/j.inffus.2025.103501_b20) 2023; 27
An (10.1016/j.inffus.2025.103501_b37) 2020
Hassan (10.1016/j.inffus.2025.103501_b2) 2023; 92
Varone (10.1016/j.inffus.2025.103501_b9) 2024; 101
Zhang (10.1016/j.inffus.2025.103501_b13) 2020; 50
Leeb (10.1016/j.inffus.2025.103501_b51) 2008; 16
Schirrmeister (10.1016/j.inffus.2025.103501_b10) 2017; 38
Zhang (10.1016/j.inffus.2025.103501_b33) 2020; 24
Zhang (10.1016/j.inffus.2025.103501_b30) 2024; 32
Tasci (10.1016/j.inffus.2025.103501_b1) 2023; 96
Li (10.1016/j.inffus.2025.103501_b16) 2023; 31
Park (10.1016/j.inffus.2025.103501_b41) 2022
Wang (10.1016/j.inffus.2025.103501_b4) 2025; 118
Jiang (10.1016/j.inffus.2025.103501_b58) 2025; 44
Nam (10.1016/j.inffus.2025.103501_b46) 2024
Demir (10.1016/j.inffus.2025.103501_b28) 2021
Kim (10.1016/j.inffus.2025.103501_b38) 2021; vol. 35
Hahne (10.1016/j.inffus.2025.103501_b55) 2020; 14 - 2020
Huang (10.1016/j.inffus.2025.103501_b6) 2025; 119
Dai (10.1016/j.inffus.2025.103501_b12) 2020; 17
References_xml – volume: 118
  year: 2025
  ident: b4
  article-title: Explainable multi-frequency and multi-region fusion model for affective brain-computer interfaces
  publication-title: Inf. Fusion
– start-page: 1061
  year: 2021
  end-page: 1067
  ident: b28
  article-title: EEG-GNN: Graph neural networks for classification of electroencephalogram (EEG) signals
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– volume: 24
  start-page: 2570
  year: 2020
  end-page: 2579
  ident: b33
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Heal. Inform.
– volume: 104
  year: 2024
  ident: b3
  article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition
  publication-title: Inf. Fusion
– start-page: 418
  year: 2024
  end-page: 432
  ident: b31
  article-title: Spatial-temporal mamba network for EEG-based motor imagery classification
  publication-title: International Conference on Advanced Data Mining and Applications
– start-page: 1
  year: 2022
  end-page: 5
  ident: b41
  article-title: A meta-learning approach for medical image registration
  publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging
– volume: 163
  year: 2023
  ident: b35
  article-title: A deep domain adaptation framework with correlation alignment for EEG-based motor imagery classification
  publication-title: Comput. Biol. Med.
– volume: 442
  start-page: 195
  year: 2006
  end-page: 198
  ident: b7
  article-title: A high-performance brain–computer interface
  publication-title: Nature
– volume: 8
  start-page: giz002
  year: 2019
  ident: b52
  article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
– year: 2015
  ident: b22
  article-title: Inceptionism: Going deeper into neural networks
  publication-title: https://Blog.Research.Google/2015/06/Inceptionism-Going-Deeper-Into-Neural.Html
– start-page: 678
  year: 2024
  end-page: 688
  ident: b25
  article-title: Subject-adaptive transfer learning using resting state EEG signals for cross-subject EEG motor imagery classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 18
  year: 2021
  ident: b48
  article-title: A novel motor imagery EEG decoding method based on feature separation
  publication-title: J. Neural Eng.
– start-page: 1
  year: 2025
  end-page: 15
  ident: b56
  article-title: ArmBCIsys: Robot arm BCI system with time–frequency network for multiobject grasping
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 27
  start-page: 1801
  year: 2023
  end-page: 1812
  ident: b20
  article-title: Subject-invariant deep neural networks based on baseline correction for EEG motor imagery BCI
  publication-title: IEEE J. Biomed. Heal. Inform.
– reference: Q. Sun, Y. Liu, T.S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412.
– volume: 31
  start-page: 710
  year: 2022
  end-page: 719
  ident: b29
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: P. Chikontwe, S. Kim, S.H. Park, CAD: Co-adapting discriminative features for improved few-shot classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14554–14563.
– volume: 44
  year: 2025
  ident: b58
  article-title: Fuzzy ensemble-based federated learning for EEG-based emotion recognition in internet of medical things
  publication-title: J. Ind. Inf. Integr.
– volume: 32
  start-page: 3858
  year: 2024
  end-page: 3868
  ident: b30
  article-title: MASER: Enhancing EEG spatial resolution with state space modeling
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 34
  start-page: 739
  year: 2023
  end-page: 749
  ident: b14
  article-title: Mutual information-driven subject-invariant and class-relevant deep representation learning in BCI
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 119
  year: 2025
  ident: b6
  article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training
  publication-title: Inf. Fusion
– volume: 15
  start-page: 1722
  year: 2023
  end-page: 1731
  ident: b34
  article-title: Graph learning with co-teaching for EEG-based motor imagery recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– reference: H. Yin, P. Molchanov, J.M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N.K. Jha, J. Kautz, Dreaming to distill: Data-free knowledge transfer via deepinversion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8715–8724.
– volume: 15
  year: 2018
  ident: b11
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– reference: E.J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: Low-Rank Adaptation of Large Language Models, in: International Conference on Learning Representations, 2022.
– volume: 16
  start-page: 1
  year: 2008
  end-page: 6
  ident: b50
  article-title: BCI competition 2008–graz data set a
  publication-title: Inst. Knowl. Discov. (Lab. Brain-Comput. Interfaces), Graz Univ. Technol.
– volume: 8
  start-page: 712
  year: 2025
  end-page: 725
  ident: b59
  article-title: Data-driven dynamic graph convolution transformer network model for EEG emotion recognition under IoMT environment
  publication-title: Big Data Min. Anal.
– year: 2025
  ident: b57
  article-title: CBraMod: A criss-cross brain foundation model for EEG decoding
  publication-title: The Thirteenth International Conference on Learning Representations
– volume: 5
  start-page: 1097
  year: 2023
  end-page: 1107
  ident: b5
  article-title: Decoding speech perception from non-invasive brain recordings
  publication-title: Nat. Mach. Intell.
– volume: 50
  start-page: 3033
  year: 2020
  end-page: 3044
  ident: b13
  article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition
  publication-title: IEEE Trans. Cybern.
– volume: 20
  year: 2023
  ident: b36
  article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training
  publication-title: J. Neural Eng.
– volume: vol. 97
  start-page: 2790
  year: 2019
  end-page: 2799
  ident: b43
  article-title: Parameter-efficient transfer learning for NLP
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– volume: 67
  start-page: 399
  year: 2020
  end-page: 410
  ident: b19
  article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 14 - 2020
  year: 2020
  ident: b55
  article-title: Longitudinal case study of regression-based hand prosthesis control in daily life
  publication-title: Front. Neurosci.
– volume: 31
  start-page: 1743
  year: 2023
  end-page: 1753
  ident: b16
  article-title: MDTL: A novel and model-agnostic transfer learning strategy for cross-subject motor imagery BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2023
  ident: b17
  article-title: Shallow inception domain adaptation network for EEG-based motor imagery classification
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 101
  year: 2024
  ident: b9
  article-title: Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications
  publication-title: Inf. Fusion
– volume: vol. 35
  start-page: 1808
  year: 2021
  end-page: 1816
  ident: b38
  article-title: Bidirectional rnn-based few shot learning for 3d medical image segmentation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 17
  year: 2020
  ident: b12
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
– volume: 89
  start-page: 1123
  year: 2001
  end-page: 1134
  ident: b26
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
– volume: 238
  year: 2024
  ident: b15
  article-title: META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain–computer interfaces
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 2105
  year: 2021
  end-page: 2118
  ident: b53
  article-title: MIN2Net: End-to-end multi-task learning for subject-independent motor imagery EEG classification
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 232
  year: 2024
  end-page: 242
  ident: b46
  article-title: InstaSAM: Instance-aware segment any nuclei model with point annotations
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 3045
  year: 2021
  end-page: 3059
  ident: b45
  article-title: The power of scale for parameter-efficient prompt tuning
  publication-title: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
– start-page: 285
  year: 2024
  end-page: 295
  ident: b47
  article-title: Low-shot prompt tuning for multiple instance learning based histology classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823.
– volume: 96
  start-page: 252
  year: 2023
  end-page: 268
  ident: b1
  article-title: Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals
  publication-title: Inf. Fusion
– volume: 26
  start-page: 715
  year: 2019
  end-page: 719
  ident: b32
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Process. Lett.
– start-page: 10933
  year: 2020
  end-page: 10938
  ident: b37
  article-title: Few-shot relation learning with attention for EEG-based motor imagery classification
  publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: b27
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
– reference: A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5188–5196.
– volume: 92
  start-page: 466
  year: 2023
  end-page: 478
  ident: b2
  article-title: Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques
  publication-title: Inf. Fusion
– volume: 16
  start-page: 1
  year: 2008
  end-page: 6
  ident: b51
  article-title: BCI competition 2008–graz data set B
  publication-title: Graz Univ. Technol. Austria
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: b10
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 119
  year: 2025
  ident: b8
  article-title: STA-Net: Spatial–temporal alignment network for hybrid EEG-fNIRS decoding
  publication-title: Inf. Fusion
– year: 2023
  ident: b18
  article-title: Dual attention relation network with fine-tuning for few-shot EEG motor imagery classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 137
  year: 2023
  ident: b40
  article-title: Uncertainty-aware semi-supervised few shot segmentation
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b54
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– start-page: 1126
  year: 2017
  end-page: 1135
  ident: b21
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: International Conference on Machine Learning
– year: 2023
  ident: 10.1016/j.inffus.2025.103501_b17
  article-title: Shallow inception domain adaptation network for EEG-based motor imagery classification
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– ident: 10.1016/j.inffus.2025.103501_b24
  doi: 10.1109/CVPR.2019.00049
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  ident: 10.1016/j.inffus.2025.103501_b26
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– start-page: 1
  year: 2025
  ident: 10.1016/j.inffus.2025.103501_b56
  article-title: ArmBCIsys: Robot arm BCI system with time–frequency network for multiobject grasping
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 232
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b46
  article-title: InstaSAM: Instance-aware segment any nuclei model with point annotations
– volume: 96
  start-page: 252
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b1
  article-title: Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.03.022
– volume: 104
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b3
  article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102156
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.inffus.2025.103501_b10
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 67
  start-page: 399
  issue: 2
  year: 2020
  ident: 10.1016/j.inffus.2025.103501_b19
  article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913914
– volume: 101
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b9
  article-title: Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102006
– year: 2015
  ident: 10.1016/j.inffus.2025.103501_b22
  article-title: Inceptionism: Going deeper into neural networks
– volume: 20
  issue: 5
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b36
  article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acfe9c
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.inffus.2025.103501_b54
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 119
  year: 2025
  ident: 10.1016/j.inffus.2025.103501_b6
  article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.103022
– volume: 50
  start-page: 3033
  issue: 7
  year: 2020
  ident: 10.1016/j.inffus.2025.103501_b13
  article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2905157
– volume: 34
  start-page: 739
  issue: 2
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b14
  article-title: Mutual information-driven subject-invariant and class-relevant deep representation learning in BCI
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3100583
– start-page: 418
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b31
  article-title: Spatial-temporal mamba network for EEG-based motor imagery classification
– volume: 32
  start-page: 3858
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b30
  article-title: MASER: Enhancing EEG spatial resolution with state space modeling
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3481886
– volume: 92
  start-page: 466
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b2
  article-title: Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.12.019
– start-page: 3045
  year: 2021
  ident: 10.1016/j.inffus.2025.103501_b45
  article-title: The power of scale for parameter-efficient prompt tuning
– volume: 69
  start-page: 2105
  issue: 6
  year: 2021
  ident: 10.1016/j.inffus.2025.103501_b53
  article-title: MIN2Net: End-to-end multi-task learning for subject-independent motor imagery EEG classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3137184
– ident: 10.1016/j.inffus.2025.103501_b49
  doi: 10.1109/CVPR.2015.7298682
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2025.103501_b12
  article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab405f
– year: 2023
  ident: 10.1016/j.inffus.2025.103501_b18
  article-title: Dual attention relation network with fine-tuning for few-shot EEG motor imagery classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.inffus.2025.103501_b11
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 44
  year: 2025
  ident: 10.1016/j.inffus.2025.103501_b58
  article-title: Fuzzy ensemble-based federated learning for EEG-based emotion recognition in internet of medical things
  publication-title: J. Ind. Inf. Integr.
– volume: 238
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b15
  article-title: META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain–computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121986
– volume: 16
  start-page: 1
  year: 2008
  ident: 10.1016/j.inffus.2025.103501_b50
  article-title: BCI competition 2008–graz data set a
  publication-title: Inst. Knowl. Discov. (Lab. Brain-Comput. Interfaces), Graz Univ. Technol.
– volume: vol. 97
  start-page: 2790
  year: 2019
  ident: 10.1016/j.inffus.2025.103501_b43
  article-title: Parameter-efficient transfer learning for NLP
– volume: 118
  year: 2025
  ident: 10.1016/j.inffus.2025.103501_b4
  article-title: Explainable multi-frequency and multi-region fusion model for affective brain-computer interfaces
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.102971
– ident: 10.1016/j.inffus.2025.103501_b23
  doi: 10.1109/CVPR42600.2020.00874
– volume: 18
  issue: 3
  year: 2021
  ident: 10.1016/j.inffus.2025.103501_b48
  article-title: A novel motor imagery EEG decoding method based on feature separation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abe39b
– volume: 442
  start-page: 195
  issue: 7099
  year: 2006
  ident: 10.1016/j.inffus.2025.103501_b7
  article-title: A high-performance brain–computer interface
  publication-title: Nature
  doi: 10.1038/nature04968
– start-page: 2390
  year: 2008
  ident: 10.1016/j.inffus.2025.103501_b27
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– volume: 26
  start-page: 715
  issue: 5
  year: 2019
  ident: 10.1016/j.inffus.2025.103501_b32
  article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2906824
– volume: 15
  start-page: 1722
  issue: 4
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b34
  article-title: Graph learning with co-teaching for EEG-based motor imagery recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2022.3174660
– volume: 119
  year: 2025
  ident: 10.1016/j.inffus.2025.103501_b8
  article-title: STA-Net: Spatial–temporal alignment network for hybrid EEG-fNIRS decoding
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.103023
– ident: 10.1016/j.inffus.2025.103501_b39
  doi: 10.1109/CVPR52688.2022.01415
– volume: vol. 35
  start-page: 1808
  year: 2021
  ident: 10.1016/j.inffus.2025.103501_b38
  article-title: Bidirectional rnn-based few shot learning for 3d medical image segmentation
– volume: 5
  start-page: 1097
  issue: 10
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b5
  article-title: Decoding speech perception from non-invasive brain recordings
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00714-5
– year: 2025
  ident: 10.1016/j.inffus.2025.103501_b57
  article-title: CBraMod: A criss-cross brain foundation model for EEG decoding
– start-page: 285
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b47
  article-title: Low-shot prompt tuning for multiple instance learning based histology classification
– volume: 27
  start-page: 1801
  issue: 4
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b20
  article-title: Subject-invariant deep neural networks based on baseline correction for EEG motor imagery BCI
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2023.3238421
– volume: 24
  start-page: 2570
  issue: 9
  year: 2020
  ident: 10.1016/j.inffus.2025.103501_b33
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2020.2967128
– volume: 137
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b40
  article-title: Uncertainty-aware semi-supervised few shot segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109292
– volume: 8
  start-page: 712
  issue: 3
  year: 2025
  ident: 10.1016/j.inffus.2025.103501_b59
  article-title: Data-driven dynamic graph convolution transformer network model for EEG emotion recognition under IoMT environment
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2024.9020071
– volume: 16
  start-page: 1
  year: 2008
  ident: 10.1016/j.inffus.2025.103501_b51
  article-title: BCI competition 2008–graz data set B
  publication-title: Graz Univ. Technol. Austria
– start-page: 1061
  year: 2021
  ident: 10.1016/j.inffus.2025.103501_b28
  article-title: EEG-GNN: Graph neural networks for classification of electroencephalogram (EEG) signals
– volume: 31
  start-page: 1743
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b16
  article-title: MDTL: A novel and model-agnostic transfer learning strategy for cross-subject motor imagery BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3259730
– start-page: 1126
  year: 2017
  ident: 10.1016/j.inffus.2025.103501_b21
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– start-page: 10933
  year: 2020
  ident: 10.1016/j.inffus.2025.103501_b37
  article-title: Few-shot relation learning with attention for EEG-based motor imagery classification
– volume: 8
  start-page: giz002
  issue: 5
  year: 2019
  ident: 10.1016/j.inffus.2025.103501_b52
  article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– ident: 10.1016/j.inffus.2025.103501_b42
  doi: 10.1109/CVPR.2015.7299155
– start-page: 678
  year: 2024
  ident: 10.1016/j.inffus.2025.103501_b25
  article-title: Subject-adaptive transfer learning using resting state EEG signals for cross-subject EEG motor imagery classification
– volume: 163
  year: 2023
  ident: 10.1016/j.inffus.2025.103501_b35
  article-title: A deep domain adaptation framework with correlation alignment for EEG-based motor imagery classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107235
– ident: 10.1016/j.inffus.2025.103501_b44
– volume: 14 - 2020
  year: 2020
  ident: 10.1016/j.inffus.2025.103501_b55
  article-title: Longitudinal case study of regression-based hand prosthesis control in daily life
  publication-title: Front. Neurosci.
– volume: 31
  start-page: 710
  year: 2022
  ident: 10.1016/j.inffus.2025.103501_b29
  article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3230250
– start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2025.103501_b41
  article-title: A meta-learning approach for medical image registration
SSID ssj0017031
Score 2.4329257
Snippet Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103501
SubjectTerms Brain-computer interfaces (BCI)
Cross-subject
Electroencephalography (EEG)
Meta-learning
Motor imagery task
Personalized
Resting state EEG
Title Subject-adaptive meta-learning for personalized BCI: A fusion of resting-state EEG signal and task-specific information
URI https://dx.doi.org/10.1016/j.inffus.2025.103501
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY91N9uWtltZWbRG10NuS3SRSxW2xWwQP_nZndrNFETx4WnaZsGEmmZmE-b4h5DRIzl3jGs0CriQTxrhMulwzrhMVCQh4aYQA5-HI74_F9cSb1EinwsJgWaX1_aVPL7y1_dKy2mzNp9PWA548XGQn8QpWvwLBLgJc5WefqzIPB_nZC85U32coXcHnihovMKJZImm36yH63LOtYX6Fp28hp7dFNm2uSNvldLZJTWc7ZGO4Ilpd7JJ32Ph4k8KkknP0XPRV55LZXhBPFFJSOq_y7Q-t6GVncEHbFOYDBqEzQ7E3B0iyAllEu90riiUd8FuZKZrLxQtDMCYWFFFLsoqm3CPjXvex02e2lwJLYVPCLASkVlykqZBce1EidABeLvQ198Io1MKROnV9aSQcwRS2IFYJB_nEEWmolfT5Pqlns0wfEOpLIbjCfoTCE9IxMoWcIQmNq4QMjB81CKtUGM9Lyoy4qiV7jkuVx6jyuFR5gwSVnuMfpo_Bq_858vDfI4_IOrzZu5RjUs_flvoEsos8aRbLp0nW2p372zt8Dm76oy84sNHC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remg5ICitSnn5UI7uNrbzqsSBx9LdwnIpSNzSSWxXgFhW3SBUDvwp_iAziYOoKvVQiWti5zH5MjO2Zr4P4GNaflZeeSdTbVEa75VEpZ3UrrS5oYBX5dzgPDpKBifm22l8OgP3XS8Ml1UG39_69MZbhyO9YM3e5Oys951XHorZSeKG1S8KlZUH7vcNrdumW8M9-sibSu33j3cHMkgLyIowWks0lGloU1UGtYvz0riUfvoscTrO8syZCF2lEvRIKxLLiry21DS-jEyVOYuJpuu-gJeG3AXLJny6e6wriZgQviFpTRLJj9f16zVFZYQaf80s4Srmdvc4aNH8FQ-fxLj9BZgPyanYbt9_EWbc-A3MjR6ZXadLcEOehrduJFqcsKsUl65GGcQnfgrKgcWkS_BvnRU7u8MvYlvQ8xACxJUXLAZCI2XTyiT6_a-Ca0jotji2osbpheTuT65gEoHVlbHzFk6excLvYHZ8NXbvQSRojLYsgGhig5HHipKUMvPKGkx9ki-D7ExYTFqOjqIrXjsvWpMXbPKiNfkypJ2diz-wVlAY-efMD_89cwNeDY5Hh8Xh8OhgBV7TmbCRswqz9a9rt0apTV2uN1AS8OO5sfsA8MALQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-adaptive+meta-learning+for+personalized+BCI%3A+A+fusion+of+resting-state+EEG+signal+and+task-specific+information&rft.jtitle=Information+fusion&rft.au=An%2C+Sion&rft.au=Kang%2C+Myeongkyun&rft.au=Kim%2C+Soopil&rft.au=Chikontwe%2C+Philip&rft.date=2026-01-01&rft.issn=1566-2535&rft.volume=125&rft.spage=103501&rft_id=info:doi/10.1016%2Fj.inffus.2025.103501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2025_103501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon