Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees

We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity or fugacity. The Glauber dy...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on discrete mathematics Vol. 28; no. 2; pp. 835 - 861
Main Authors Restrepo, Ricardo, Štefankovič, Daniel, Vera, Juan C., Vigoda, Eric, Yang, Linji
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2014
Subjects
Online AccessGet full text
ISSN0895-4801
1095-7146
DOI10.1137/120885498

Cover

Loading…
Abstract We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity or fugacity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor $b$, the hard-core model can be equivalently defined as a broadcasting process with a parameter $\omega$ which is the positive solution to $\lambda=\omega(1+\omega)^b$, and vertices are occupied with probability $\omega/(1+\omega)$ when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and nonreconstruction regions at $\omega_r\approx \ln{b}/b$. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular trees $T_h$ of height $h$ with branching factor $b$ and $n$ vertices undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any $\omega \le \ln{b}/b$, for $T_h$ with any boundary condition, the relaxation time is $\Omega(n)$ and $O(n^{1+o_b(1)})$. In contrast, above the reconstruction threshold we show that for every $\delta>0$, for $\omega=(1+\delta)\ln{b}/b$, the relaxation time on $T_h$ with any boundary condition is $O(n^{1+\delta + o_b(1)})$, and we construct a boundary condition where the relaxation time is $\Omega(n^{1+\delta/2 - o_b(1)})$. To prove this lower bound in the reconstruction region we introduce a general technique that transforms a reconstruction algorithm into a set with poor conductance. [PUBLICATION ABSTRACT]
AbstractList We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity or fugacity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor $b$, the hard-core model can be equivalently defined as a broadcasting process with a parameter $\omega$ which is the positive solution to $\lambda=\omega(1+\omega)^b$, and vertices are occupied with probability $\omega/(1+\omega)$ when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and nonreconstruction regions at $\omega_r\approx \ln{b}/b$. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular trees $T_h$ of height $h$ with branching factor $b$ and $n$ vertices undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any $\omega \le \ln{b}/b$, for $T_h$ with any boundary condition, the relaxation time is $\Omega(n)$ and $O(n^{1+o_b(1)})$. In contrast, above the reconstruction threshold we show that for every $\delta>0$, for $\omega=(1+\delta)\ln{b}/b$, the relaxation time on $T_h$ with any boundary condition is $O(n^{1+\delta + o_b(1)})$, and we construct a boundary condition where the relaxation time is $\Omega(n^{1+\delta/2 - o_b(1)})$. To prove this lower bound in the reconstruction region we introduce a general technique that transforms a reconstruction algorithm into a set with poor conductance. [PUBLICATION ABSTRACT]
Author Štefankovič, Daniel
Vera, Juan C.
Vigoda, Eric
Restrepo, Ricardo
Yang, Linji
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Restrepo
  fullname: Restrepo, Ricardo
– sequence: 2
  givenname: Daniel
  surname: Štefankovič
  fullname: Štefankovič, Daniel
– sequence: 3
  givenname: Juan C.
  surname: Vera
  fullname: Vera, Juan C.
– sequence: 4
  givenname: Eric
  surname: Vigoda
  fullname: Vigoda, Eric
– sequence: 5
  givenname: Linji
  surname: Yang
  fullname: Yang, Linji
BookMark eNptkE1PwzAMhiM0JLbBgX9QiROHsrhN83FEg42JSSAY5yrtHOjUpSNJD_v3ZAxxQFxsy3peW3pGZGA7i4RcAr0ByMUEMiplwZQ8IUOgqkgFMD4gQyrjzCSFMzLyfkMpMAbFkDw-f2iPycpp65vQdDYxnUvmre4rdMnd3uptU_vv5cKucYex2JC8YvBJhF_wvW-1i3lEf05OjW49Xvz0MXmb3a-mD-nyab6Y3i7TOitESBUDkUnFTK1EbrTkUgMoUXGhFc84l2tdMMoqmnFUuUQ0mnNO0eSVUaAwH5Or492d6z579KHcdL2z8WUJRZ5RxgUTkbo-UrXrvHdoyp1rttrtS6DlwVX56yqykz9s3QR90BGcbtp_El-um2rK
CitedBy_id crossref_primary_10_1017_S0963548324000348
crossref_primary_10_1002_rsa_21121
Cites_doi 10.1002/rsa.20132
10.1137/090779516
10.1214/aoap/1177005872
10.1214/aoap/998926994
10.1137/090755783
10.1073/pnas.0703685104
10.1007/s00220-009-0978-y
10.1007/s00220-004-1147-y
10.1002/rsa.20004
10.1007/s00220-009-0783-7
10.1002/rsa.20006
10.1137/090755862
10.1016/0890-5401(89)90067-9
10.1007/s00220-013-1776-0
10.1007/s00440-004-0369-4
ContentType Journal Article
Copyright 2014, Society for Industrial and Applied Mathematics
Copyright_xml – notice: 2014, Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1137/120885498
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global
Agricultural Science Database
Computing Database
Military Database
Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1095-7146
EndPage 861
ExternalDocumentID 3324236481
10_1137_120885498
GroupedDBID .4S
.DC
123
4.4
6TJ
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
ADNWM
ADXHL
AENEX
AFFNX
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBS
EDO
EJD
EMK
EST
ESX
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TN5
TUS
UQL
YNT
YYP
3V.
7XB
88A
88K
8AL
8FK
JQ2
L.-
M0N
M2T
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c257t-94172894fc973fa868a1197b67a962668da5404b026e938eefa6660ef3bf919e3
IEDL.DBID 8FG
ISSN 0895-4801
IngestDate Fri Jul 25 10:34:58 EDT 2025
Tue Jul 01 03:33:01 EDT 2025
Thu Apr 24 23:13:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-94172894fc973fa868a1197b67a962668da5404b026e938eefa6660ef3bf919e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1532046747
PQPubID 666311
PageCount 27
ParticipantIDs proquest_journals_1532046747
crossref_primary_10_1137_120885498
crossref_citationtrail_10_1137_120885498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on discrete mathematics
PublicationYear 2014
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb8
Aldous D. (atypb2) 1983
atypb27
atypb17
atypb28
atypb18
atypb29
Sokal A. D. (atypb33) 2001; 7
atypb23
atypb24
atypb25
Mossel E. (atypb26) 2004
Lawler G. (atypb19) 1988; 309
atypb30
atypb3
Galanis A. (atypb11) 2011; 2011
atypb10
atypb21
atypb5
Bhatnagar N. (atypb4) 2010
atypb6
References_xml – ident: atypb24
  doi: 10.1002/rsa.20132
– start-page: 155
  year: 2004
  ident: atypb26
  publication-title: RI
– ident: atypb21
  doi: 10.1137/090779516
– ident: atypb17
  doi: 10.1214/aoap/1177005872
– volume: 7
  start-page: 21
  year: 2001
  ident: atypb33
  publication-title: Markov Process. Related Fields
– ident: atypb27
  doi: 10.1214/aoap/998926994
– ident: atypb5
  doi: 10.1137/090755783
– ident: atypb18
  doi: 10.1073/pnas.0703685104
– ident: atypb8
  doi: 10.1007/s00220-009-0978-y
– ident: atypb23
  doi: 10.1007/s00220-004-1147-y
– start-page: 434
  year: 2010
  ident: atypb4
  publication-title: RANDOM
– volume: 2011
  start-page: 567
  year: 2011
  ident: atypb11
  publication-title: RANDOM
– ident: atypb10
  doi: 10.1002/rsa.20004
– ident: atypb30
  doi: 10.1007/s00220-009-0783-7
– ident: atypb6
  doi: 10.1002/rsa.20006
– ident: atypb25
  doi: 10.1137/090755862
– ident: atypb29
  doi: 10.1016/0890-5401(89)90067-9
– ident: atypb28
  doi: 10.1007/s00220-013-1776-0
– volume: 309
  start-page: 557
  year: 1988
  ident: atypb19
  publication-title: Trans. Amer. Math. Soc.
– start-page: 243
  year: 1983
  ident: atypb2
  publication-title: New York
– ident: atypb3
  doi: 10.1007/s00440-004-0369-4
SSID ssj0014415
Score 2.06522
Snippet We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 835
SubjectTerms Algorithms
Boundary conditions
Computer science
Equilibrium
Graphs
Leaves
Markov analysis
Operations research
Phase transitions
Statistical physics
Title Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees
URI https://www.proquest.com/docview/1532046747
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwqlshADi9UE52FPiEcfgKiqQqVukR07Yqja0qT_n7PjBFVCrMllOefuu-_Oug-hGy-FlMeVIBGnQFCo8oiMw5AAEoZShWZBupnovo-i4TR4nYUz13DL3bXKKifaRK2WqemRd32jYGCkMeL71TcxqlFmuuokNHZR0wekMf856w_qKYLhCraK5CExa1LcZiGfxl3_DsILuBHbxqPtdGwxpn-I9l1xiB_K0zxCO3pxjA4q4QXs4vAEvY2_AHywxRl75QpD6YkHc7GRYPZciszn9uFLLXNb4A9d5BiMJ1Z_fg3fa52fomm_9_k0JE4VgaQQXgXhgZGU4kGW8phmgkVMmFGgjGLBgZ1ETAmowgIJ5EpzyrTOBFAUT2dUZtznmp6hxmK50OcIA_VSgnmZ8pQfaM2FnwFhAliLPR1xplrotvJNkrqV4Ua5Yp5Y6kDjpHZjC13XpqtyT8ZfRu3KwYkLlTz5PdiL_19foj2oVoKy_9FGjWK90VdQERSyY4-9g5qPvdF48gOk1LLv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHPTi24iibowmXhpa-tyDMSogyCMEIfFWt91tPBBAWmL8U_5GZ_syJMYb13a2h-nszvft7M4HcKX6uORRzhSL6khQdK4qnm2aCmZC0-OmbJAuK7q9vtUaG8-v5msBvrO7MPJYZbYmxgs1n_lyj7yqSQUDKY1h380_FKkaJaurmYRGEhYd8fWJlC28bdfx_17Xas3G6LGlpKoCio_hGSnUkJJM1Ah8ausBcyyHyVKaZ9mMIrq3HM4QxRgekhNBdUeIgCHEV0WgewHVqNDxuxtQMuSN1iKUHhr9wTCvW0h2EuNWaiqyMUvay0jT7apWwwmNbMxZzYCrCSDOas1d2E7hKLlP4mcPCmK6DzuZ1ANJZ_4BdAbvmO5InNniQ14EwS55mrClh2b1RNY-jB-2c2HdiLyIKCRoPIwV7xc4XojwEMZr8dgRFKezqTgGgmSPM0cNuMo1QwjKtAApGiZSWxUWdXgZbjLfuH7apFxqZUzcmKzotpu7sQyXuek86czxl1Elc7CbTs7Q_Q2lk_9fX8Bma9Trut12v3MKW4iVjGT3pQLFaLEUZ4hHIu88DQICb-uOux-RE-5O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Transition+for+Glauber+Dynamics+for+Independent+Sets+on+Regular+Trees&rft.jtitle=SIAM+journal+on+discrete+mathematics&rft.au=Restrepo%2C+Ricardo&rft.au=S%C3%A1tefankovic%C3%A1%2C+Daniel&rft.au=Vera%2C+Juan+C&rft.au=Vigoda%2C+Eric&rft.date=2014-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4801&rft.eissn=1095-7146&rft.volume=28&rft.issue=2&rft.spage=835&rft_id=info:doi/10.1137%2F120885498&rft.externalDocID=3324236481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4801&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4801&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4801&client=summon