Impingement dynamics of droplets on mildly heated walls at initial and later stages

The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall temperature and the Weber number on the water droplet spreading characteristics are considered. A constant contact radius evaporation mode is observ...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 34; no. 3
Main Authors Zhang, Fangfang, Li, Xiangyu, Li, Huajie, Tang, Jingdan, Shen, Zhen, Li, Guopei, Jin, Tingxiang, Yuan, Pei
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2022
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0082244

Cover

Loading…
Abstract The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall temperature and the Weber number on the water droplet spreading characteristics are considered. A constant contact radius evaporation mode is observed during most of the evaporation. The wall temperature has little influence on the spreading characteristics at the initial stages. The Weber number greatly influences the spreading characteristics, such as the spreading dynamic behavior, maximum spreading time, spreading height, diameter, and contact angle, at the initial stages. At the later stages of spreading, the heating temperature has a relatively greater impact on the rate of linear change of the residual volume, whereas the impact of the Weber number on that is relatively small. Subsequently, the effect of evaporation on the impingement dynamics is investigated. The spreading characteristics of the water droplet are compared with those of an ionic liquid droplet (which does not experience evaporation), whereby the spreading factor increases and the volume remains unchanged with the increasing contact time in the absence of the evaporation effect.
AbstractList The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall temperature and the Weber number on the water droplet spreading characteristics are considered. A constant contact radius evaporation mode is observed during most of the evaporation. The wall temperature has little influence on the spreading characteristics at the initial stages. The Weber number greatly influences the spreading characteristics, such as the spreading dynamic behavior, maximum spreading time, spreading height, diameter, and contact angle, at the initial stages. At the later stages of spreading, the heating temperature has a relatively greater impact on the rate of linear change of the residual volume, whereas the impact of the Weber number on that is relatively small. Subsequently, the effect of evaporation on the impingement dynamics is investigated. The spreading characteristics of the water droplet are compared with those of an ionic liquid droplet (which does not experience evaporation), whereby the spreading factor increases and the volume remains unchanged with the increasing contact time in the absence of the evaporation effect.
Author Zhang, Fangfang
Jin, Tingxiang
Li, Guopei
Li, Huajie
Yuan, Pei
Shen, Zhen
Li, Xiangyu
Tang, Jingdan
Author_xml – sequence: 1
  givenname: Fangfang
  orcidid: 0000-0002-0651-522X
  surname: Zhang
  fullname: Zhang, Fangfang
– sequence: 2
  givenname: Xiangyu
  surname: Li
  fullname: Li, Xiangyu
– sequence: 3
  givenname: Huajie
  surname: Li
  fullname: Li, Huajie
– sequence: 4
  givenname: Jingdan
  surname: Tang
  fullname: Tang, Jingdan
– sequence: 5
  givenname: Zhen
  surname: Shen
  fullname: Shen, Zhen
– sequence: 6
  givenname: Guopei
  surname: Li
  fullname: Li, Guopei
– sequence: 7
  givenname: Tingxiang
  surname: Jin
  fullname: Jin, Tingxiang
– sequence: 8
  givenname: Pei
  surname: Yuan
  fullname: Yuan, Pei
BookMark eNp9kE1LAzEYhINUsK0e_AcBTwrb5mOT3T1K8aNQ8KCeQzbJ1pRsdk2i0n_vllYEUU_vwPvMDMwEjHznDQDnGM0w4nTOZgiVhOT5ERhjVFZZwTkf7XSBMs4pPgGTGDcIIVoRPgaPy7a3fm1a4xPUWy9bqyLsGqhD1zuTBu1ha512W_hiZDIafkjnIpQJWm-TlQ5Kr6EbXgHGJNcmnoLjRrpozg53Cp5vb54W99nq4W65uF5lirAiZVVNasZzqRpDuUIlK3VNS15rWtWNLjApSlYhSVFuiM4N0shUHGHFlDQVbko6BRf73D50r28mJrHp3oIfKgXhOeZ5mXM2UJd7SoUuxmAa0QfbyrAVGIndZoKJw2YDO__BKptksp1PQVr3q-Nq74hf5L_xf8LvXfgGRa8b-gniMot9
CODEN PHFLE6
CitedBy_id crossref_primary_10_1063_5_0091277
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126574
crossref_primary_10_1063_5_0122220
crossref_primary_10_1063_5_0137342
Cites_doi 10.1021/jp970328n
10.1016/j.ijmultiphaseflow.2019.05.008
10.1016/j.ijthermalsci.2014.05.024
10.1063/5.0020219
10.1016/j.ijrefrig.2013.07.025
10.1016/0017-9310(96)00119-6
10.1063/1.5117278
10.1021/acs.langmuir.8b03601
10.1063/5.0069596
10.1016/j.colsurfa.2013.05.014
10.1115/1.2822676
10.1115/1.2728904
10.1016/j.ijheatmasstransfer.2016.02.041
10.1038/s41598-019-55223-6
10.1063/1.4935355
10.1016/j.ijheatmasstransfer.2018.09.073
10.1016/j.applthermaleng.2017.05.167
10.1063/5.0059878
10.1209/epl/i2000-00547-6
10.1039/c2sm25958c
10.1016/j.ijheatmasstransfer.2016.12.076
10.1146/annurev.fluid.38.050304.092144
10.1016/j.energy.2020.117990
10.1016/j.physrep.2019.01.008
10.1016/j.apm.2015.06.018
10.1063/5.0010877
10.1063/1.5139002
10.1063/5.0020471
10.1063/1.5094691
10.1016/j.ijheatmasstransfer.2004.04.032
10.1039/C8SM01082J
10.1017/S0022112010001126
10.1016/j.ijheatmasstransfer.2016.10.031
10.1016/j.colsurfa.2013.05.046
10.1063/1.4990088
10.1063/1.5039558
10.1146/annurev-fluid-122414-034401
10.1063/1.1527044
10.1063/5.0037924
10.1063/1.5139589
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0082244
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0082244
GrantInformation_xml – fundername: Key Scientific Research Projects of Henan Colleges and Universities
  grantid: 21A470006
– fundername: National Natural Science Foundation of China
  grantid: 51606174
  funderid: https://doi.org/10.13039/501100001809
– fundername: Key Science and Technology Project in Henan Province
  grantid: 212102310097
– fundername: National Natural Science Foundation of China
  grantid: 52106115
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c257t-9b2b564acfe36c0858db386bd39bfd71278590a304e2d4e0d0e9601c5cae91f83
ISSN 1070-6631
IngestDate Mon Jun 30 06:54:53 EDT 2025
Tue Jul 01 02:44:32 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri Jun 21 00:13:29 EDT 2024
Thu Jun 23 13:36:34 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-9b2b564acfe36c0858db386bd39bfd71278590a304e2d4e0d0e9601c5cae91f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0651-522X
PQID 2641648465
PQPubID 2050667
PageCount 10
ParticipantIDs crossref_primary_10_1063_5_0082244
crossref_citationtrail_10_1063_5_0082244
scitation_primary_10_1063_5_0082244
proquest_journals_2641648465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-01
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Hu, Jacobi (c1) 1996
Herbert, Gambaryan-Roisman, Stephan (c27) 2013
Moon, Cho, Lee (c31) 2016
Mehdi-Nejad, Mostaghimi, Chandra (c38) 2003
Gan, Jiang, Li, Luo, Chen, Shi, Yan, Yan (c14) 2019
Zhang, Quetzeri-Santiago, Stone, Botto, Castrejon-Pita (c9) 2018
Erbil, Meric (c37) 1997
Qu, Abdelaziz, Sun, Yin (c36) 2017
Paul, Khurana, Dhar (c18) 2021
Hu, Wu, Liu (c17) 2014
Bernardin, Stebbins, Mudawar (c25) 1997
Paik, Kihm, Lee, Pratt (c29) 2007
Banitabaei, Amirfazli (c12) 2017
Majhy, Sen (c34) 2020
Gatapova, Semenov, Zaitsev, Kabov (c7) 2014
Kühn, Meyer, Ziegler (c35) 2020
Roisman (c28) 2010
Clavijo, Crockett, Maynes (c26) 2017
Sreenivasan, Deivandren (c6) 2020
Josserand, Thoroddsen (c16) 2016
Chatterjee, Murallidharan, Agrawal (c40) 2021
Ye, Zhang, Li, Li, Dong (c20) 2019
Richard, Quéré (c11) 2000
Subramaniam, Garimella (c4) 2014
Srivastava, Kondaraju (c10) 2020
Zang, Tarafdar, Tarasevich, Choudhury, Dutta (c15) 2019
Somasundaram, Anand, Bakshi (c23) 2015
Liu, Shen, Mu, Guo, Yuan (c3) 2019
Lopes, Bonaccurso (c19) 2012
Kadhim, Kapur, Summers, Thompson (c21) 2019
Qi, Weisensee (c30) 2020
Huang, Wan, Taslim (c13) 2018
Liang, Mudawar (c24) 2017
Liu, Zhang, Min (c8) 2019
Ju, Yang, Yi, Jin (c33) 2019
Killion, Garimella (c2) 2004
Karchevsky, Marchuk, Kabov (c22) 2016
Yao, Ju, Yang, Yi, Jin (c32) 2021
Yarin (c5) 2006
Chen, Nie, Fang (c39) 2020
(2023081005203610500_c10) 2020; 32
(2023081005203610500_c11) 2000; 50
(2023081005203610500_c38) 2003; 15
(2023081005203610500_c17) 2014; 84
(2023081005203610500_c20) 2019; 128
(2023081005203610500_c14) 2019; 9
(2023081005203610500_c31) 2016; 97
(2023081005203610500_c32) 2021; 33
(2023081005203610500_c4) 2014; 40
(2023081005203610500_c9) 2018; 14
(2023081005203610500_c35) 2020; 205
(2023081005203610500_c34) 2020; 32
(2023081005203610500_c13) 2018; 30
(2023081005203610500_c5) 2006; 38
(2023081005203610500_c36) 2017; 124
(2023081005203610500_c6) 2020; 32
(2023081005203610500_c21) 2019; 35
(2023081005203610500_c26) 2017; 108
(2023081005203610500_c30) 2020; 32
(2023081005203610500_c23) 2015; 27
(2023081005203610500_c8) 2019; 31
(2023081005203610500_c28) 2010; 656
(2023081005203610500_c7) 2014; 441
(2023081005203610500_c37) 1997; 101
(2023081005203610500_c3) 2019; 118
(2023081005203610500_c29) 2007; 129
(2023081005203610500_c39) 2020; 32
(2023081005203610500_c16) 2016; 48
(2023081005203610500_c18) 2021; 33
(2023081005203610500_c25) 1997; 40
(2023081005203610500_c12) 2017; 29
(2023081005203610500_c22) 2016; 40
(2023081005203610500_c19) 2012; 8
(2023081005203610500_c27) 2013; 432
(2023081005203610500_c40) 2021; 33
(2023081005203610500_c1) 1996; 118
(2023081005203610500_c24) 2017; 106
(2023081005203610500_c2) 2004; 47
(2023081005203610500_c33) 2019; 31
(2023081005203610500_c15) 2019; 804
References_xml – start-page: 271
  year: 2017
  ident: c36
  article-title: Aqueous solution of [EMIM][OAc]: Property formulations for use in air conditioning equipment design
  publication-title: Appl. Therm. Eng.
– start-page: 117990
  year: 2020
  ident: c35
  article-title: Experimental investigation of ionic liquids as substitute for lithium bromide in water absorption chillers
  publication-title: Energy
– start-page: 616
  year: 1996
  ident: c1
  article-title: The intertube falling film: Part 1—Flow characteristics, mode transitions, and hysteresis
  publication-title: J. Heat Transfer
– start-page: 966
  year: 2007
  ident: c29
  article-title: Spatially and temporally resolved temperature measurements for slow evaporating sessile drops heated by a microfabricated heater array
  publication-title: J. Heat Transfer
– start-page: 092102
  year: 2019
  ident: c8
  article-title: Maximum spreading of droplets impacting spherical surfaces
  publication-title: Phys. Fluids
– start-page: 769
  year: 2000
  ident: c11
  article-title: Bouncing water drops
  publication-title: Europhys. Lett.
– start-page: 062111
  year: 2017
  ident: c12
  article-title: Droplet impact onto a solid sphere: Effect of wettability and impact velocity
  publication-title: Phys. Fluids
– start-page: 102003
  year: 2020
  ident: c39
  article-title: Dynamic behavior of droplets on confined porous substrates: A many-body dissipative particle dynamics study
  publication-title: Phys. Fluids
– start-page: 094101
  year: 2018
  ident: c13
  article-title: Axisymmetric rim instability of water droplet impact on a super-hydrophobic surface
  publication-title: Phys. Fluids
– start-page: 021701
  year: 2021
  ident: c40
  article-title: Why coronavirus survives longer on impermeable than porous surfaces
  publication-title: Phys. Fluids
– start-page: 8182
  year: 2018
  ident: c9
  article-title: Droplet impact dynamics on textiles
  publication-title: Soft Matter
– start-page: 103
  year: 2017
  ident: c24
  article-title: Review of drop impact on heated walls
  publication-title: Int. J. Heat Mass Transfer
– start-page: 776
  year: 2014
  ident: c7
  article-title: Evaporation of a sessile water drop on a heated surface with controlled wettability
  publication-title: Colloids Surf., A
– start-page: 4403
  year: 2004
  ident: c2
  article-title: Pendant droplet motion for absorption on horizontal tube banks
  publication-title: Int. J. Heat Mass Transfer
– start-page: 7875
  year: 2012
  ident: c19
  article-title: Evaporation control of sessile water drops by soft viscoelastic surfaces
  publication-title: Soft Matter
– start-page: 57
  year: 2013
  ident: c27
  article-title: Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall
  publication-title: Colloids Surf., A
– start-page: 189
  year: 2010
  ident: c28
  article-title: Fast forced liquid film spreading on a substrate: Flow, heat transfer and phase transition
  publication-title: J. Fluid Mech.
– start-page: 067110
  year: 2020
  ident: c30
  article-title: Dynamic wetting and heat transfer during droplet impact on bi-phobic wettability-patterned surfaces
  publication-title: Phys. Fluids
– start-page: 032104
  year: 2020
  ident: c6
  article-title: Splashing of fuel drops impacting on heated solid surfaces
  publication-title: Phys. Fluids
– start-page: 1
  year: 2019
  ident: c15
  article-title: Evaporation of a droplet: From physics to applications
  publication-title: Phys. Rep.
– start-page: 032003
  year: 2020
  ident: c34
  article-title: Evaporation-induced transport of a pure aqueous droplet by an aqueous mixture droplet
  publication-title: Phys. Fluids
– start-page: 092103
  year: 2020
  ident: c10
  article-title: Analytical model for predicting maximum spread of droplet impinging on solid surfaces
  publication-title: Phys. Fluids
– start-page: 308
  year: 2016
  ident: c31
  article-title: Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces
  publication-title: Int. J. Heat Mass Transfer
– start-page: 103304
  year: 2021
  ident: c32
  article-title: Impingement and freezing of a supercooled large droplet on an ice surface
  publication-title: Phys. Fluids
– start-page: 6867
  year: 1997
  ident: c37
  article-title: Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry
  publication-title: J. Phys. Chem. B
– start-page: 18791
  year: 2019
  ident: c14
  article-title: A comparative study on droplet characteristics and specific charge of ethanol in two small-scale electrospray systems
  publication-title: Sci. Rep.
– start-page: 365
  year: 2016
  ident: c16
  article-title: Drop impact on a solid surface
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 112105
  year: 2015
  ident: c23
  article-title: Evaporation-induced flow around a pendant droplet and its influence on evaporation
  publication-title: Phys. Fluids
– start-page: 1029
  year: 2016
  ident: c22
  article-title: Calculation of the heat flux near the liquid–gas–solid contact line
  publication-title: Appl. Math. Modell.
– start-page: 6256
  year: 2019
  ident: c21
  article-title: An experimental and theoretical investigation of droplet evaporation on heated hydrophilic and hydrophobic surfaces
  publication-title: Langmuir
– start-page: 057107
  year: 2019
  ident: c33
  article-title: Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface
  publication-title: Phys. Fluids
– start-page: 247
  year: 1997
  ident: c25
  article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface
  publication-title: Int. J. Heat Mass Transfer
– start-page: 1714
  year: 2017
  ident: c26
  article-title: Hydrodynamics of droplet impingement on hot surfaces of varying wettability
  publication-title: Int. J. Heat Mass Transfer
– start-page: 159
  year: 2006
  ident: c5
  article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 10
  year: 2019
  ident: c3
  article-title: Experimental study on droplet flow of falling film between horizontal tubes
  publication-title: Int. J. Multiphase Flow
– start-page: 300
  year: 2014
  ident: c17
  article-title: Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets
  publication-title: Int. J. Therm. Sci.
– start-page: 1263
  year: 2019
  ident: c20
  article-title: Contact line dynamics of two-dimensional evaporating drops on heated surfaces with temperature-dependent wettabilities
  publication-title: Int. J. Heat Mass Transfer
– start-page: 173
  year: 2003
  ident: c38
  article-title: Air bubble entrapment under an impacting droplet
  publication-title: Phys. Fluids
– start-page: 211
  year: 2014
  ident: c4
  article-title: Numerical study of heat and mass transfer in lithium bromide-water falling films and droplets
  publication-title: Int. J. Refrig.
– start-page: 082003
  year: 2021
  ident: c18
  article-title: Substrate concavity influenced evaporation mechanisms of sessile droplets
  publication-title: Phys. Fluids
– volume: 101
  start-page: 6867
  issue: 35
  year: 1997
  ident: 2023081005203610500_c37
  article-title: Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970328n
– volume: 118
  start-page: 10
  year: 2019
  ident: 2023081005203610500_c3
  article-title: Experimental study on droplet flow of falling film between horizontal tubes
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.05.008
– volume: 84
  start-page: 300
  year: 2014
  ident: 2023081005203610500_c17
  article-title: Effect of liquid-vapor interface area on the evaporation rate of small sessile droplets
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.05.024
– volume: 32
  start-page: 092103
  issue: 9
  year: 2020
  ident: 2023081005203610500_c10
  article-title: Analytical model for predicting maximum spread of droplet impinging on solid surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020219
– volume: 40
  start-page: 211
  issue: 1
  year: 2014
  ident: 2023081005203610500_c4
  article-title: Numerical study of heat and mass transfer in lithium bromide-water falling films and droplets
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2013.07.025
– volume: 40
  start-page: 247
  issue: 2
  year: 1997
  ident: 2023081005203610500_c25
  article-title: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(96)00119-6
– volume: 31
  start-page: 092102
  issue: 9
  year: 2019
  ident: 2023081005203610500_c8
  article-title: Maximum spreading of droplets impacting spherical surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.5117278
– volume: 35
  start-page: 6256
  issue: 19
  year: 2019
  ident: 2023081005203610500_c21
  article-title: An experimental and theoretical investigation of droplet evaporation on heated hydrophilic and hydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03601
– volume: 33
  start-page: 103304
  issue: 10
  year: 2021
  ident: 2023081005203610500_c32
  article-title: Impingement and freezing of a supercooled large droplet on an ice surface
  publication-title: Phys. Fluids
  doi: 10.1063/5.0069596
– volume: 432
  start-page: 57
  issue: 5
  year: 2013
  ident: 2023081005203610500_c27
  article-title: Influence of the governing dimensionless parameters on heat transfer during single drop impingement onto a hot wall
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2013.05.014
– volume: 118
  start-page: 616
  issue: 3
  year: 1996
  ident: 2023081005203610500_c1
  article-title: The intertube falling film: Part 1—Flow characteristics, mode transitions, and hysteresis
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2822676
– volume: 129
  start-page: 966
  issue: 8
  year: 2007
  ident: 2023081005203610500_c29
  article-title: Spatially and temporally resolved temperature measurements for slow evaporating sessile drops heated by a microfabricated heater array
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2728904
– volume: 97
  start-page: 308
  year: 2016
  ident: 2023081005203610500_c31
  article-title: Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.02.041
– volume: 9
  start-page: 18791
  issue: 1
  year: 2019
  ident: 2023081005203610500_c14
  article-title: A comparative study on droplet characteristics and specific charge of ethanol in two small-scale electrospray systems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55223-6
– volume: 27
  start-page: 112105
  year: 2015
  ident: 2023081005203610500_c23
  article-title: Evaporation-induced flow around a pendant droplet and its influence on evaporation
  publication-title: Phys. Fluids
  doi: 10.1063/1.4935355
– volume: 128
  start-page: 1263
  year: 2019
  ident: 2023081005203610500_c20
  article-title: Contact line dynamics of two-dimensional evaporating drops on heated surfaces with temperature-dependent wettabilities
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.09.073
– volume: 124
  start-page: 271
  issue: 1
  year: 2017
  ident: 2023081005203610500_c36
  article-title: Aqueous solution of [EMIM][OAc]: Property formulations for use in air conditioning equipment design
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.167
– volume: 33
  start-page: 082003
  year: 2021
  ident: 2023081005203610500_c18
  article-title: Substrate concavity influenced evaporation mechanisms of sessile droplets
  publication-title: Phys. Fluids
  doi: 10.1063/5.0059878
– volume: 50
  start-page: 769
  issue: 6
  year: 2000
  ident: 2023081005203610500_c11
  article-title: Bouncing water drops
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2000-00547-6
– volume: 8
  start-page: 7875
  issue: 30
  year: 2012
  ident: 2023081005203610500_c19
  article-title: Evaporation control of sessile water drops by soft viscoelastic surfaces
  publication-title: Soft Matter
  doi: 10.1039/c2sm25958c
– volume: 108
  start-page: 1714
  issue: 42
  year: 2017
  ident: 2023081005203610500_c26
  article-title: Hydrodynamics of droplet impingement on hot surfaces of varying wettability
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.12.076
– volume: 38
  start-page: 159
  issue: 1
  year: 2006
  ident: 2023081005203610500_c5
  article-title: Drop impact dynamics: Splashing, spreading, receding, bouncing
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092144
– volume: 205
  start-page: 117990
  year: 2020
  ident: 2023081005203610500_c35
  article-title: Experimental investigation of ionic liquids as substitute for lithium bromide in water absorption chillers
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117990
– volume: 804
  start-page: 1
  year: 2019
  ident: 2023081005203610500_c15
  article-title: Evaporation of a droplet: From physics to applications
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2019.01.008
– volume: 40
  start-page: 1029
  issue: 2
  year: 2016
  ident: 2023081005203610500_c22
  article-title: Calculation of the heat flux near the liquid–gas–solid contact line
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2015.06.018
– volume: 32
  start-page: 067110
  issue: 6
  year: 2020
  ident: 2023081005203610500_c30
  article-title: Dynamic wetting and heat transfer during droplet impact on bi-phobic wettability-patterned surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/5.0010877
– volume: 32
  start-page: 032003
  year: 2020
  ident: 2023081005203610500_c34
  article-title: Evaporation-induced transport of a pure aqueous droplet by an aqueous mixture droplet
  publication-title: Phys. Fluids
  doi: 10.1063/1.5139002
– volume: 32
  start-page: 102003
  issue: 10
  year: 2020
  ident: 2023081005203610500_c39
  article-title: Dynamic behavior of droplets on confined porous substrates: A many-body dissipative particle dynamics study
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020471
– volume: 31
  start-page: 057107
  issue: 5
  year: 2019
  ident: 2023081005203610500_c33
  article-title: Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.5094691
– volume: 47
  start-page: 4403
  issue: 19–20
  year: 2004
  ident: 2023081005203610500_c2
  article-title: Pendant droplet motion for absorption on horizontal tube banks
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.04.032
– volume: 14
  start-page: 8182
  issue: 40
  year: 2018
  ident: 2023081005203610500_c9
  article-title: Droplet impact dynamics on textiles
  publication-title: Soft Matter
  doi: 10.1039/C8SM01082J
– volume: 656
  start-page: 189
  year: 2010
  ident: 2023081005203610500_c28
  article-title: Fast forced liquid film spreading on a substrate: Flow, heat transfer and phase transition
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010001126
– volume: 106
  start-page: 103
  year: 2017
  ident: 2023081005203610500_c24
  article-title: Review of drop impact on heated walls
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.10.031
– volume: 441
  start-page: 776
  year: 2014
  ident: 2023081005203610500_c7
  article-title: Evaporation of a sessile water drop on a heated surface with controlled wettability
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2013.05.046
– volume: 29
  start-page: 062111
  year: 2017
  ident: 2023081005203610500_c12
  article-title: Droplet impact onto a solid sphere: Effect of wettability and impact velocity
  publication-title: Phys. Fluids
  doi: 10.1063/1.4990088
– volume: 30
  start-page: 094101
  year: 2018
  ident: 2023081005203610500_c13
  article-title: Axisymmetric rim instability of water droplet impact on a super-hydrophobic surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.5039558
– volume: 48
  start-page: 365
  issue: 1
  year: 2016
  ident: 2023081005203610500_c16
  article-title: Drop impact on a solid surface
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034401
– volume: 15
  start-page: 173
  issue: 1
  year: 2003
  ident: 2023081005203610500_c38
  article-title: Air bubble entrapment under an impacting droplet
  publication-title: Phys. Fluids
  doi: 10.1063/1.1527044
– volume: 33
  start-page: 021701
  issue: 2
  year: 2021
  ident: 2023081005203610500_c40
  article-title: Why coronavirus survives longer on impermeable than porous surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/5.0037924
– volume: 32
  start-page: 032104
  issue: 3
  year: 2020
  ident: 2023081005203610500_c6
  article-title: Splashing of fuel drops impacting on heated solid surfaces
  publication-title: Phys. Fluids
  doi: 10.1063/1.5139589
SSID ssj0003926
Score 2.39548
Snippet The impingement dynamics of water droplets on a heated wall at initial and later stages are experimentally investigated. First, the effects of the wall...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Contact angle
Diameters
Droplets
Evaporation
Fluid dynamics
Impingement
Ionic liquids
Physics
Wall temperature
Water drops
Weber number
Title Impingement dynamics of droplets on mildly heated walls at initial and later stages
URI http://dx.doi.org/10.1063/5.0082244
https://www.proquest.com/docview/2641648465
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4IXLgNEYUMW8ICEwlLHl_hxgk1lYrysk_oWJb5MQVk7temm7dfvOHaSjlVo8JJWluukPl-Ov2N_PkboExlat_iiIkGoiKhlLJJMqyiXxBLBmRBN4vmjX3x0Qg8nbNKnJ2h2l9TFV3W9dl_J_1gVysCubpfsP1i2axQK4DvYF65gYbjey8Y_ztxup2aC74v2R8s3ygw9d7JwvxJwVla6unKE0HHLy7yqFm4DY-lEQyFPQJW7TIlAE0-DoDCQ1UYd6lu01bLUPquTlHRl-qCbcD6AT5uHcdApfBqZwATQd3q1vF04Wua_yw5Q49DAIfwVHbAapiEggu10WMFzgu-IgL74IhPKUhkJ7o9Vad1tmLss-2j8jhcH2gRd7ya7nMaV9kNVuzz_xwjW6QqbFXWeZCwLP32INgnED-CxN_e-H_087gZpoIXcy1H9U7dJp3iy2933NlXp44_HQE68TmKFioyfo6chhsB7HhAv0AMz3ULPQjyBg7debKFHwYAv0fEKUnCLFDyzuEUKnk2xRwr2SMENUnBe44AUDEjBDVKwR8ordHKwP_42isJxGpECv1xHsiAF4zRX1iRcAdVOdZGkvNCJLKwWQyJSJuM8iakhmppYxwbC26FiKjdyaNPkNdqYzqbmDcJKAe-HOkIaQhVNUpGqlGtCWUx1EZMB-tz2XNb2lTvypMruWGiAPnRVz32ClXWVttvuz8L7t8iAykOsD_yZDdDHziR_a2RNrYvZvK-RnWv79j7P8w496d-BbbRRz5dmB8hpXbwPQLsBBDOLBg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impingement+dynamics+of+droplets+on+mildly+heated+walls+at+initial+and+later+stages&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Zhang%2C+Fangfang&rft.au=Li%2C+Xiangyu&rft.au=Li%2C+Huajie&rft.au=Tang%2C+Jingdan&rft.date=2022-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=3&rft_id=info:doi/10.1063%2F5.0082244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0082244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon