Subject-adaptive meta-learning for personalized BCI: A fusion of resting-state EEG signal and task-specific information
Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing brain-computer interfaces (BCI) applications. Deep learning based approaches have demonstrated exceptional proficiency in classifying EEG signa...
Saved in:
Published in | Information fusion Vol. 125; p. 103501 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing brain-computer interfaces (BCI) applications. Deep learning based approaches have demonstrated exceptional proficiency in classifying EEG signals. However, their applications are often restricted by the large variation of signals between individuals, i.e., inter-subject variability. To mitigate this issue, some studies have employed task-specific (TS) EEG signals recorded from the target subject, thereby improving classification performance. Despite this progress, collecting TS EEG data remains a major limitation due to its time-consuming and labor-intensive process. Conversely, resting state (RS) EEG signals present a promising alternative, as they can be acquired more easily and contain rich subject information. In this paper, we propose a subject-adaptive learning approach using RS EEG signals within a meta-learning framework. The model learns to adapt to each subject using only their RS EEG signals for personalized EEG MI classification. Our learning framework consists of two iterative phases. In the subject-specific training phase, we fuse RS EEG signals with TS information while retaining individual subject characteristics and use the fused signals to adapt the model to the target subject. In the meta-training phase, the model predicts the MI class corresponding to the given TS EEG signals and computes the loss to update the meta-parameters for rapid target adaptation. Our method achieves an average accuracy improvement of 10.05% across two encoders and three benchmark datasets. Furthermore, visualization results show that the fused RS EEG signals combined with TS information exhibit characteristics similar to real TS EEG signals. These findings highlight the potential of leveraging RS EEG signals to advance practical BCI systems.
•We introduce subject-adaptive meta-learning for EEG motor imagery classification.•We propose a fusion method of resting state EEG with task-specific information.•We achieve state-of-the-art accuracy on three benchmarks. |
---|---|
AbstractList | Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing brain-computer interfaces (BCI) applications. Deep learning based approaches have demonstrated exceptional proficiency in classifying EEG signals. However, their applications are often restricted by the large variation of signals between individuals, i.e., inter-subject variability. To mitigate this issue, some studies have employed task-specific (TS) EEG signals recorded from the target subject, thereby improving classification performance. Despite this progress, collecting TS EEG data remains a major limitation due to its time-consuming and labor-intensive process. Conversely, resting state (RS) EEG signals present a promising alternative, as they can be acquired more easily and contain rich subject information. In this paper, we propose a subject-adaptive learning approach using RS EEG signals within a meta-learning framework. The model learns to adapt to each subject using only their RS EEG signals for personalized EEG MI classification. Our learning framework consists of two iterative phases. In the subject-specific training phase, we fuse RS EEG signals with TS information while retaining individual subject characteristics and use the fused signals to adapt the model to the target subject. In the meta-training phase, the model predicts the MI class corresponding to the given TS EEG signals and computes the loss to update the meta-parameters for rapid target adaptation. Our method achieves an average accuracy improvement of 10.05% across two encoders and three benchmark datasets. Furthermore, visualization results show that the fused RS EEG signals combined with TS information exhibit characteristics similar to real TS EEG signals. These findings highlight the potential of leveraging RS EEG signals to advance practical BCI systems.
•We introduce subject-adaptive meta-learning for EEG motor imagery classification.•We propose a fusion method of resting state EEG with task-specific information.•We achieve state-of-the-art accuracy on three benchmarks. |
ArticleNumber | 103501 |
Author | Shen, Li Kim, Soopil Park, Sang Hyun Kang, Myeongkyun Chikontwe, Philip An, Sion |
Author_xml | – sequence: 1 givenname: Sion orcidid: 0000-0002-3800-7158 surname: An fullname: An, Sion email: sion_an@dgist.ac.kr organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea – sequence: 2 givenname: Myeongkyun orcidid: 0000-0002-9165-870X surname: Kang fullname: Kang, Myeongkyun email: mkkang@dgist.ac.kr organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea – sequence: 3 givenname: Soopil orcidid: 0000-0001-8937-6263 surname: Kim fullname: Kim, Soopil email: soopilkim@dgist.ac.kr organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea – sequence: 4 givenname: Philip orcidid: 0000-0002-6995-2312 surname: Chikontwe fullname: Chikontwe, Philip email: Philip_Chikontwe@hms.harvard.edu organization: Department of Biomedical Informatics, Harvard Medical School, MA, United States of America – sequence: 5 givenname: Li orcidid: 0000-0002-5443-0503 surname: Shen fullname: Shen, Li email: Li.Shen@pennmedicine.upenn.edu organization: Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, PA, United States of America – sequence: 6 givenname: Sang Hyun orcidid: 0000-0001-7476-1046 surname: Park fullname: Park, Sang Hyun email: shpark13135@dgist.ac.kr organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea |
BookMark | eNp9kMFOwzAQRH0oEm3hDzj4B1JsJ05TDkilKqVSJQ7A2do4m8qhtSPbLYKvx1U4c1ppNDM7ehMyss4iIXeczTjj5X03M7ZtT2EmmJBJyiXjIzLmsiwzIXN5TSYhdIzxOcv5mHy9neoOdcyggT6aM9IjRsgOCN4au6et87RHH5yFg_nBhj6ttg90SdMH4yx1LfUYYnJmIUJEul5vaDD75KZgGxohfGahR21ao2la5vwRYkrekKsWDgFv_-6UfDyv31cv2e51s10td5kWcp5WFZXkeaF1ATnKRV3gnHNelZjLalFhwQG1KKEFUYmmFFXV1Hny17zQFTZQ5lNSDL3auxA8tqr35gj-W3GmLsBUpwZg6gJMDcBS7HGIYdp2NuhV0Aatxsb4REs1zvxf8At2u3tF |
Cites_doi | 10.1109/CVPR.2019.00049 10.1109/5.939829 10.1016/j.inffus.2023.03.022 10.1016/j.inffus.2023.102156 10.1002/hbm.23730 10.1109/TBME.2019.2913914 10.1016/j.inffus.2023.102006 10.1088/1741-2552/acfe9c 10.1109/TAMD.2015.2431497 10.1016/j.inffus.2025.103022 10.1109/TCYB.2019.2905157 10.1109/TNNLS.2021.3100583 10.1109/TNSRE.2024.3481886 10.1016/j.inffus.2022.12.019 10.1109/TBME.2021.3137184 10.1109/CVPR.2015.7298682 10.1088/1741-2552/ab405f 10.1088/1741-2552/aace8c 10.1016/j.eswa.2023.121986 10.1016/j.inffus.2025.102971 10.1109/CVPR42600.2020.00874 10.1088/1741-2552/abe39b 10.1038/nature04968 10.1109/LSP.2019.2906824 10.1109/TCDS.2022.3174660 10.1016/j.inffus.2025.103023 10.1109/CVPR52688.2022.01415 10.1038/s42256-023-00714-5 10.1109/JBHI.2023.3238421 10.1109/JBHI.2020.2967128 10.1016/j.patcog.2022.109292 10.26599/BDMA.2024.9020071 10.1109/TNSRE.2023.3259730 10.1093/gigascience/giz002 10.1109/CVPR.2015.7299155 10.1016/j.compbiomed.2023.107235 10.1109/TNSRE.2022.3230250 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.inffus.2025.103501 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 10_1016_j_inffus_2025_103501 S1566253525005731 |
GrantInformation_xml | – fundername: Ministry of Health & Welfare, Republic of Korea grantid: RS-2024-00512239) – fundername: Daegu Digital Innovation Promotion Agency (DIP) – fundername: Korea government(MSIT) grantid: No. RS-2025-02219277 – fundername: Korean National Police Agency grantid: 220222M01 funderid: http://dx.doi.org/10.13039/501100003600 – fundername: National IT Industry Promotion Agency(NIPA) – fundername: Korea Health Industry Development Institute (KHIDI |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AAYXX AFXIZ AGRNS BNPGV CITATION RIG |
ID | FETCH-LOGICAL-c257t-a485134cc4a3e59b4e711186e35898e41aec26afa282d6288db3134b14c8eda63 |
IEDL.DBID | .~1 |
ISSN | 1566-2535 |
IngestDate | Thu Jul 31 00:02:22 EDT 2025 Sat Aug 23 17:11:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroencephalography (EEG) Cross-subject Meta-learning Resting state EEG Brain-computer interfaces (BCI) Personalized Motor imagery task |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-a485134cc4a3e59b4e711186e35898e41aec26afa282d6288db3134b14c8eda63 |
ORCID | 0000-0002-5443-0503 0000-0002-9165-870X 0000-0002-6995-2312 0000-0002-3800-7158 0000-0001-7476-1046 0000-0001-8937-6263 |
ParticipantIDs | crossref_primary_10_1016_j_inffus_2025_103501 elsevier_sciencedirect_doi_10_1016_j_inffus_2025_103501 |
PublicationCentury | 2000 |
PublicationDate | January 2026 2026-01-00 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
PublicationDecade | 2020 |
PublicationTitle | Information fusion |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Bian, Zhao, Wang, Schuller (b3) 2024; 104 Yang, Jia (b31) 2024 F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823. Mordvintsev, Olah, Tyka (b22) 2015 Tasci, Tasci, Barua, Dogan, Tuncer, Palmer, Fujita, Acharya (b1) 2023; 96 Jeon, Ko, Yoon, Suk (b14) 2023; 34 P. Chikontwe, S. Kim, S.H. Park, CAD: Co-adapting discriminative features for improved few-shot classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14554–14563. A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5188–5196. Houlsby, Giurgiu, Jastrzebski, Morrone, De Laroussilhe, Gesmundo, Attariyan, Gelly (b43) 2019; vol. 97 Zhang, Yu, Wang, Shen, Lu, Liu, Zeng, Hu (b34) 2023; 15 Kim, Chikontwe, An, Park (b40) 2023; 137 Leeb, Brunner, Müller-Putz, Schlögl, Pfurtscheller (b51) 2008; 16 Wang, Zhao, Luo, Zhou, Jiang, Li, Li, Pan (b57) 2025 An, Kim, Chikontwe, Park (b37) 2020 Dai, Zhou, Huang, Wang (b12) 2020; 17 Huang, Choi, Zhou, Zhang, Chen, Pedrycz (b17) 2023 Zhang, Yu, Li, Wu, Zeng, Hu (b30) 2024; 32 He, Wu (b19) 2020; 67 Zhang, Chen, Jian, Yao (b33) 2020; 24 E.J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: Low-Rank Adaptation of Large Language Models, in: International Conference on Learning Representations, 2022. Zheng, Lu (b54) 2015; 7 Zhong, Wang, Liu, Liao, Yang, Duan, Ding, Sun (b35) 2023; 163 Zhang, Yao, Chen, Wang, Chang, Liu (b13) 2020; 50 H. Yin, P. Molchanov, J.M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N.K. Jha, J. Kautz, Dreaming to distill: Data-free knowledge transfer via deepinversion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8715–8724. Zhang, Yao, Chen, Monaghan (b32) 2019; 26 Li, Wang, Zhao, Xu, Zhou, Hu (b16) 2023; 31 An, Kim, Chikontwe, Park (b18) 2023 Défossez, Caucheteux, Rapin, Kabeli, King (b5) 2023; 5 Kim, An, Chikontwe, Park (b38) 2021; vol. 35 Jin, Zhu, Shen, Jeon, Camacho (b59) 2025; 8 Xie, Wang, Meng, Yue, Meng, Yi, Jung, Xu, Ming (b36) 2023; 20 Han, Bak, Kim, Choi, Shin, Son, Kam (b15) 2024; 238 Finn, Abbeel, Levine (b21) 2017 Song, Zheng, Liu, Gao (b29) 2022; 31 Ang, Chin, Zhang, Guan (b27) 2008 Hahne, Wilke, Koppe, Farina, Schilling (b55) 2020; 14 - 2020 Q. Sun, Y. Liu, T.S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412. Kwak, Kong, Song, Kim (b20) 2023; 27 Brunner, Leeb, Müller-Putz, Schlögl, Pfurtscheller (b50) 2008; 16 Jiang, Zhang, Han, Liu, Gwak, Gu, Shankar, Maple (b58) 2025; 44 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (b10) 2017; 38 Varone, Boulila, Driss, Kumari, Khan, Gadekallu, Hussain (b9) 2024; 101 Chikontwe, Kang, Luna, Nam, Park (b47) 2024 Yu, Rao, Chen, Liu, Jiang (b56) 2025 Wang, Mao, Liu, Cambria, Ming (b4) 2025; 118 Huang, Wang, Luo (b6) 2025; 119 Park, Lee, Kim, Ryu, Jeong, Sagong, Park (b41) 2022 Demir, Koike-Akino, Wang, Haruna, Erdogmus (b28) 2021 Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli, Lee (b52) 2019; 8 An, Kang, Kim, Chikontwe, Shen, Park (b25) 2024 Liu, Yang, Meng, Zhang, Gao, Zan, Xia (b8) 2025; 119 Santhanam, Ryu, Yu, Afshar, Shenoy (b7) 2006; 442 Yang, Song, Ma, Su, Xie (b48) 2021; 18 Lester, Al-Rfou, Constant (b45) 2021 Nam, Namgung, Jeong, Luna, Kim, Chikontwe, Park (b46) 2024 Autthasan, Chaisaen, Sudhawiyangkul, Rangpong, Kiatthaveephong, Dilokthanakul, Bhakdisongkhram, Phan, Guan, Wilaiprasitporn (b53) 2021; 69 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b11) 2018; 15 Pfurtscheller, Neuper (b26) 2001; 89 Hassan, Hussain, Qaisar (b2) 2023; 92 Wang (10.1016/j.inffus.2025.103501_b57) 2025 10.1016/j.inffus.2025.103501_b49 An (10.1016/j.inffus.2025.103501_b25) 2024 Santhanam (10.1016/j.inffus.2025.103501_b7) 2006; 442 Pfurtscheller (10.1016/j.inffus.2025.103501_b26) 2001; 89 Défossez (10.1016/j.inffus.2025.103501_b5) 2023; 5 Huang (10.1016/j.inffus.2025.103501_b17) 2023 10.1016/j.inffus.2025.103501_b42 Li (10.1016/j.inffus.2025.103501_b3) 2024; 104 10.1016/j.inffus.2025.103501_b44 Autthasan (10.1016/j.inffus.2025.103501_b53) 2021; 69 An (10.1016/j.inffus.2025.103501_b18) 2023 Yu (10.1016/j.inffus.2025.103501_b56) 2025 Lawhern (10.1016/j.inffus.2025.103501_b11) 2018; 15 Mordvintsev (10.1016/j.inffus.2025.103501_b22) 2015 Zhong (10.1016/j.inffus.2025.103501_b35) 2023; 163 Lee (10.1016/j.inffus.2025.103501_b52) 2019; 8 Zheng (10.1016/j.inffus.2025.103501_b54) 2015; 7 10.1016/j.inffus.2025.103501_b39 Jin (10.1016/j.inffus.2025.103501_b59) 2025; 8 Liu (10.1016/j.inffus.2025.103501_b8) 2025; 119 He (10.1016/j.inffus.2025.103501_b19) 2020; 67 Chikontwe (10.1016/j.inffus.2025.103501_b47) 2024 Zhang (10.1016/j.inffus.2025.103501_b34) 2023; 15 Han (10.1016/j.inffus.2025.103501_b15) 2024; 238 Zhang (10.1016/j.inffus.2025.103501_b32) 2019; 26 Ang (10.1016/j.inffus.2025.103501_b27) 2008 Jeon (10.1016/j.inffus.2025.103501_b14) 2023; 34 Finn (10.1016/j.inffus.2025.103501_b21) 2017 Xie (10.1016/j.inffus.2025.103501_b36) 2023; 20 Kim (10.1016/j.inffus.2025.103501_b40) 2023; 137 Yang (10.1016/j.inffus.2025.103501_b48) 2021; 18 Brunner (10.1016/j.inffus.2025.103501_b50) 2008; 16 Yang (10.1016/j.inffus.2025.103501_b31) 2024 Song (10.1016/j.inffus.2025.103501_b29) 2022; 31 Lester (10.1016/j.inffus.2025.103501_b45) 2021 10.1016/j.inffus.2025.103501_b23 10.1016/j.inffus.2025.103501_b24 Houlsby (10.1016/j.inffus.2025.103501_b43) 2019; vol. 97 Kwak (10.1016/j.inffus.2025.103501_b20) 2023; 27 An (10.1016/j.inffus.2025.103501_b37) 2020 Hassan (10.1016/j.inffus.2025.103501_b2) 2023; 92 Varone (10.1016/j.inffus.2025.103501_b9) 2024; 101 Zhang (10.1016/j.inffus.2025.103501_b13) 2020; 50 Leeb (10.1016/j.inffus.2025.103501_b51) 2008; 16 Schirrmeister (10.1016/j.inffus.2025.103501_b10) 2017; 38 Zhang (10.1016/j.inffus.2025.103501_b33) 2020; 24 Zhang (10.1016/j.inffus.2025.103501_b30) 2024; 32 Tasci (10.1016/j.inffus.2025.103501_b1) 2023; 96 Li (10.1016/j.inffus.2025.103501_b16) 2023; 31 Park (10.1016/j.inffus.2025.103501_b41) 2022 Wang (10.1016/j.inffus.2025.103501_b4) 2025; 118 Jiang (10.1016/j.inffus.2025.103501_b58) 2025; 44 Nam (10.1016/j.inffus.2025.103501_b46) 2024 Demir (10.1016/j.inffus.2025.103501_b28) 2021 Kim (10.1016/j.inffus.2025.103501_b38) 2021; vol. 35 Hahne (10.1016/j.inffus.2025.103501_b55) 2020; 14 - 2020 Huang (10.1016/j.inffus.2025.103501_b6) 2025; 119 Dai (10.1016/j.inffus.2025.103501_b12) 2020; 17 |
References_xml | – volume: 118 year: 2025 ident: b4 article-title: Explainable multi-frequency and multi-region fusion model for affective brain-computer interfaces publication-title: Inf. Fusion – start-page: 1061 year: 2021 end-page: 1067 ident: b28 article-title: EEG-GNN: Graph neural networks for classification of electroencephalogram (EEG) signals publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society – volume: 24 start-page: 2570 year: 2020 end-page: 2579 ident: b33 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Heal. Inform. – volume: 104 year: 2024 ident: b3 article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition publication-title: Inf. Fusion – start-page: 418 year: 2024 end-page: 432 ident: b31 article-title: Spatial-temporal mamba network for EEG-based motor imagery classification publication-title: International Conference on Advanced Data Mining and Applications – start-page: 1 year: 2022 end-page: 5 ident: b41 article-title: A meta-learning approach for medical image registration publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging – volume: 163 year: 2023 ident: b35 article-title: A deep domain adaptation framework with correlation alignment for EEG-based motor imagery classification publication-title: Comput. Biol. Med. – volume: 442 start-page: 195 year: 2006 end-page: 198 ident: b7 article-title: A high-performance brain–computer interface publication-title: Nature – volume: 8 start-page: giz002 year: 2019 ident: b52 article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience – year: 2015 ident: b22 article-title: Inceptionism: Going deeper into neural networks publication-title: https://Blog.Research.Google/2015/06/Inceptionism-Going-Deeper-Into-Neural.Html – start-page: 678 year: 2024 end-page: 688 ident: b25 article-title: Subject-adaptive transfer learning using resting state EEG signals for cross-subject EEG motor imagery classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 18 year: 2021 ident: b48 article-title: A novel motor imagery EEG decoding method based on feature separation publication-title: J. Neural Eng. – start-page: 1 year: 2025 end-page: 15 ident: b56 article-title: ArmBCIsys: Robot arm BCI system with time–frequency network for multiobject grasping publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 27 start-page: 1801 year: 2023 end-page: 1812 ident: b20 article-title: Subject-invariant deep neural networks based on baseline correction for EEG motor imagery BCI publication-title: IEEE J. Biomed. Heal. Inform. – reference: Q. Sun, Y. Liu, T.S. Chua, B. Schiele, Meta-transfer learning for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 403–412. – volume: 31 start-page: 710 year: 2022 end-page: 719 ident: b29 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: P. Chikontwe, S. Kim, S.H. Park, CAD: Co-adapting discriminative features for improved few-shot classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14554–14563. – volume: 44 year: 2025 ident: b58 article-title: Fuzzy ensemble-based federated learning for EEG-based emotion recognition in internet of medical things publication-title: J. Ind. Inf. Integr. – volume: 32 start-page: 3858 year: 2024 end-page: 3868 ident: b30 article-title: MASER: Enhancing EEG spatial resolution with state space modeling publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 34 start-page: 739 year: 2023 end-page: 749 ident: b14 article-title: Mutual information-driven subject-invariant and class-relevant deep representation learning in BCI publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 119 year: 2025 ident: b6 article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training publication-title: Inf. Fusion – volume: 15 start-page: 1722 year: 2023 end-page: 1731 ident: b34 article-title: Graph learning with co-teaching for EEG-based motor imagery recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – reference: H. Yin, P. Molchanov, J.M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N.K. Jha, J. Kautz, Dreaming to distill: Data-free knowledge transfer via deepinversion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8715–8724. – volume: 15 year: 2018 ident: b11 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – reference: E.J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: Low-Rank Adaptation of Large Language Models, in: International Conference on Learning Representations, 2022. – volume: 16 start-page: 1 year: 2008 end-page: 6 ident: b50 article-title: BCI competition 2008–graz data set a publication-title: Inst. Knowl. Discov. (Lab. Brain-Comput. Interfaces), Graz Univ. Technol. – volume: 8 start-page: 712 year: 2025 end-page: 725 ident: b59 article-title: Data-driven dynamic graph convolution transformer network model for EEG emotion recognition under IoMT environment publication-title: Big Data Min. Anal. – year: 2025 ident: b57 article-title: CBraMod: A criss-cross brain foundation model for EEG decoding publication-title: The Thirteenth International Conference on Learning Representations – volume: 5 start-page: 1097 year: 2023 end-page: 1107 ident: b5 article-title: Decoding speech perception from non-invasive brain recordings publication-title: Nat. Mach. Intell. – volume: 50 start-page: 3033 year: 2020 end-page: 3044 ident: b13 article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition publication-title: IEEE Trans. Cybern. – volume: 20 year: 2023 ident: b36 article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training publication-title: J. Neural Eng. – volume: vol. 97 start-page: 2790 year: 2019 end-page: 2799 ident: b43 article-title: Parameter-efficient transfer learning for NLP publication-title: Proceedings of the 36th International Conference on Machine Learning – volume: 67 start-page: 399 year: 2020 end-page: 410 ident: b19 article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. – volume: 14 - 2020 year: 2020 ident: b55 article-title: Longitudinal case study of regression-based hand prosthesis control in daily life publication-title: Front. Neurosci. – volume: 31 start-page: 1743 year: 2023 end-page: 1753 ident: b16 article-title: MDTL: A novel and model-agnostic transfer learning strategy for cross-subject motor imagery BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2023 ident: b17 article-title: Shallow inception domain adaptation network for EEG-based motor imagery classification publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 101 year: 2024 ident: b9 article-title: Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications publication-title: Inf. Fusion – volume: vol. 35 start-page: 1808 year: 2021 end-page: 1816 ident: b38 article-title: Bidirectional rnn-based few shot learning for 3d medical image segmentation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 17 year: 2020 ident: b12 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: b26 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE – volume: 238 year: 2024 ident: b15 article-title: META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain–computer interfaces publication-title: Expert Syst. Appl. – volume: 69 start-page: 2105 year: 2021 end-page: 2118 ident: b53 article-title: MIN2Net: End-to-end multi-task learning for subject-independent motor imagery EEG classification publication-title: IEEE Trans. Biomed. Eng. – start-page: 232 year: 2024 end-page: 242 ident: b46 article-title: InstaSAM: Instance-aware segment any nuclei model with point annotations publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 3045 year: 2021 end-page: 3059 ident: b45 article-title: The power of scale for parameter-efficient prompt tuning publication-title: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing – start-page: 285 year: 2024 end-page: 295 ident: b47 article-title: Low-shot prompt tuning for multiple instance learning based histology classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–823. – volume: 96 start-page: 252 year: 2023 end-page: 268 ident: b1 article-title: Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals publication-title: Inf. Fusion – volume: 26 start-page: 715 year: 2019 end-page: 719 ident: b32 article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis publication-title: IEEE Signal Process. Lett. – start-page: 10933 year: 2020 end-page: 10938 ident: b37 article-title: Few-shot relation learning with attention for EEG-based motor imagery classification publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems – start-page: 2390 year: 2008 end-page: 2397 ident: b27 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) – reference: A. Mahendran, A. Vedaldi, Understanding deep image representations by inverting them, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5188–5196. – volume: 92 start-page: 466 year: 2023 end-page: 478 ident: b2 article-title: Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques publication-title: Inf. Fusion – volume: 16 start-page: 1 year: 2008 end-page: 6 ident: b51 article-title: BCI competition 2008–graz data set B publication-title: Graz Univ. Technol. Austria – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: b10 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 119 year: 2025 ident: b8 article-title: STA-Net: Spatial–temporal alignment network for hybrid EEG-fNIRS decoding publication-title: Inf. Fusion – year: 2023 ident: b18 article-title: Dual attention relation network with fine-tuning for few-shot EEG motor imagery classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 137 year: 2023 ident: b40 article-title: Uncertainty-aware semi-supervised few shot segmentation publication-title: Pattern Recognit. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b54 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – start-page: 1126 year: 2017 end-page: 1135 ident: b21 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: International Conference on Machine Learning – year: 2023 ident: 10.1016/j.inffus.2025.103501_b17 article-title: Shallow inception domain adaptation network for EEG-based motor imagery classification publication-title: IEEE Trans. Cogn. Dev. Syst. – ident: 10.1016/j.inffus.2025.103501_b24 doi: 10.1109/CVPR.2019.00049 – volume: 89 start-page: 1123 issue: 7 year: 2001 ident: 10.1016/j.inffus.2025.103501_b26 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – start-page: 1 year: 2025 ident: 10.1016/j.inffus.2025.103501_b56 article-title: ArmBCIsys: Robot arm BCI system with time–frequency network for multiobject grasping publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 232 year: 2024 ident: 10.1016/j.inffus.2025.103501_b46 article-title: InstaSAM: Instance-aware segment any nuclei model with point annotations – volume: 96 start-page: 252 year: 2023 ident: 10.1016/j.inffus.2025.103501_b1 article-title: Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.03.022 – volume: 104 year: 2024 ident: 10.1016/j.inffus.2025.103501_b3 article-title: Multi-view domain-adaptive representation learning for EEG-based emotion recognition publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102156 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.inffus.2025.103501_b10 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 67 start-page: 399 issue: 2 year: 2020 ident: 10.1016/j.inffus.2025.103501_b19 article-title: Transfer learning for brain–computer interfaces: A euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2913914 – volume: 101 year: 2024 ident: 10.1016/j.inffus.2025.103501_b9 article-title: Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102006 – year: 2015 ident: 10.1016/j.inffus.2025.103501_b22 article-title: Inceptionism: Going deeper into neural networks – volume: 20 issue: 5 year: 2023 ident: 10.1016/j.inffus.2025.103501_b36 article-title: Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acfe9c – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.inffus.2025.103501_b54 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 119 year: 2025 ident: 10.1016/j.inffus.2025.103501_b6 article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.103022 – volume: 50 start-page: 3033 issue: 7 year: 2020 ident: 10.1016/j.inffus.2025.103501_b13 article-title: Making sense of spatio-temporal preserving representations for EEG-based human intention recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2905157 – volume: 34 start-page: 739 issue: 2 year: 2023 ident: 10.1016/j.inffus.2025.103501_b14 article-title: Mutual information-driven subject-invariant and class-relevant deep representation learning in BCI publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3100583 – start-page: 418 year: 2024 ident: 10.1016/j.inffus.2025.103501_b31 article-title: Spatial-temporal mamba network for EEG-based motor imagery classification – volume: 32 start-page: 3858 year: 2024 ident: 10.1016/j.inffus.2025.103501_b30 article-title: MASER: Enhancing EEG spatial resolution with state space modeling publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3481886 – volume: 92 start-page: 466 year: 2023 ident: 10.1016/j.inffus.2025.103501_b2 article-title: Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.12.019 – start-page: 3045 year: 2021 ident: 10.1016/j.inffus.2025.103501_b45 article-title: The power of scale for parameter-efficient prompt tuning – volume: 69 start-page: 2105 issue: 6 year: 2021 ident: 10.1016/j.inffus.2025.103501_b53 article-title: MIN2Net: End-to-end multi-task learning for subject-independent motor imagery EEG classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3137184 – ident: 10.1016/j.inffus.2025.103501_b49 doi: 10.1109/CVPR.2015.7298682 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.inffus.2025.103501_b12 article-title: HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab405f – year: 2023 ident: 10.1016/j.inffus.2025.103501_b18 article-title: Dual attention relation network with fine-tuning for few-shot EEG motor imagery classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.inffus.2025.103501_b11 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 44 year: 2025 ident: 10.1016/j.inffus.2025.103501_b58 article-title: Fuzzy ensemble-based federated learning for EEG-based emotion recognition in internet of medical things publication-title: J. Ind. Inf. Integr. – volume: 238 year: 2024 ident: 10.1016/j.inffus.2025.103501_b15 article-title: META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain–computer interfaces publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121986 – volume: 16 start-page: 1 year: 2008 ident: 10.1016/j.inffus.2025.103501_b50 article-title: BCI competition 2008–graz data set a publication-title: Inst. Knowl. Discov. (Lab. Brain-Comput. Interfaces), Graz Univ. Technol. – volume: vol. 97 start-page: 2790 year: 2019 ident: 10.1016/j.inffus.2025.103501_b43 article-title: Parameter-efficient transfer learning for NLP – volume: 118 year: 2025 ident: 10.1016/j.inffus.2025.103501_b4 article-title: Explainable multi-frequency and multi-region fusion model for affective brain-computer interfaces publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.102971 – ident: 10.1016/j.inffus.2025.103501_b23 doi: 10.1109/CVPR42600.2020.00874 – volume: 18 issue: 3 year: 2021 ident: 10.1016/j.inffus.2025.103501_b48 article-title: A novel motor imagery EEG decoding method based on feature separation publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abe39b – volume: 442 start-page: 195 issue: 7099 year: 2006 ident: 10.1016/j.inffus.2025.103501_b7 article-title: A high-performance brain–computer interface publication-title: Nature doi: 10.1038/nature04968 – start-page: 2390 year: 2008 ident: 10.1016/j.inffus.2025.103501_b27 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – volume: 26 start-page: 715 issue: 5 year: 2019 ident: 10.1016/j.inffus.2025.103501_b32 article-title: A convolutional recurrent attention model for subject-independent EEG signal analysis publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2906824 – volume: 15 start-page: 1722 issue: 4 year: 2023 ident: 10.1016/j.inffus.2025.103501_b34 article-title: Graph learning with co-teaching for EEG-based motor imagery recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2022.3174660 – volume: 119 year: 2025 ident: 10.1016/j.inffus.2025.103501_b8 article-title: STA-Net: Spatial–temporal alignment network for hybrid EEG-fNIRS decoding publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.103023 – ident: 10.1016/j.inffus.2025.103501_b39 doi: 10.1109/CVPR52688.2022.01415 – volume: vol. 35 start-page: 1808 year: 2021 ident: 10.1016/j.inffus.2025.103501_b38 article-title: Bidirectional rnn-based few shot learning for 3d medical image segmentation – volume: 5 start-page: 1097 issue: 10 year: 2023 ident: 10.1016/j.inffus.2025.103501_b5 article-title: Decoding speech perception from non-invasive brain recordings publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00714-5 – year: 2025 ident: 10.1016/j.inffus.2025.103501_b57 article-title: CBraMod: A criss-cross brain foundation model for EEG decoding – start-page: 285 year: 2024 ident: 10.1016/j.inffus.2025.103501_b47 article-title: Low-shot prompt tuning for multiple instance learning based histology classification – volume: 27 start-page: 1801 issue: 4 year: 2023 ident: 10.1016/j.inffus.2025.103501_b20 article-title: Subject-invariant deep neural networks based on baseline correction for EEG motor imagery BCI publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2023.3238421 – volume: 24 start-page: 2570 issue: 9 year: 2020 ident: 10.1016/j.inffus.2025.103501_b33 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2020.2967128 – volume: 137 year: 2023 ident: 10.1016/j.inffus.2025.103501_b40 article-title: Uncertainty-aware semi-supervised few shot segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109292 – volume: 8 start-page: 712 issue: 3 year: 2025 ident: 10.1016/j.inffus.2025.103501_b59 article-title: Data-driven dynamic graph convolution transformer network model for EEG emotion recognition under IoMT environment publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2024.9020071 – volume: 16 start-page: 1 year: 2008 ident: 10.1016/j.inffus.2025.103501_b51 article-title: BCI competition 2008–graz data set B publication-title: Graz Univ. Technol. Austria – start-page: 1061 year: 2021 ident: 10.1016/j.inffus.2025.103501_b28 article-title: EEG-GNN: Graph neural networks for classification of electroencephalogram (EEG) signals – volume: 31 start-page: 1743 year: 2023 ident: 10.1016/j.inffus.2025.103501_b16 article-title: MDTL: A novel and model-agnostic transfer learning strategy for cross-subject motor imagery BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3259730 – start-page: 1126 year: 2017 ident: 10.1016/j.inffus.2025.103501_b21 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – start-page: 10933 year: 2020 ident: 10.1016/j.inffus.2025.103501_b37 article-title: Few-shot relation learning with attention for EEG-based motor imagery classification – volume: 8 start-page: giz002 issue: 5 year: 2019 ident: 10.1016/j.inffus.2025.103501_b52 article-title: EEG dataset and openbmi toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – ident: 10.1016/j.inffus.2025.103501_b42 doi: 10.1109/CVPR.2015.7299155 – start-page: 678 year: 2024 ident: 10.1016/j.inffus.2025.103501_b25 article-title: Subject-adaptive transfer learning using resting state EEG signals for cross-subject EEG motor imagery classification – volume: 163 year: 2023 ident: 10.1016/j.inffus.2025.103501_b35 article-title: A deep domain adaptation framework with correlation alignment for EEG-based motor imagery classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107235 – ident: 10.1016/j.inffus.2025.103501_b44 – volume: 14 - 2020 year: 2020 ident: 10.1016/j.inffus.2025.103501_b55 article-title: Longitudinal case study of regression-based hand prosthesis control in daily life publication-title: Front. Neurosci. – volume: 31 start-page: 710 year: 2022 ident: 10.1016/j.inffus.2025.103501_b29 article-title: EEG conformer: Convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3230250 – start-page: 1 year: 2022 ident: 10.1016/j.inffus.2025.103501_b41 article-title: A meta-learning approach for medical image registration |
SSID | ssj0017031 |
Score | 2.4329257 |
Snippet | Electroencephalography (EEG) motor imagery (MI) classification is fundamental to understanding the neural mechanisms underlying human movement and advancing... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103501 |
SubjectTerms | Brain-computer interfaces (BCI) Cross-subject Electroencephalography (EEG) Meta-learning Motor imagery task Personalized Resting state EEG |
Title | Subject-adaptive meta-learning for personalized BCI: A fusion of resting-state EEG signal and task-specific information |
URI | https://dx.doi.org/10.1016/j.inffus.2025.103501 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY91N9uWtltZWbRG10NuS3SRSxW2xWwQP_nZndrNFETx4WnaZsGEmmZmE-b4h5DRIzl3jGs0CriQTxrhMulwzrhMVCQh4aYQA5-HI74_F9cSb1EinwsJgWaX1_aVPL7y1_dKy2mzNp9PWA548XGQn8QpWvwLBLgJc5WefqzIPB_nZC85U32coXcHnihovMKJZImm36yH63LOtYX6Fp28hp7dFNm2uSNvldLZJTWc7ZGO4Ilpd7JJ32Ph4k8KkknP0XPRV55LZXhBPFFJSOq_y7Q-t6GVncEHbFOYDBqEzQ7E3B0iyAllEu90riiUd8FuZKZrLxQtDMCYWFFFLsoqm3CPjXvex02e2lwJLYVPCLASkVlykqZBce1EidABeLvQ198Io1MKROnV9aSQcwRS2IFYJB_nEEWmolfT5Pqlns0wfEOpLIbjCfoTCE9IxMoWcIQmNq4QMjB81CKtUGM9Lyoy4qiV7jkuVx6jyuFR5gwSVnuMfpo_Bq_858vDfI4_IOrzZu5RjUs_flvoEsos8aRbLp0nW2p372zt8Dm76oy84sNHC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remg5ICitSnn5UI7uNrbzqsSBx9LdwnIpSNzSSWxXgFhW3SBUDvwp_iAziYOoKvVQiWti5zH5MjO2Zr4P4GNaflZeeSdTbVEa75VEpZ3UrrS5oYBX5dzgPDpKBifm22l8OgP3XS8Ml1UG39_69MZbhyO9YM3e5Oys951XHorZSeKG1S8KlZUH7vcNrdumW8M9-sibSu33j3cHMkgLyIowWks0lGloU1UGtYvz0riUfvoscTrO8syZCF2lEvRIKxLLiry21DS-jEyVOYuJpuu-gJeG3AXLJny6e6wriZgQviFpTRLJj9f16zVFZYQaf80s4Srmdvc4aNH8FQ-fxLj9BZgPyanYbt9_EWbc-A3MjR6ZXadLcEOehrduJFqcsKsUl65GGcQnfgrKgcWkS_BvnRU7u8MvYlvQ8xACxJUXLAZCI2XTyiT6_a-Ca0jotji2osbpheTuT65gEoHVlbHzFk6excLvYHZ8NXbvQSRojLYsgGhig5HHipKUMvPKGkx9ki-D7ExYTFqOjqIrXjsvWpMXbPKiNfkypJ2diz-wVlAY-efMD_89cwNeDY5Hh8Xh8OhgBV7TmbCRswqz9a9rt0apTV2uN1AS8OO5sfsA8MALQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-adaptive+meta-learning+for+personalized+BCI%3A+A+fusion+of+resting-state+EEG+signal+and+task-specific+information&rft.jtitle=Information+fusion&rft.au=An%2C+Sion&rft.au=Kang%2C+Myeongkyun&rft.au=Kim%2C+Soopil&rft.au=Chikontwe%2C+Philip&rft.date=2026-01-01&rft.issn=1566-2535&rft.volume=125&rft.spage=103501&rft_id=info:doi/10.1016%2Fj.inffus.2025.103501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2025_103501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |