Moderate deviations inequalities for Gaussian process regression

Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP reg...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied probability Vol. 61; no. 1; pp. 172 - 197
Main Authors Li, Jialin, Ryzhov, Ilya O.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2024
Subjects
Online AccessGet full text
ISSN0021-9002
1475-6072
DOI10.1017/jpr.2023.30

Cover

Abstract Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space.
AbstractList Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We develop a theoretical framework for proving new moderate deviations inequalities on different types of error probabilities that arise in GP regression. Two specific examples of broad interest are the probability of falsely ordering pairs of points (incorrectly estimating one point as being better than another) and the tail probability of the estimation error at an arbitrary point. Our inequalities connect these probabilities to the mesh norm, which measures how well the design points fill the space.
Author Ryzhov, Ilya O.
Li, Jialin
Author_xml – sequence: 1
  givenname: Jialin
  surname: Li
  fullname: Li, Jialin
  email: jln.li@rotman.utoronto.ca
  organization: University of Toronto
– sequence: 2
  givenname: Ilya O.
  orcidid: 0000-0002-4191-084X
  surname: Ryzhov
  fullname: Ryzhov, Ilya O.
  email: iryzhov@rhsmith.umd.edu
  organization: University of Maryland
BookMark eNptkEFLw0AQhRepYFs9-QcCHiVxZjfJZm9K0SpUvOh52SSTsqXNtruJ4L93SwtevMy7fLw3fDM26V1PjN0iZAgoHzZ7n3HgIhNwwaaYyyItQfIJmwJwTFW8V2wWwgYA80LJKXt8dy15M1DS0rc1g3V9SGxPh9Fs7WApJJ3zydKMIVjTJ3vvGgoh8bT2MSN9zS47sw10c845-3p5_ly8pquP5dviaZU2vJBDqogw72qJqKg2eUsSeQ5S8VqWXIlGFKURVUkVdlyptm4JEEtVgeiokoBizu5OvfGFw0hh0Bs3-j5Oaq64BMV5WUXq_kQ13oXgqdN7b3fG_2gEfVSkoyJ9VKQFRDo902ZXe9uu6a_0P_4XJ3Rpuw
Cites_doi 10.1090/S0002-9947-01-02852-5
10.1214/009117905000000378
10.1109/TIT.2011.2182033
10.1214/17-AAP1373
10.1007/s10463-005-0017-5
10.1017/CBO9780511617539
10.1093/imanum/13.1.13
10.1080/01621459.2019.1598868
10.1016/j.jspi.2010.04.018
10.1214/009053606000000795
10.3150/14-BEJ688
10.1007/s11134-019-09632-z
10.1093/biomet/asv002
10.1287/opre.1090.0754
10.1023/A:1008306431147
10.1287/stsy.2022.0096
10.1016/0378-3758(90)90122-B
10.1214/aoap/1019737664
10.1017/jpr.2019.15
10.1109/JBHI.2014.2372777
10.1111/mice.12630
10.1007/s11222-011-9242-3
10.1137/19M1284816
10.1109/WSC.2004.1371364
10.3150/18-BEJ1074
10.1214/aop/1176992269
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
H8D
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1017/jpr.2023.30
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ProQuest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Aerospace Database
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Research Library China
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1475-6072
EndPage 197
ExternalDocumentID 10_1017_jpr_2023_30
GroupedDBID -~X
09C
09E
0R~
2AX
3V.
5GY
7WY
8C1
8FE
8FG
8FL
8G5
8VB
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAKYL
AANRG
AARAB
AASVR
AAUKB
AAYJJ
ABBHK
ABEFU
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABMYL
ABQDR
ABQTM
ABROB
ABTAH
ABTNK
ABUWG
ABXAU
ABXSQ
ABYWD
ABZCX
ACBMC
ACCHT
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACQFJ
ACTMH
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZWT
ADACV
ADBBV
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AELKX
AELLO
AELPN
AENCP
AENEX
AENGE
AEUPB
AEYYC
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFXKK
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AI.
AIAGR
AIGNW
AIHIV
AIOIP
AJAHB
AJCYY
AJPFC
AJQAS
AKBRZ
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARAPS
ARZZG
AS~
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BDTQF
BENPR
BESQT
BEZIV
BGLVJ
BHOJU
BJBOZ
BLZWO
BMAJL
BPHCQ
C-6
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
DOHLZ
DQDLB
DSRWC
DU5
DWQXO
EBS
EBU
ECEWR
EFSUC
EGQIC
EJD
F5P
FEDTE
FRNLG
FYUFA
GIFXF
GNUQQ
GUQSH
HCIFZ
HGD
HQ6
HVGLF
IH6
IOEEP
IOO
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JSODD
JST
K1G
K60
K6V
K6~
K7-
KAFGG
KCGVB
KFECR
L6V
LHUNA
LW7
M0C
M0N
M2O
M7S
NIKVX
NZEOI
O9-
P2P
P62
PADUT
PQBIZ
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
RNS
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UKHRP
UT1
VH1
WFFJZ
WH7
YHZ
YQT
ZDLDU
ZGI
ZJOSE
ZL0
ZMEZD
ZY4
ZYDXJ
AAWIL
AAYXX
ABAWQ
ABVKB
ABVZP
ABXHF
ACDIW
ACDLN
ACHJO
AECCQ
AFZFC
AGLNM
AIHAF
AKMAY
ALIPV
ALRMG
AMVHM
CITATION
IPSME
PHGZM
PHGZT
PQBZA
7SC
7XB
8AL
8FD
8FK
H8D
JQ2
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c257t-9ee14fb7119eba4de71240792b76293c356a386e81f299dbde01169803fe87013
IEDL.DBID 8FG
ISSN 0021-9002
IngestDate Sat Aug 23 14:28:52 EDT 2025
Tue Jul 01 02:35:53 EDT 2025
Wed Mar 13 05:54:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gaussian process regression
interpolation theory
moderate deviations
60G15
62K99
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-9ee14fb7119eba4de71240792b76293c356a386e81f299dbde01169803fe87013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4191-084X
PQID 2927092268
PQPubID 30074
PageCount 26
ParticipantIDs proquest_journals_2927092268
crossref_primary_10_1017_jpr_2023_30
cambridge_journals_10_1017_jpr_2023_30
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Sheffield
PublicationTitle Journal of applied probability
PublicationTitleAlternate J. Appl. Probab
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2018; 28
2023; 13
2019; 93
2015; 16
2010; 58
2006; 34
2015; 102
2019; 56
2006; 58
2011; 12
2010; 140
1961; 99
2012; 58
1987; 15
2014; 20
2021; 36
2020; 8
1993; 13
1990; 26
2000; 10
2019; 25
2020; 115
2012; 22
2016; 22
1998; 13
S002190022300030X_ref32
S002190022300030X_ref11
S002190022300030X_ref33
S002190022300030X_ref30
S002190022300030X_ref36
S002190022300030X_ref14
S002190022300030X_ref15
S002190022300030X_ref37
S002190022300030X_ref12
S002190022300030X_ref34
S002190022300030X_ref35
S002190022300030X_ref13
Ciesielski (S002190022300030X_ref9) 1961; 99
Dembo (S002190022300030X_ref10) 2009
Lederer (S002190022300030X_ref17) 2019
Scott (S002190022300030X_ref26) 2010
Snoek (S002190022300030X_ref28) 2012
Rasmussen (S002190022300030X_ref25) 2006
S002190022300030X_ref18
S002190022300030X_ref19
Pati (S002190022300030X_ref23) 2015; 16
S002190022300030X_ref16
Bull (S002190022300030X_ref6) 2011; 12
S002190022300030X_ref21
S002190022300030X_ref22
S002190022300030X_ref7
S002190022300030X_ref20
S002190022300030X_ref8
S002190022300030X_ref5
S002190022300030X_ref3
S002190022300030X_ref24
S002190022300030X_ref4
S002190022300030X_ref1
S002190022300030X_ref2
S002190022300030X_ref29
S002190022300030X_ref27
Toth (S002190022300030X_ref31) 2020
References_xml – volume: 13
  start-page: 59
  year: 2023
  end-page: 92
  article-title: Convergence rates of epsilon-greedy global optimization under radial basis function interpolation
  publication-title: Stoch. Systems
– volume: 56
  start-page: 223
  year: 2019
  end-page: 245
  article-title: Cramér type moderate deviations for random fields
  publication-title: J. Appl. Prob.
– volume: 12
  start-page: 2879
  year: 2011
  end-page: 2904
  article-title: Convergence rates of efficient global optimization algorithms
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1113
  year: 2016
  end-page: 1130
  article-title: Excursion probability of Gaussian random fields on sphere
  publication-title: Bernoulli
– volume: 13
  start-page: 13
  year: 1993
  end-page: 27
  article-title: Local error estimates for radial basis function interpolation of scattered data
  publication-title: IMA J. Numer. Anal.
– volume: 58
  start-page: 21
  year: 2006
  end-page: 52
  article-title: Large deviations for M-estimators
  publication-title: Ann. Inst. Statist. Math.
– volume: 99
  start-page: 403
  year: 1961
  end-page: 413
  article-title: Hölder conditions for realizations of Gaussian processes
  publication-title: Trans. Amer. Math. Soc.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optimization
– volume: 28
  start-page: 2781
  year: 2018
  end-page: 2813
  article-title: Moderate deviation for random elliptic PDE with small noise
  publication-title: Ann. Appl. Prob.
– volume: 20
  start-page: 91
  year: 2014
  end-page: 99
  article-title: A prediction model for functional outcomes in spinal cord disorder patients using Gaussian process regression
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 34
  start-page: 2413
  year: 2006
  end-page: 2429
  article-title: Posterior consistency of Gaussian process prior for nonparametric binary regression
  publication-title: Ann. Statist.
– volume: 140
  start-page: 3088
  year: 2010
  end-page: 3095
  article-title: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions
  publication-title: J. Statist. Planning Infer.
– volume: 16
  start-page: 2837
  year: 2015
  end-page: 2851
  article-title: Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior
  publication-title: J. Mach. Learning Res.
– volume: 58
  start-page: 371
  year: 2010
  end-page: 382
  article-title: Stochastic kriging for simulation metamodeling
  publication-title: Operat. Res.
– volume: 22
  start-page: 681
  year: 2012
  end-page: 701
  article-title: Design of computer experiments: space filling and beyond
  publication-title: Statist. Comput.
– volume: 34
  start-page: 80
  year: 2006
  end-page: 121
  article-title: Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices
  publication-title: Ann. Prob.
– volume: 15
  start-page: 274
  year: 1987
  end-page: 280
  article-title: Maximal spacings in several dimensions
  publication-title: Ann. Prob.
– volume: 115
  start-page: 920
  year: 2020
  end-page: 930
  article-title: On prediction properties of kriging: uniform error bounds and robustness
  publication-title: J. Amer. Statist. Assoc.
– volume: 26
  start-page: 131
  year: 1990
  end-page: 148
  article-title: Minimax and maximin distance designs
  publication-title: J. Statist. Planning Infer.
– volume: 93
  start-page: 333
  year: 2019
  end-page: 349
  article-title: Large deviations of bivariate Gaussian extrema
  publication-title: Queueing Systems
– volume: 25
  start-page: 2883
  year: 2019
  end-page: 2919
  article-title: A supermartingale approach to Gaussian process based sequential design of experiments
  publication-title: Bernoulli
– volume: 102
  start-page: 371
  year: 2015
  end-page: 380
  article-title: Maximum projection designs for computer experiments
  publication-title: Biometrika
– volume: 36
  start-page: 264
  year: 2021
  end-page: 288
  article-title: The development of Gaussian process regression for effective regional post-earthquake building damage inference
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 10
  start-page: 1
  year: 2000
  end-page: 74
  article-title: On excursion sets, tube formulas and maxima of random fields
  publication-title: Ann. Appl. Prob.
– volume: 58
  start-page: 3250
  year: 2012
  end-page: 3265
  article-title: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting
  publication-title: IEEE Trans. Inform. Theory
– volume: 8
  start-page: 1310
  year: 2020
  end-page: 1337
  article-title: Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems
  publication-title: SIAM/ASA J. Uncertain. Quantif.
– ident: S002190022300030X_ref21
  doi: 10.1090/S0002-9947-01-02852-5
– ident: S002190022300030X_ref7
  doi: 10.1214/009117905000000378
– ident: S002190022300030X_ref29
  doi: 10.1109/TIT.2011.2182033
– ident: S002190022300030X_ref37
– ident: S002190022300030X_ref20
  doi: 10.1214/17-AAP1373
– ident: S002190022300030X_ref3
  doi: 10.1007/s10463-005-0017-5
– ident: S002190022300030X_ref35
  doi: 10.1017/CBO9780511617539
– ident: S002190022300030X_ref36
  doi: 10.1093/imanum/13.1.13
– ident: S002190022300030X_ref34
  doi: 10.1080/01621459.2019.1598868
– volume: 12
  start-page: 2879
  year: 2011
  ident: S002190022300030X_ref6
  article-title: Convergence rates of efficient global optimization algorithms
  publication-title: J. Mach. Learn. Res.
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: S002190022300030X_ref17
– ident: S002190022300030X_ref33
  doi: 10.1016/j.jspi.2010.04.018
– ident: S002190022300030X_ref11
  doi: 10.1214/009053606000000795
– ident: S002190022300030X_ref8
  doi: 10.3150/14-BEJ688
– volume: 99
  start-page: 403
  year: 1961
  ident: S002190022300030X_ref9
  article-title: Hölder conditions for realizations of Gaussian processes
  publication-title: Trans. Amer. Math. Soc.
– ident: S002190022300030X_ref22
– ident: S002190022300030X_ref32
  doi: 10.1007/s11134-019-09632-z
– year: 2020
  ident: S002190022300030X_ref31
– ident: S002190022300030X_ref16
  doi: 10.1093/biomet/asv002
– ident: S002190022300030X_ref2
  doi: 10.1287/opre.1090.0754
– ident: S002190022300030X_ref15
  doi: 10.1023/A:1008306431147
– volume: 16
  start-page: 2837
  year: 2015
  ident: S002190022300030X_ref23
  article-title: Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior
  publication-title: J. Mach. Learning Res.
– ident: S002190022300030X_ref19
  doi: 10.1287/stsy.2022.0096
– year: 2010
  ident: S002190022300030X_ref26
– ident: S002190022300030X_ref14
  doi: 10.1016/0378-3758(90)90122-B
– ident: S002190022300030X_ref1
  doi: 10.1214/aoap/1019737664
– ident: S002190022300030X_ref5
  doi: 10.1017/jpr.2019.15
– ident: S002190022300030X_ref18
  doi: 10.1109/JBHI.2014.2372777
– ident: S002190022300030X_ref27
  doi: 10.1111/mice.12630
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: S002190022300030X_ref25
– ident: S002190022300030X_ref24
  doi: 10.1007/s11222-011-9242-3
– ident: S002190022300030X_ref30
  doi: 10.1137/19M1284816
– ident: S002190022300030X_ref12
  doi: 10.1109/WSC.2004.1371364
– ident: S002190022300030X_ref4
  doi: 10.3150/18-BEJ1074
– ident: S002190022300030X_ref13
  doi: 10.1214/aop/1176992269
– start-page: 2951
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: S002190022300030X_ref28
– volume-title: Large Deviations Techniques and Applications
  year: 2009
  ident: S002190022300030X_ref10
SSID ssj0014597
Score 2.345114
Snippet Gaussian process regression is widely used to model an unknown function on a continuous domain by interpolating a discrete set of observed design points. We...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 172
SubjectTerms Approximation
Continuity (mathematics)
Design of experiments
Deviation
Estimation
Finite element method
Gaussian process
Inequalities
Machine learning
Original Article
Probability
Random variables
Regression
Statistical analysis
Title Moderate deviations inequalities for Gaussian process regression
URI https://www.cambridge.org/core/product/identifier/S002190022300030X/type/journal_article
https://www.proquest.com/docview/2927092268
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8ABwQAxGFMOE7eypkna5MRj2kNImxBi0m5Vk6ZIHLqybv8fp802TUJcm8oHO7Ed5_NnhHopVypKmPRI4huPZZR7SjPfC1Ro2dI0DbXtd57OwsmcvS34whXcSger3PrEylGnS21r5P1ABpEvIVkQT8WPZ6dG2ddVN0LjGDUJRBq7z8VovHtFYFy6ka0WhmCRPC3HLNT_LiwZaEAfLfx5z6pwGJ0OnXMVcUbn6Myliviltu0FOjJ5C51Odzyr5SV6rkaZQbqIUwhwdfENQ95Yt0rCJRhDTorHyaa0vZK4qLsC8Mp81fDX_ArNR8PPwcRzMxE8DYdr7UljCMtURIg0KmGpiYi9k8lAgVeTVFMeJlSERpAMAk2qUmNfWqTwaWbgaBJ6jRr5Mjc3CIuMBxq-B1oQlipuifBBpKaCK2GIaaOHnV5it7PLuEaFRTEoMLYKjKnfRr2t0uKi5sj4-7fOVqF7cXuz3v6_fIdOQA6r4V8d1FivNuYe8oG16oLRB6Rbmb6Lmq_D2fvHL7lKtfI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGYABQQHxxgOwhcaPPDwg3tBSWiFEJbYQOw4SQym0CPGn-I2c66RVJcTGmkQ3XD7fne3vvgPYywKlolRIj6a-8UTOA09p4XtMhVYtTfNQ237nVjusd8TNY_A4Bd9lL4ylVZYxcRios1dtz8hrTLLIl1gsxMe9N89OjbK3q-UIDQeLpvn6xC1b_6hxgf93n7Gry4fzuldMFfA0wnPgSWOoyFVEqTQqFZmJqN3VSKYwLkiueRCmPA5NTHMM1ZnKjL2rkLHPc4PgphztTsOMsB2tFZg5u2zf3Y_uLUQgiyGxlvhguUPVQsuo9tKz8qOMH1rC9VjHYTIfTqaDYY67WoSFojglpw5NSzBlulWYb42UXfvLcDIcnoYFKskwpbrjPoKVqmvOxG03wSqYXKcffdudSXquD4G8m2dHuO2uQOdf_LUKle5r16wBifOAaXzOdExFpgIrvY8mNY8DFRtq1uFg5JekWEv9xPHQogQdmFgHJtxfh73SaUnPqXL8_tlW6dCxuTGQNv5-vQuz9YfWbXLbaDc3YQ5tCkc-24LK4P3DbGM1MlA7BQQIPP036n4AfVvwSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moderate+deviations+inequalities+for+Gaussian+process+regression&rft.jtitle=Journal+of+applied+probability&rft.au=Li%2C+Jialin&rft.au=Ryzhov%2C+Ilya+O&rft.date=2024-03-01&rft.pub=Cambridge+University+Press&rft.issn=0021-9002&rft.eissn=1475-6072&rft.volume=61&rft.issue=1&rft.spage=172&rft.epage=197&rft_id=info:doi/10.1017%2Fjpr.2023.30
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9002&client=summon