Moderate deviations inequalities for Gaussian process regression
Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP reg...
Saved in:
Published in | Journal of applied probability Vol. 61; no. 1; pp. 172 - 197 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9002 1475-6072 |
DOI | 10.1017/jpr.2023.30 |
Cover
Abstract | Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space. |
---|---|
AbstractList | Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space. |
Author | Ryzhov, Ilya O. Li, Jialin |
Author_xml | – sequence: 1 givenname: Jialin surname: Li fullname: Li, Jialin email: jln.li@rotman.utoronto.ca organization: University of Toronto – sequence: 2 givenname: Ilya O. orcidid: 0000-0002-4191-084X surname: Ryzhov fullname: Ryzhov, Ilya O. email: iryzhov@rhsmith.umd.edu organization: University of Maryland |
BookMark | eNptkEFLw0AQhRepYFs9-QcCHiVxZjfJZm9K0SpUvOh52SSTsqXNtruJ4L93SwtevMy7fLw3fDM26V1PjN0iZAgoHzZ7n3HgIhNwwaaYyyItQfIJmwJwTFW8V2wWwgYA80LJKXt8dy15M1DS0rc1g3V9SGxPh9Fs7WApJJ3zydKMIVjTJ3vvGgoh8bT2MSN9zS47sw10c845-3p5_ly8pquP5dviaZU2vJBDqogw72qJqKg2eUsSeQ5S8VqWXIlGFKURVUkVdlyptm4JEEtVgeiokoBizu5OvfGFw0hh0Bs3-j5Oaq64BMV5WUXq_kQ13oXgqdN7b3fG_2gEfVSkoyJ9VKQFRDo902ZXe9uu6a_0P_4XJ3Rpuw |
Cites_doi | 10.1090/S0002-9947-01-02852-5 10.1214/009117905000000378 10.1109/TIT.2011.2182033 10.1214/17-AAP1373 10.1007/s10463-005-0017-5 10.1017/CBO9780511617539 10.1093/imanum/13.1.13 10.1080/01621459.2019.1598868 10.1016/j.jspi.2010.04.018 10.1214/009053606000000795 10.3150/14-BEJ688 10.1007/s11134-019-09632-z 10.1093/biomet/asv002 10.1287/opre.1090.0754 10.1023/A:1008306431147 10.1287/stsy.2022.0096 10.1016/0378-3758(90)90122-B 10.1214/aoap/1019737664 10.1017/jpr.2019.15 10.1109/JBHI.2014.2372777 10.1111/mice.12630 10.1007/s11222-011-9242-3 10.1137/19M1284816 10.1109/WSC.2004.1371364 10.3150/18-BEJ1074 10.1214/aop/1176992269 |
ContentType | Journal Article |
Copyright | The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust |
Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ GUQSH H8D HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
DOI | 10.1017/jpr.2023.30 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ProQuest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Aerospace Database ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced Aerospace Database ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1475-6072 |
EndPage | 197 |
ExternalDocumentID | 10_1017_jpr_2023_30 |
GroupedDBID | -~X 09C 09E 0R~ 2AX 3V. 5GY 7WY 8C1 8FE 8FG 8FL 8G5 8VB AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAKYL AANRG AARAB AASVR AAUKB AAYJJ ABBHK ABEFU ABFAN ABGDZ ABJCF ABJNI ABMWE ABMYL ABQDR ABQTM ABROB ABTAH ABTNK ABUWG ABXAU ABXSQ ABYWD ABZCX ACBMC ACCHT ACGFO ACGFS ACIWK ACMTB ACNCT ACQFJ ACTMH ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZWT ADACV ADBBV ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADODI ADOVH ADOVT ADULT ADVJH AEBAK AEBPU AEGXH AEHGV AELKX AELLO AELPN AENCP AENEX AENGE AEUPB AEYYC AFFUJ AFKQG AFKRA AFLVW AFVYC AFXKK AGBYD AGJUD AGOOT AHQXX AHRGI AI. AIAGR AIGNW AIHIV AIOIP AJAHB AJCYY AJPFC AJQAS AKBRZ AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARAPS ARZZG AS~ ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BDTQF BENPR BESQT BEZIV BGLVJ BHOJU BJBOZ BLZWO BMAJL BPHCQ C-6 CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC CS3 DOHLZ DQDLB DSRWC DU5 DWQXO EBS EBU ECEWR EFSUC EGQIC EJD F5P FEDTE FRNLG FYUFA GIFXF GNUQQ GUQSH HCIFZ HGD HQ6 HVGLF IH6 IOEEP IOO JAA JAAYA JBMMH JBZCM JENOY JHFFW JHPGK JKQEH JLEZI JLXEF JMS JPL JQKCU JSODD JST K1G K60 K6V K6~ K7- KAFGG KCGVB KFECR L6V LHUNA LW7 M0C M0N M2O M7S NIKVX NZEOI O9- P2P P62 PADUT PQBIZ PQQKQ PROAC PTHSS PUASD PYCCK QWB RAMDC RBU RCA RNS ROL RPE S6U SA0 SAAAG T9M TN5 U5U UKHRP UT1 VH1 WFFJZ WH7 YHZ YQT ZDLDU ZGI ZJOSE ZL0 ZMEZD ZY4 ZYDXJ AAWIL AAYXX ABAWQ ABVKB ABVZP ABXHF ACDIW ACDLN ACHJO AECCQ AFZFC AGLNM AIHAF AKMAY ALIPV ALRMG AMVHM CITATION IPSME PHGZM PHGZT PQBZA 7SC 7XB 8AL 8FD 8FK H8D JQ2 L.- L7M L~C L~D MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c257t-9ee14fb7119eba4de71240792b76293c356a386e81f299dbde01169803fe87013 |
IEDL.DBID | 8FG |
ISSN | 0021-9002 |
IngestDate | Sat Aug 23 14:28:52 EDT 2025 Tue Jul 01 02:35:53 EDT 2025 Wed Mar 13 05:54:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gaussian process regression interpolation theory moderate deviations 60G15 62K99 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-9ee14fb7119eba4de71240792b76293c356a386e81f299dbde01169803fe87013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4191-084X |
PQID | 2927092268 |
PQPubID | 30074 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2927092268 crossref_primary_10_1017_jpr_2023_30 cambridge_journals_10_1017_jpr_2023_30 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Sheffield |
PublicationTitle | Journal of applied probability |
PublicationTitleAlternate | J. Appl. Probab |
PublicationYear | 2024 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2018; 28 2023; 13 2019; 93 2015; 16 2010; 58 2006; 34 2015; 102 2019; 56 2006; 58 2011; 12 2010; 140 1961; 99 2012; 58 1987; 15 2014; 20 2021; 36 2020; 8 1993; 13 1990; 26 2000; 10 2019; 25 2020; 115 2012; 22 2016; 22 1998; 13 S002190022300030X_ref32 S002190022300030X_ref11 S002190022300030X_ref33 S002190022300030X_ref30 S002190022300030X_ref36 S002190022300030X_ref14 S002190022300030X_ref15 S002190022300030X_ref37 S002190022300030X_ref12 S002190022300030X_ref34 S002190022300030X_ref35 S002190022300030X_ref13 Ciesielski (S002190022300030X_ref9) 1961; 99 Dembo (S002190022300030X_ref10) 2009 Lederer (S002190022300030X_ref17) 2019 Scott (S002190022300030X_ref26) 2010 Snoek (S002190022300030X_ref28) 2012 Rasmussen (S002190022300030X_ref25) 2006 S002190022300030X_ref18 S002190022300030X_ref19 Pati (S002190022300030X_ref23) 2015; 16 S002190022300030X_ref16 Bull (S002190022300030X_ref6) 2011; 12 S002190022300030X_ref21 S002190022300030X_ref22 S002190022300030X_ref7 S002190022300030X_ref20 S002190022300030X_ref8 S002190022300030X_ref5 S002190022300030X_ref3 S002190022300030X_ref24 S002190022300030X_ref4 S002190022300030X_ref1 S002190022300030X_ref2 S002190022300030X_ref29 S002190022300030X_ref27 Toth (S002190022300030X_ref31) 2020 |
References_xml | – volume: 13 start-page: 59 year: 2023 end-page: 92 article-title: Convergence rates of epsilon-greedy global optimization under radial basis function interpolation publication-title: Stoch. Systems – volume: 56 start-page: 223 year: 2019 end-page: 245 article-title: Cramér type moderate deviations for random fields publication-title: J. Appl. Prob. – volume: 12 start-page: 2879 year: 2011 end-page: 2904 article-title: Convergence rates of efficient global optimization algorithms publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 1113 year: 2016 end-page: 1130 article-title: Excursion probability of Gaussian random fields on sphere publication-title: Bernoulli – volume: 13 start-page: 13 year: 1993 end-page: 27 article-title: Local error estimates for radial basis function interpolation of scattered data publication-title: IMA J. Numer. Anal. – volume: 58 start-page: 21 year: 2006 end-page: 52 article-title: Large deviations for M-estimators publication-title: Ann. Inst. Statist. Math. – volume: 99 start-page: 403 year: 1961 end-page: 413 article-title: Hölder conditions for realizations of Gaussian processes publication-title: Trans. Amer. Math. Soc. – volume: 13 start-page: 455 year: 1998 end-page: 492 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optimization – volume: 28 start-page: 2781 year: 2018 end-page: 2813 article-title: Moderate deviation for random elliptic PDE with small noise publication-title: Ann. Appl. Prob. – volume: 20 start-page: 91 year: 2014 end-page: 99 article-title: A prediction model for functional outcomes in spinal cord disorder patients using Gaussian process regression publication-title: IEEE J. Biomed. Health Inform. – volume: 34 start-page: 2413 year: 2006 end-page: 2429 article-title: Posterior consistency of Gaussian process prior for nonparametric binary regression publication-title: Ann. Statist. – volume: 140 start-page: 3088 year: 2010 end-page: 3095 article-title: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions publication-title: J. Statist. Planning Infer. – volume: 16 start-page: 2837 year: 2015 end-page: 2851 article-title: Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior publication-title: J. Mach. Learning Res. – volume: 58 start-page: 371 year: 2010 end-page: 382 article-title: Stochastic kriging for simulation metamodeling publication-title: Operat. Res. – volume: 22 start-page: 681 year: 2012 end-page: 701 article-title: Design of computer experiments: space filling and beyond publication-title: Statist. Comput. – volume: 34 start-page: 80 year: 2006 end-page: 121 article-title: Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices publication-title: Ann. Prob. – volume: 15 start-page: 274 year: 1987 end-page: 280 article-title: Maximal spacings in several dimensions publication-title: Ann. Prob. – volume: 115 start-page: 920 year: 2020 end-page: 930 article-title: On prediction properties of kriging: uniform error bounds and robustness publication-title: J. Amer. Statist. Assoc. – volume: 26 start-page: 131 year: 1990 end-page: 148 article-title: Minimax and maximin distance designs publication-title: J. Statist. Planning Infer. – volume: 93 start-page: 333 year: 2019 end-page: 349 article-title: Large deviations of bivariate Gaussian extrema publication-title: Queueing Systems – volume: 25 start-page: 2883 year: 2019 end-page: 2919 article-title: A supermartingale approach to Gaussian process based sequential design of experiments publication-title: Bernoulli – volume: 102 start-page: 371 year: 2015 end-page: 380 article-title: Maximum projection designs for computer experiments publication-title: Biometrika – volume: 36 start-page: 264 year: 2021 end-page: 288 article-title: The development of Gaussian process regression for effective regional post-earthquake building damage inference publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 10 start-page: 1 year: 2000 end-page: 74 article-title: On excursion sets, tube formulas and maxima of random fields publication-title: Ann. Appl. Prob. – volume: 58 start-page: 3250 year: 2012 end-page: 3265 article-title: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting publication-title: IEEE Trans. Inform. Theory – volume: 8 start-page: 1310 year: 2020 end-page: 1337 article-title: Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems publication-title: SIAM/ASA J. Uncertain. Quantif. – ident: S002190022300030X_ref21 doi: 10.1090/S0002-9947-01-02852-5 – ident: S002190022300030X_ref7 doi: 10.1214/009117905000000378 – ident: S002190022300030X_ref29 doi: 10.1109/TIT.2011.2182033 – ident: S002190022300030X_ref37 – ident: S002190022300030X_ref20 doi: 10.1214/17-AAP1373 – ident: S002190022300030X_ref3 doi: 10.1007/s10463-005-0017-5 – ident: S002190022300030X_ref35 doi: 10.1017/CBO9780511617539 – ident: S002190022300030X_ref36 doi: 10.1093/imanum/13.1.13 – ident: S002190022300030X_ref34 doi: 10.1080/01621459.2019.1598868 – volume: 12 start-page: 2879 year: 2011 ident: S002190022300030X_ref6 article-title: Convergence rates of efficient global optimization algorithms publication-title: J. Mach. Learn. Res. – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: S002190022300030X_ref17 – ident: S002190022300030X_ref33 doi: 10.1016/j.jspi.2010.04.018 – ident: S002190022300030X_ref11 doi: 10.1214/009053606000000795 – ident: S002190022300030X_ref8 doi: 10.3150/14-BEJ688 – volume: 99 start-page: 403 year: 1961 ident: S002190022300030X_ref9 article-title: Hölder conditions for realizations of Gaussian processes publication-title: Trans. Amer. Math. Soc. – ident: S002190022300030X_ref22 – ident: S002190022300030X_ref32 doi: 10.1007/s11134-019-09632-z – year: 2020 ident: S002190022300030X_ref31 – ident: S002190022300030X_ref16 doi: 10.1093/biomet/asv002 – ident: S002190022300030X_ref2 doi: 10.1287/opre.1090.0754 – ident: S002190022300030X_ref15 doi: 10.1023/A:1008306431147 – volume: 16 start-page: 2837 year: 2015 ident: S002190022300030X_ref23 article-title: Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior publication-title: J. Mach. Learning Res. – ident: S002190022300030X_ref19 doi: 10.1287/stsy.2022.0096 – year: 2010 ident: S002190022300030X_ref26 – ident: S002190022300030X_ref14 doi: 10.1016/0378-3758(90)90122-B – ident: S002190022300030X_ref1 doi: 10.1214/aoap/1019737664 – ident: S002190022300030X_ref5 doi: 10.1017/jpr.2019.15 – ident: S002190022300030X_ref18 doi: 10.1109/JBHI.2014.2372777 – ident: S002190022300030X_ref27 doi: 10.1111/mice.12630 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: S002190022300030X_ref25 – ident: S002190022300030X_ref24 doi: 10.1007/s11222-011-9242-3 – ident: S002190022300030X_ref30 doi: 10.1137/19M1284816 – ident: S002190022300030X_ref12 doi: 10.1109/WSC.2004.1371364 – ident: S002190022300030X_ref4 doi: 10.3150/18-BEJ1074 – ident: S002190022300030X_ref13 doi: 10.1214/aop/1176992269 – start-page: 2951 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: S002190022300030X_ref28 – volume-title: Large Deviations Techniques and Applications year: 2009 ident: S002190022300030X_ref10 |
SSID | ssj0014597 |
Score | 2.345114 |
Snippet | Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 172 |
SubjectTerms | Approximation Continuity (mathematics) Design of experiments Deviation Estimation Finite element method Gaussian process Inequalities Machine learning Original Article Probability Random variables Regression Statistical analysis |
Title | Moderate deviations inequalities for Gaussian process regression |
URI | https://www.cambridge.org/core/product/identifier/S002190022300030X/type/journal_article https://www.proquest.com/docview/2927092268 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8ABwQAxGFMOE7eypkna5MRj2kNImxBi0m5Vk6ZIHLqybv8fp802TUJcm8oHO7Ed5_NnhHopVypKmPRI4huPZZR7SjPfC1Ro2dI0DbXtd57OwsmcvS34whXcSger3PrEylGnS21r5P1ABpEvIVkQT8WPZ6dG2ddVN0LjGDUJRBq7z8VovHtFYFy6ka0WhmCRPC3HLNT_LiwZaEAfLfx5z6pwGJ0OnXMVcUbn6Myliviltu0FOjJ5C51Odzyr5SV6rkaZQbqIUwhwdfENQ95Yt0rCJRhDTorHyaa0vZK4qLsC8Mp81fDX_ArNR8PPwcRzMxE8DYdr7UljCMtURIg0KmGpiYi9k8lAgVeTVFMeJlSERpAMAk2qUmNfWqTwaWbgaBJ6jRr5Mjc3CIuMBxq-B1oQlipuifBBpKaCK2GIaaOHnV5it7PLuEaFRTEoMLYKjKnfRr2t0uKi5sj4-7fOVqF7cXuz3v6_fIdOQA6r4V8d1FivNuYe8oG16oLRB6Rbmb6Lmq_D2fvHL7lKtfI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYABQQHxxgOwhcaPPDwg3tBSWiFEJbYQOw4SQym0CPGn-I2c66RVJcTGmkQ3XD7fne3vvgPYywKlolRIj6a-8UTOA09p4XtMhVYtTfNQ237nVjusd8TNY_A4Bd9lL4ylVZYxcRios1dtz8hrTLLIl1gsxMe9N89OjbK3q-UIDQeLpvn6xC1b_6hxgf93n7Gry4fzuldMFfA0wnPgSWOoyFVEqTQqFZmJqN3VSKYwLkiueRCmPA5NTHMM1ZnKjL2rkLHPc4PgphztTsOMsB2tFZg5u2zf3Y_uLUQgiyGxlvhguUPVQsuo9tKz8qOMH1rC9VjHYTIfTqaDYY67WoSFojglpw5NSzBlulWYb42UXfvLcDIcnoYFKskwpbrjPoKVqmvOxG03wSqYXKcffdudSXquD4G8m2dHuO2uQOdf_LUKle5r16wBifOAaXzOdExFpgIrvY8mNY8DFRtq1uFg5JekWEv9xPHQogQdmFgHJtxfh73SaUnPqXL8_tlW6dCxuTGQNv5-vQuz9YfWbXLbaDc3YQ5tCkc-24LK4P3DbGM1MlA7BQQIPP036n4AfVvwSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moderate+deviations+inequalities+for+Gaussian+process+regression&rft.jtitle=Journal+of+applied+probability&rft.au=Li%2C+Jialin&rft.au=Ryzhov%2C+Ilya+O&rft.date=2024-03-01&rft.pub=Cambridge+University+Press&rft.issn=0021-9002&rft.eissn=1475-6072&rft.volume=61&rft.issue=1&rft.spage=172&rft.epage=197&rft_id=info:doi/10.1017%2Fjpr.2023.30 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9002&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9002&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9002&client=summon |