Impingement dynamics of droplets on mildly heated walls at initial and later stages
The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall temperature and the Weber number on the water droplet spreading characteristics are considered. A constant contact radius evaporation mode is observ...
Saved in:
Published in | Physics of fluids (1994) Vol. 34; no. 3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0082244 |
Cover
Loading…
Abstract | The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall temperature and the Weber number on the water droplet spreading characteristics are considered. A constant contact radius evaporation mode is observed during most of the evaporation. The wall temperature has little influence on the spreading characteristics at the initial stages. The Weber number greatly influences the spreading characteristics, such as the spreading dynamic behavior, maximum spreading time, spreading height, diameter, and contact angle, at the initial stages. At the later stages of spreading, the heating temperature has a relatively greater impact on the rate of linear change of the residual volume, whereas the impact of the Weber number on that is relatively small. Subsequently, the effect of evaporation on the impingement dynamics is investigated. The spreading characteristics of the water droplet are compared with those of an ionic liquid droplet (which does not experience evaporation), whereby the spreading factor increases and the volume remains unchanged with the increasing contact time in the absence of the evaporation effect. |
---|---|
AbstractList | The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall temperature and the Weber number on the water droplet spreading characteristics are considered. A constant contact radius evaporation mode is observed during most of the evaporation. The wall temperature has little influence on the spreading characteristics at the initial stages. The Weber number greatly influences the spreading characteristics, such as the spreading dynamic behavior, maximum spreading time, spreading height, diameter, and contact angle, at the initial stages. At the later stages of spreading, the heating temperature has a relatively greater impact on the rate of linear change of the residual volume, whereas the impact of the Weber number on that is relatively small. Subsequently, the effect of evaporation on the impingement dynamics is investigated. The spreading characteristics of the water droplet are compared with those of an ionic liquid droplet (which does not experience evaporation), whereby the spreading factor increases and the volume remains unchanged with the increasing contact time in the absence of the evaporation effect. |
Author | Zhang, Fangfang Jin, Tingxiang Li, Guopei Li, Huajie Yuan, Pei Shen, Zhen Li, Xiangyu Tang, Jingdan |
Author_xml | – sequence: 1 givenname: Fangfang orcidid: 0000-0002-0651-522X surname: Zhang fullname: Zhang, Fangfang – sequence: 2 givenname: Xiangyu surname: Li fullname: Li, Xiangyu – sequence: 3 givenname: Huajie surname: Li fullname: Li, Huajie – sequence: 4 givenname: Jingdan surname: Tang fullname: Tang, Jingdan – sequence: 5 givenname: Zhen surname: Shen fullname: Shen, Zhen – sequence: 6 givenname: Guopei surname: Li fullname: Li, Guopei – sequence: 7 givenname: Tingxiang surname: Jin fullname: Jin, Tingxiang – sequence: 8 givenname: Pei surname: Yuan fullname: Yuan, Pei |
BookMark | eNp9kE1LAzEYhINUsK0e_AcBTwrb5mOT3T1K8aNQ8KCeQzbJ1pRsdk2i0n_vllYEUU_vwPvMDMwEjHznDQDnGM0w4nTOZgiVhOT5ERhjVFZZwTkf7XSBMs4pPgGTGDcIIVoRPgaPy7a3fm1a4xPUWy9bqyLsGqhD1zuTBu1ha512W_hiZDIafkjnIpQJWm-TlQ5Kr6EbXgHGJNcmnoLjRrpozg53Cp5vb54W99nq4W65uF5lirAiZVVNasZzqRpDuUIlK3VNS15rWtWNLjApSlYhSVFuiM4N0shUHGHFlDQVbko6BRf73D50r28mJrHp3oIfKgXhOeZ5mXM2UJd7SoUuxmAa0QfbyrAVGIndZoKJw2YDO__BKptksp1PQVr3q-Nq74hf5L_xf8LvXfgGRa8b-gniMot9 |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1063_5_0091277 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126574 crossref_primary_10_1063_5_0122220 crossref_primary_10_1063_5_0137342 |
Cites_doi | 10.1021/jp970328n 10.1016/j.ijmultiphaseflow.2019.05.008 10.1016/j.ijthermalsci.2014.05.024 10.1063/5.0020219 10.1016/j.ijrefrig.2013.07.025 10.1016/0017-9310(96)00119-6 10.1063/1.5117278 10.1021/acs.langmuir.8b03601 10.1063/5.0069596 10.1016/j.colsurfa.2013.05.014 10.1115/1.2822676 10.1115/1.2728904 10.1016/j.ijheatmasstransfer.2016.02.041 10.1038/s41598-019-55223-6 10.1063/1.4935355 10.1016/j.ijheatmasstransfer.2018.09.073 10.1016/j.applthermaleng.2017.05.167 10.1063/5.0059878 10.1209/epl/i2000-00547-6 10.1039/c2sm25958c 10.1016/j.ijheatmasstransfer.2016.12.076 10.1146/annurev.fluid.38.050304.092144 10.1016/j.energy.2020.117990 10.1016/j.physrep.2019.01.008 10.1016/j.apm.2015.06.018 10.1063/5.0010877 10.1063/1.5139002 10.1063/5.0020471 10.1063/1.5094691 10.1016/j.ijheatmasstransfer.2004.04.032 10.1039/C8SM01082J 10.1017/S0022112010001126 10.1016/j.ijheatmasstransfer.2016.10.031 10.1016/j.colsurfa.2013.05.046 10.1063/1.4990088 10.1063/1.5039558 10.1146/annurev-fluid-122414-034401 10.1063/1.1527044 10.1063/5.0037924 10.1063/1.5139589 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0082244 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0082244 |
GrantInformation_xml | – fundername: Key Scientific Research Projects of Henan Colleges and Universities grantid: 21A470006 – fundername: National Natural Science Foundation of China grantid: 51606174 funderid: https://doi.org/10.13039/501100001809 – fundername: Key Science and Technology Project in Henan Province grantid: 212102310097 – fundername: National Natural Science Foundation of China grantid: 52106115 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c257t-9b2b564acfe36c0858db386bd39bfd71278590a304e2d4e0d0e9601c5cae91f83 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 06:54:53 EDT 2025 Tue Jul 01 02:44:32 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Fri Jun 21 00:13:29 EDT 2024 Thu Jun 23 13:36:34 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-9b2b564acfe36c0858db386bd39bfd71278590a304e2d4e0d0e9601c5cae91f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0651-522X |
PQID | 2641648465 |
PQPubID | 2050667 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1063_5_0082244 crossref_citationtrail_10_1063_5_0082244 scitation_primary_10_1063_5_0082244 proquest_journals_2641648465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220300 2022-03-01 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220300 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Hu, Jacobi (c1) 1996 Herbert, Gambaryan-Roisman, Stephan (c27) 2013 Moon, Cho, Lee (c31) 2016 Mehdi-Nejad, Mostaghimi, Chandra (c38) 2003 Gan, Jiang, Li, Luo, Chen, Shi, Yan, Yan (c14) 2019 Zhang, Quetzeri-Santiago, Stone, Botto, Castrejon-Pita (c9) 2018 Erbil, Meric (c37) 1997 Qu, Abdelaziz, Sun, Yin (c36) 2017 Paul, Khurana, Dhar (c18) 2021 Hu, Wu, Liu (c17) 2014 Bernardin, Stebbins, Mudawar (c25) 1997 Paik, Kihm, Lee, Pratt (c29) 2007 Banitabaei, Amirfazli (c12) 2017 Majhy, Sen (c34) 2020 Gatapova, Semenov, Zaitsev, Kabov (c7) 2014 Kühn, Meyer, Ziegler (c35) 2020 Roisman (c28) 2010 Clavijo, Crockett, Maynes (c26) 2017 Sreenivasan, Deivandren (c6) 2020 Josserand, Thoroddsen (c16) 2016 Chatterjee, Murallidharan, Agrawal (c40) 2021 Ye, Zhang, Li, Li, Dong (c20) 2019 Richard, Quéré (c11) 2000 Subramaniam, Garimella (c4) 2014 Srivastava, Kondaraju (c10) 2020 Zang, Tarafdar, Tarasevich, Choudhury, Dutta (c15) 2019 Somasundaram, Anand, Bakshi (c23) 2015 Liu, Shen, Mu, Guo, Yuan (c3) 2019 Lopes, Bonaccurso (c19) 2012 Kadhim, Kapur, Summers, Thompson (c21) 2019 Qi, Weisensee (c30) 2020 Huang, Wan, Taslim (c13) 2018 Liang, Mudawar (c24) 2017 Liu, Zhang, Min (c8) 2019 Ju, Yang, Yi, Jin (c33) 2019 Killion, Garimella (c2) 2004 Karchevsky, Marchuk, Kabov (c22) 2016 Yao, Ju, Yang, Yi, Jin (c32) 2021 Yarin (c5) 2006 Chen, Nie, Fang (c39) 2020 (2023081005203610500_c10) 2020; 32 (2023081005203610500_c11) 2000; 50 (2023081005203610500_c38) 2003; 15 (2023081005203610500_c17) 2014; 84 (2023081005203610500_c20) 2019; 128 (2023081005203610500_c14) 2019; 9 (2023081005203610500_c31) 2016; 97 (2023081005203610500_c32) 2021; 33 (2023081005203610500_c4) 2014; 40 (2023081005203610500_c9) 2018; 14 (2023081005203610500_c35) 2020; 205 (2023081005203610500_c34) 2020; 32 (2023081005203610500_c13) 2018; 30 (2023081005203610500_c5) 2006; 38 (2023081005203610500_c36) 2017; 124 (2023081005203610500_c6) 2020; 32 (2023081005203610500_c21) 2019; 35 (2023081005203610500_c26) 2017; 108 (2023081005203610500_c30) 2020; 32 (2023081005203610500_c23) 2015; 27 (2023081005203610500_c8) 2019; 31 (2023081005203610500_c28) 2010; 656 (2023081005203610500_c7) 2014; 441 (2023081005203610500_c37) 1997; 101 (2023081005203610500_c3) 2019; 118 (2023081005203610500_c29) 2007; 129 (2023081005203610500_c39) 2020; 32 (2023081005203610500_c16) 2016; 48 (2023081005203610500_c18) 2021; 33 (2023081005203610500_c25) 1997; 40 (2023081005203610500_c12) 2017; 29 (2023081005203610500_c22) 2016; 40 (2023081005203610500_c19) 2012; 8 (2023081005203610500_c27) 2013; 432 (2023081005203610500_c40) 2021; 33 (2023081005203610500_c1) 1996; 118 (2023081005203610500_c24) 2017; 106 (2023081005203610500_c2) 2004; 47 (2023081005203610500_c33) 2019; 31 (2023081005203610500_c15) 2019; 804 |
References_xml | – start-page: 271 year: 2017 ident: c36 article-title: Aqueous solution of [EMIM][OAc]: Property formulations for use in air conditioning equipment design publication-title: Appl. Therm. Eng. – start-page: 117990 year: 2020 ident: c35 article-title: Experimental investigation of ionic liquids as substitute for lithium bromide in water absorption chillers publication-title: Energy – start-page: 616 year: 1996 ident: c1 article-title: The intertube falling film: Part 1—Flow characteristics, mode transitions, and hysteresis publication-title: J. Heat Transfer – start-page: 966 year: 2007 ident: c29 article-title: Spatially and temporally resolved temperature measurements for slow evaporating sessile drops heated by a microfabricated heater array publication-title: J. Heat Transfer – start-page: 092102 year: 2019 ident: c8 article-title: Maximum spreading of droplets impacting spherical surfaces publication-title: Phys. Fluids – start-page: 769 year: 2000 ident: c11 article-title: Bouncing water drops publication-title: Europhys. Lett. – start-page: 062111 year: 2017 ident: c12 article-title: Droplet impact onto a solid sphere: Effect of wettability and impact velocity publication-title: Phys. Fluids – start-page: 102003 year: 2020 ident: c39 article-title: Dynamic behavior of droplets on confined porous substrates: A many-body dissipative particle dynamics study publication-title: Phys. Fluids – start-page: 094101 year: 2018 ident: c13 article-title: Axisymmetric rim instability of water droplet impact on a super-hydrophobic surface publication-title: Phys. Fluids – start-page: 021701 year: 2021 ident: c40 article-title: Why coronavirus survives longer on impermeable than porous surfaces publication-title: Phys. Fluids – start-page: 8182 year: 2018 ident: c9 article-title: Droplet impact dynamics on textiles publication-title: Soft Matter – start-page: 103 year: 2017 ident: c24 article-title: Review of drop impact on heated walls publication-title: Int. J. Heat Mass Transfer – start-page: 776 year: 2014 ident: c7 article-title: Evaporation of a sessile water drop on a heated surface with controlled wettability publication-title: Colloids Surf., A – start-page: 4403 year: 2004 ident: c2 article-title: Pendant droplet motion for absorption on horizontal tube banks publication-title: Int. J. Heat Mass Transfer – start-page: 7875 year: 2012 ident: c19 article-title: Evaporation control of sessile water drops by soft viscoelastic surfaces publication-title: Soft Matter – start-page: 57 year: 2013 ident: c27 article-title: Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall publication-title: Colloids Surf., A – start-page: 189 year: 2010 ident: c28 article-title: Fast forced liquid film spreading on a substrate: Flow, heat transfer and phase transition publication-title: J. Fluid Mech. – start-page: 067110 year: 2020 ident: c30 article-title: Dynamic wetting and heat transfer during droplet impact on bi-phobic wettability-patterned surfaces publication-title: Phys. Fluids – start-page: 032104 year: 2020 ident: c6 article-title: Splashing of fuel drops impacting on heated solid surfaces publication-title: Phys. Fluids – start-page: 1 year: 2019 ident: c15 article-title: Evaporation of a droplet: From physics to applications publication-title: Phys. Rep. – start-page: 032003 year: 2020 ident: c34 article-title: Evaporation-induced transport of a pure aqueous droplet by an aqueous mixture droplet publication-title: Phys. Fluids – start-page: 092103 year: 2020 ident: c10 article-title: Analytical model for predicting maximum spread of droplet impinging on solid surfaces publication-title: Phys. Fluids – start-page: 308 year: 2016 ident: c31 article-title: Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces publication-title: Int. J. Heat Mass Transfer – start-page: 103304 year: 2021 ident: c32 article-title: Impingement and freezing of a supercooled large droplet on an ice surface publication-title: Phys. Fluids – start-page: 6867 year: 1997 ident: c37 article-title: Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry publication-title: J. Phys. Chem. B – start-page: 18791 year: 2019 ident: c14 article-title: A comparative study on droplet characteristics and specific charge of ethanol in two small-scale electrospray systems publication-title: Sci. Rep. – start-page: 365 year: 2016 ident: c16 article-title: Drop impact on a solid surface publication-title: Annu. Rev. Fluid Mech. – start-page: 112105 year: 2015 ident: c23 article-title: Evaporation-induced flow around a pendant droplet and its influence on evaporation publication-title: Phys. Fluids – start-page: 1029 year: 2016 ident: c22 article-title: Calculation of the heat flux near the liquid–gas–solid contact line publication-title: Appl. Math. Modell. – start-page: 6256 year: 2019 ident: c21 article-title: An experimental and theoretical investigation of droplet evaporation on heated hydrophilic and hydrophobic surfaces publication-title: Langmuir – start-page: 057107 year: 2019 ident: c33 article-title: Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface publication-title: Phys. Fluids – start-page: 247 year: 1997 ident: c25 article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface publication-title: Int. J. Heat Mass Transfer – start-page: 1714 year: 2017 ident: c26 article-title: Hydrodynamics of droplet impingement on hot surfaces of varying wettability publication-title: Int. J. Heat Mass Transfer – start-page: 159 year: 2006 ident: c5 article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing publication-title: Annu. Rev. Fluid Mech. – start-page: 10 year: 2019 ident: c3 article-title: Experimental study on droplet flow of falling film between horizontal tubes publication-title: Int. J. Multiphase Flow – start-page: 300 year: 2014 ident: c17 article-title: Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets publication-title: Int. J. Therm. Sci. – start-page: 1263 year: 2019 ident: c20 article-title: Contact line dynamics of two-dimensional evaporating drops on heated surfaces with temperature-dependent wettabilities publication-title: Int. J. Heat Mass Transfer – start-page: 173 year: 2003 ident: c38 article-title: Air bubble entrapment under an impacting droplet publication-title: Phys. Fluids – start-page: 211 year: 2014 ident: c4 article-title: Numerical study of heat and mass transfer in lithium bromide-water falling films and droplets publication-title: Int. J. Refrig. – start-page: 082003 year: 2021 ident: c18 article-title: Substrate concavity influenced evaporation mechanisms of sessile droplets publication-title: Phys. Fluids – volume: 101 start-page: 6867 issue: 35 year: 1997 ident: 2023081005203610500_c37 article-title: Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry publication-title: J. Phys. Chem. B doi: 10.1021/jp970328n – volume: 118 start-page: 10 year: 2019 ident: 2023081005203610500_c3 article-title: Experimental study on droplet flow of falling film between horizontal tubes publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2019.05.008 – volume: 84 start-page: 300 year: 2014 ident: 2023081005203610500_c17 article-title: Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.05.024 – volume: 32 start-page: 092103 issue: 9 year: 2020 ident: 2023081005203610500_c10 article-title: Analytical model for predicting maximum spread of droplet impinging on solid surfaces publication-title: Phys. Fluids doi: 10.1063/5.0020219 – volume: 40 start-page: 211 issue: 1 year: 2014 ident: 2023081005203610500_c4 article-title: Numerical study of heat and mass transfer in lithium bromide-water falling films and droplets publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2013.07.025 – volume: 40 start-page: 247 issue: 2 year: 1997 ident: 2023081005203610500_c25 article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(96)00119-6 – volume: 31 start-page: 092102 issue: 9 year: 2019 ident: 2023081005203610500_c8 article-title: Maximum spreading of droplets impacting spherical surfaces publication-title: Phys. Fluids doi: 10.1063/1.5117278 – volume: 35 start-page: 6256 issue: 19 year: 2019 ident: 2023081005203610500_c21 article-title: An experimental and theoretical investigation of droplet evaporation on heated hydrophilic and hydrophobic surfaces publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03601 – volume: 33 start-page: 103304 issue: 10 year: 2021 ident: 2023081005203610500_c32 article-title: Impingement and freezing of a supercooled large droplet on an ice surface publication-title: Phys. Fluids doi: 10.1063/5.0069596 – volume: 432 start-page: 57 issue: 5 year: 2013 ident: 2023081005203610500_c27 article-title: Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.05.014 – volume: 118 start-page: 616 issue: 3 year: 1996 ident: 2023081005203610500_c1 article-title: The intertube falling film: Part 1—Flow characteristics, mode transitions, and hysteresis publication-title: J. Heat Transfer doi: 10.1115/1.2822676 – volume: 129 start-page: 966 issue: 8 year: 2007 ident: 2023081005203610500_c29 article-title: Spatially and temporally resolved temperature measurements for slow evaporating sessile drops heated by a microfabricated heater array publication-title: J. Heat Transfer doi: 10.1115/1.2728904 – volume: 97 start-page: 308 year: 2016 ident: 2023081005203610500_c31 article-title: Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.02.041 – volume: 9 start-page: 18791 issue: 1 year: 2019 ident: 2023081005203610500_c14 article-title: A comparative study on droplet characteristics and specific charge of ethanol in two small-scale electrospray systems publication-title: Sci. Rep. doi: 10.1038/s41598-019-55223-6 – volume: 27 start-page: 112105 year: 2015 ident: 2023081005203610500_c23 article-title: Evaporation-induced flow around a pendant droplet and its influence on evaporation publication-title: Phys. Fluids doi: 10.1063/1.4935355 – volume: 128 start-page: 1263 year: 2019 ident: 2023081005203610500_c20 article-title: Contact line dynamics of two-dimensional evaporating drops on heated surfaces with temperature-dependent wettabilities publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.09.073 – volume: 124 start-page: 271 issue: 1 year: 2017 ident: 2023081005203610500_c36 article-title: Aqueous solution of [EMIM][OAc]: Property formulations for use in air conditioning equipment design publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.167 – volume: 33 start-page: 082003 year: 2021 ident: 2023081005203610500_c18 article-title: Substrate concavity influenced evaporation mechanisms of sessile droplets publication-title: Phys. Fluids doi: 10.1063/5.0059878 – volume: 50 start-page: 769 issue: 6 year: 2000 ident: 2023081005203610500_c11 article-title: Bouncing water drops publication-title: Europhys. Lett. doi: 10.1209/epl/i2000-00547-6 – volume: 8 start-page: 7875 issue: 30 year: 2012 ident: 2023081005203610500_c19 article-title: Evaporation control of sessile water drops by soft viscoelastic surfaces publication-title: Soft Matter doi: 10.1039/c2sm25958c – volume: 108 start-page: 1714 issue: 42 year: 2017 ident: 2023081005203610500_c26 article-title: Hydrodynamics of droplet impingement on hot surfaces of varying wettability publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.12.076 – volume: 38 start-page: 159 issue: 1 year: 2006 ident: 2023081005203610500_c5 article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.38.050304.092144 – volume: 205 start-page: 117990 year: 2020 ident: 2023081005203610500_c35 article-title: Experimental investigation of ionic liquids as substitute for lithium bromide in water absorption chillers publication-title: Energy doi: 10.1016/j.energy.2020.117990 – volume: 804 start-page: 1 year: 2019 ident: 2023081005203610500_c15 article-title: Evaporation of a droplet: From physics to applications publication-title: Phys. Rep. doi: 10.1016/j.physrep.2019.01.008 – volume: 40 start-page: 1029 issue: 2 year: 2016 ident: 2023081005203610500_c22 article-title: Calculation of the heat flux near the liquid–gas–solid contact line publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2015.06.018 – volume: 32 start-page: 067110 issue: 6 year: 2020 ident: 2023081005203610500_c30 article-title: Dynamic wetting and heat transfer during droplet impact on bi-phobic wettability-patterned surfaces publication-title: Phys. Fluids doi: 10.1063/5.0010877 – volume: 32 start-page: 032003 year: 2020 ident: 2023081005203610500_c34 article-title: Evaporation-induced transport of a pure aqueous droplet by an aqueous mixture droplet publication-title: Phys. Fluids doi: 10.1063/1.5139002 – volume: 32 start-page: 102003 issue: 10 year: 2020 ident: 2023081005203610500_c39 article-title: Dynamic behavior of droplets on confined porous substrates: A many-body dissipative particle dynamics study publication-title: Phys. Fluids doi: 10.1063/5.0020471 – volume: 31 start-page: 057107 issue: 5 year: 2019 ident: 2023081005203610500_c33 article-title: Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface publication-title: Phys. Fluids doi: 10.1063/1.5094691 – volume: 47 start-page: 4403 issue: 19–20 year: 2004 ident: 2023081005203610500_c2 article-title: Pendant droplet motion for absorption on horizontal tube banks publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.04.032 – volume: 14 start-page: 8182 issue: 40 year: 2018 ident: 2023081005203610500_c9 article-title: Droplet impact dynamics on textiles publication-title: Soft Matter doi: 10.1039/C8SM01082J – volume: 656 start-page: 189 year: 2010 ident: 2023081005203610500_c28 article-title: Fast forced liquid film spreading on a substrate: Flow, heat transfer and phase transition publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001126 – volume: 106 start-page: 103 year: 2017 ident: 2023081005203610500_c24 article-title: Review of drop impact on heated walls publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.10.031 – volume: 441 start-page: 776 year: 2014 ident: 2023081005203610500_c7 article-title: Evaporation of a sessile water drop on a heated surface with controlled wettability publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.05.046 – volume: 29 start-page: 062111 year: 2017 ident: 2023081005203610500_c12 article-title: Droplet impact onto a solid sphere: Effect of wettability and impact velocity publication-title: Phys. Fluids doi: 10.1063/1.4990088 – volume: 30 start-page: 094101 year: 2018 ident: 2023081005203610500_c13 article-title: Axisymmetric rim instability of water droplet impact on a super-hydrophobic surface publication-title: Phys. Fluids doi: 10.1063/1.5039558 – volume: 48 start-page: 365 issue: 1 year: 2016 ident: 2023081005203610500_c16 article-title: Drop impact on a solid surface publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034401 – volume: 15 start-page: 173 issue: 1 year: 2003 ident: 2023081005203610500_c38 article-title: Air bubble entrapment under an impacting droplet publication-title: Phys. Fluids doi: 10.1063/1.1527044 – volume: 33 start-page: 021701 issue: 2 year: 2021 ident: 2023081005203610500_c40 article-title: Why coronavirus survives longer on impermeable than porous surfaces publication-title: Phys. Fluids doi: 10.1063/5.0037924 – volume: 32 start-page: 032104 issue: 3 year: 2020 ident: 2023081005203610500_c6 article-title: Splashing of fuel drops impacting on heated solid surfaces publication-title: Phys. Fluids doi: 10.1063/1.5139589 |
SSID | ssj0003926 |
Score | 2.39548 |
Snippet | The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Contact angle Diameters Droplets Evaporation Fluid dynamics Impingement Ionic liquids Physics Wall temperature Water drops Weber number |
Title | Impingement dynamics of droplets on mildly heated walls at initial and later stages |
URI | http://dx.doi.org/10.1063/5.0082244 https://www.proquest.com/docview/2641648465 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4IXLgNEYUMW8ICEwlLHl_hxgk1lYrysk_oWJb5MQVk7temm7dfvOHaSjlVo8JJWluukPl-Ov2N_PkboExlat_iiIkGoiKhlLJJMqyiXxBLBmRBN4vmjX3x0Qg8nbNKnJ2h2l9TFV3W9dl_J_1gVysCubpfsP1i2axQK4DvYF65gYbjey8Y_ztxup2aC74v2R8s3ygw9d7JwvxJwVla6unKE0HHLy7yqFm4DY-lEQyFPQJW7TIlAE0-DoDCQ1UYd6lu01bLUPquTlHRl-qCbcD6AT5uHcdApfBqZwATQd3q1vF04Wua_yw5Q49DAIfwVHbAapiEggu10WMFzgu-IgL74IhPKUhkJ7o9Vad1tmLss-2j8jhcH2gRd7ya7nMaV9kNVuzz_xwjW6QqbFXWeZCwLP32INgnED-CxN_e-H_087gZpoIXcy1H9U7dJp3iy2933NlXp44_HQE68TmKFioyfo6chhsB7HhAv0AMz3ULPQjyBg7debKFHwYAv0fEKUnCLFDyzuEUKnk2xRwr2SMENUnBe44AUDEjBDVKwR8ordHKwP_42isJxGpECv1xHsiAF4zRX1iRcAdVOdZGkvNCJLKwWQyJSJuM8iakhmppYxwbC26FiKjdyaNPkNdqYzqbmDcJKAe-HOkIaQhVNUpGqlGtCWUx1EZMB-tz2XNb2lTvypMruWGiAPnRVz32ClXWVttvuz8L7t8iAykOsD_yZDdDHziR_a2RNrYvZvK-RnWv79j7P8w496d-BbbRRz5dmB8hpXbwPQLsBBDOLBg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impingement+dynamics+of+droplets+on+mildly+heated+walls+at+initial+and+later+stages&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhang%2C+Fangfang&rft.au=Li%2C+Xiangyu&rft.au=Li%2C+Huajie&rft.au=Tang%2C+Jingdan&rft.date=2022-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=3&rft_id=info:doi/10.1063%2F5.0082244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0082244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |