Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees
We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity or fugacity. The Glauber dy...
Saved in:
Published in | SIAM journal on discrete mathematics Vol. 28; no. 2; pp. 835 - 861 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0895-4801 1095-7146 |
DOI | 10.1137/120885498 |
Cover
Loading…
Abstract | We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity or fugacity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor $b$, the hard-core model can be equivalently defined as a broadcasting process with a parameter $\omega$ which is the positive solution to $\lambda=\omega(1+\omega)^b$, and vertices are occupied with probability $\omega/(1+\omega)$ when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and nonreconstruction regions at $\omega_r\approx \ln{b}/b$. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular trees $T_h$ of height $h$ with branching factor $b$ and $n$ vertices undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any $\omega \le \ln{b}/b$, for $T_h$ with any boundary condition, the relaxation time is $\Omega(n)$ and $O(n^{1+o_b(1)})$. In contrast, above the reconstruction threshold we show that for every $\delta>0$, for $\omega=(1+\delta)\ln{b}/b$, the relaxation time on $T_h$ with any boundary condition is $O(n^{1+\delta + o_b(1)})$, and we construct a boundary condition where the relaxation time is $\Omega(n^{1+\delta/2 - o_b(1)})$. To prove this lower bound in the reconstruction region we introduce a general technique that transforms a reconstruction algorithm into a set with poor conductance. [PUBLICATION ABSTRACT] |
---|---|
AbstractList | We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity or fugacity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor $b$, the hard-core model can be equivalently defined as a broadcasting process with a parameter $\omega$ which is the positive solution to $\lambda=\omega(1+\omega)^b$, and vertices are occupied with probability $\omega/(1+\omega)$ when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and nonreconstruction regions at $\omega_r\approx \ln{b}/b$. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular trees $T_h$ of height $h$ with branching factor $b$ and $n$ vertices undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any $\omega \le \ln{b}/b$, for $T_h$ with any boundary condition, the relaxation time is $\Omega(n)$ and $O(n^{1+o_b(1)})$. In contrast, above the reconstruction threshold we show that for every $\delta>0$, for $\omega=(1+\delta)\ln{b}/b$, the relaxation time on $T_h$ with any boundary condition is $O(n^{1+\delta + o_b(1)})$, and we construct a boundary condition where the relaxation time is $\Omega(n^{1+\delta/2 - o_b(1)})$. To prove this lower bound in the reconstruction region we introduce a general technique that transforms a reconstruction algorithm into a set with poor conductance. [PUBLICATION ABSTRACT] |
Author | Štefankovič, Daniel Vera, Juan C. Vigoda, Eric Restrepo, Ricardo Yang, Linji |
Author_xml | – sequence: 1 givenname: Ricardo surname: Restrepo fullname: Restrepo, Ricardo – sequence: 2 givenname: Daniel surname: Štefankovič fullname: Štefankovič, Daniel – sequence: 3 givenname: Juan C. surname: Vera fullname: Vera, Juan C. – sequence: 4 givenname: Eric surname: Vigoda fullname: Vigoda, Eric – sequence: 5 givenname: Linji surname: Yang fullname: Yang, Linji |
BookMark | eNptkE1PwzAMhiM0JLbBgX9QiROHsrhN83FEg42JSSAY5yrtHOjUpSNJD_v3ZAxxQFxsy3peW3pGZGA7i4RcAr0ByMUEMiplwZQ8IUOgqkgFMD4gQyrjzCSFMzLyfkMpMAbFkDw-f2iPycpp65vQdDYxnUvmre4rdMnd3uptU_vv5cKucYex2JC8YvBJhF_wvW-1i3lEf05OjW49Xvz0MXmb3a-mD-nyab6Y3i7TOitESBUDkUnFTK1EbrTkUgMoUXGhFc84l2tdMMoqmnFUuUQ0mnNO0eSVUaAwH5Or492d6z579KHcdL2z8WUJRZ5RxgUTkbo-UrXrvHdoyp1rttrtS6DlwVX56yqykz9s3QR90BGcbtp_El-um2rK |
CitedBy_id | crossref_primary_10_1017_S0963548324000348 crossref_primary_10_1002_rsa_21121 |
Cites_doi | 10.1002/rsa.20132 10.1137/090779516 10.1214/aoap/1177005872 10.1214/aoap/998926994 10.1137/090755783 10.1073/pnas.0703685104 10.1007/s00220-009-0978-y 10.1007/s00220-004-1147-y 10.1002/rsa.20004 10.1007/s00220-009-0783-7 10.1002/rsa.20006 10.1137/090755862 10.1016/0890-5401(89)90067-9 10.1007/s00220-013-1776-0 10.1007/s00440-004-0369-4 |
ContentType | Journal Article |
Copyright | 2014, Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: 2014, Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1137/120885498 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Agricultural Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1095-7146 |
EndPage | 861 |
ExternalDocumentID | 3324236481 10_1137_120885498 |
GroupedDBID | .4S .DC 123 4.4 6TJ 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV ADNWM ADXHL AENEX AFFNX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBS EDO EJD EMK EST ESX FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TN5 TUS UQL YNT YYP 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c257t-94172894fc973fa868a1197b67a962668da5404b026e938eefa6660ef3bf919e3 |
IEDL.DBID | 8FG |
ISSN | 0895-4801 |
IngestDate | Fri Jul 25 10:34:58 EDT 2025 Tue Jul 01 03:33:01 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-94172894fc973fa868a1197b67a962668da5404b026e938eefa6660ef3bf919e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1532046747 |
PQPubID | 666311 |
PageCount | 27 |
ParticipantIDs | proquest_journals_1532046747 crossref_primary_10_1137_120885498 crossref_citationtrail_10_1137_120885498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | SIAM journal on discrete mathematics |
PublicationYear | 2014 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | atypb8 Aldous D. (atypb2) 1983 atypb27 atypb17 atypb28 atypb18 atypb29 Sokal A. D. (atypb33) 2001; 7 atypb23 atypb24 atypb25 Mossel E. (atypb26) 2004 Lawler G. (atypb19) 1988; 309 atypb30 atypb3 Galanis A. (atypb11) 2011; 2011 atypb10 atypb21 atypb5 Bhatnagar N. (atypb4) 2010 atypb6 |
References_xml | – ident: atypb24 doi: 10.1002/rsa.20132 – start-page: 155 year: 2004 ident: atypb26 publication-title: RI – ident: atypb21 doi: 10.1137/090779516 – ident: atypb17 doi: 10.1214/aoap/1177005872 – volume: 7 start-page: 21 year: 2001 ident: atypb33 publication-title: Markov Process. Related Fields – ident: atypb27 doi: 10.1214/aoap/998926994 – ident: atypb5 doi: 10.1137/090755783 – ident: atypb18 doi: 10.1073/pnas.0703685104 – ident: atypb8 doi: 10.1007/s00220-009-0978-y – ident: atypb23 doi: 10.1007/s00220-004-1147-y – start-page: 434 year: 2010 ident: atypb4 publication-title: RANDOM – volume: 2011 start-page: 567 year: 2011 ident: atypb11 publication-title: RANDOM – ident: atypb10 doi: 10.1002/rsa.20004 – ident: atypb30 doi: 10.1007/s00220-009-0783-7 – ident: atypb6 doi: 10.1002/rsa.20006 – ident: atypb25 doi: 10.1137/090755862 – ident: atypb29 doi: 10.1016/0890-5401(89)90067-9 – ident: atypb28 doi: 10.1007/s00220-013-1776-0 – volume: 309 start-page: 557 year: 1988 ident: atypb19 publication-title: Trans. Amer. Math. Soc. – start-page: 243 year: 1983 ident: atypb2 publication-title: New York – ident: atypb3 doi: 10.1007/s00440-004-0369-4 |
SSID | ssj0014415 |
Score | 2.06522 |
Snippet | We study the effect of boundary conditions on the relaxation time (i.e., inverse spectral gap) of the Glauber dynamics for the hard-core model on the tree. The... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 835 |
SubjectTerms | Algorithms Boundary conditions Computer science Equilibrium Graphs Leaves Markov analysis Operations research Phase transitions Statistical physics |
Title | Phase Transition for Glauber Dynamics for Independent Sets on Regular Trees |
URI | https://www.proquest.com/docview/1532046747 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwqlshADi9UE52FPiEcfgKiqQqVukR07Yqja0qT_n7PjBFVCrMllOefuu-_Oug-hGy-FlMeVIBGnQFCo8oiMw5AAEoZShWZBupnovo-i4TR4nYUz13DL3bXKKifaRK2WqemRd32jYGCkMeL71TcxqlFmuuokNHZR0wekMf856w_qKYLhCraK5CExa1LcZiGfxl3_DsILuBHbxqPtdGwxpn-I9l1xiB_K0zxCO3pxjA4q4QXs4vAEvY2_AHywxRl75QpD6YkHc7GRYPZciszn9uFLLXNb4A9d5BiMJ1Z_fg3fa52fomm_9_k0JE4VgaQQXgXhgZGU4kGW8phmgkVMmFGgjGLBgZ1ETAmowgIJ5EpzyrTOBFAUT2dUZtznmp6hxmK50OcIA_VSgnmZ8pQfaM2FnwFhAliLPR1xplrotvJNkrqV4Ua5Yp5Y6kDjpHZjC13XpqtyT8ZfRu3KwYkLlTz5PdiL_19foj2oVoKy_9FGjWK90VdQERSyY4-9g5qPvdF48gOk1LLv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHPTi24iibowmXhpa-tyDMSogyCMEIfFWt91tPBBAWmL8U_5GZ_syJMYb13a2h-nszvft7M4HcKX6uORRzhSL6khQdK4qnm2aCmZC0-OmbJAuK7q9vtUaG8-v5msBvrO7MPJYZbYmxgs1n_lyj7yqSQUDKY1h380_FKkaJaurmYRGEhYd8fWJlC28bdfx_17Xas3G6LGlpKoCio_hGSnUkJJM1Ah8ausBcyyHyVKaZ9mMIrq3HM4QxRgekhNBdUeIgCHEV0WgewHVqNDxuxtQMuSN1iKUHhr9wTCvW0h2EuNWaiqyMUvay0jT7apWwwmNbMxZzYCrCSDOas1d2E7hKLlP4mcPCmK6DzuZ1ANJZ_4BdAbvmO5InNniQ14EwS55mrClh2b1RNY-jB-2c2HdiLyIKCRoPIwV7xc4XojwEMZr8dgRFKezqTgGgmSPM0cNuMo1QwjKtAApGiZSWxUWdXgZbjLfuH7apFxqZUzcmKzotpu7sQyXuek86czxl1Elc7CbTs7Q_Q2lk_9fX8Bma9Trut12v3MKW4iVjGT3pQLFaLEUZ4hHIu88DQICb-uOux-RE-5O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Transition+for+Glauber+Dynamics+for+Independent+Sets+on+Regular+Trees&rft.jtitle=SIAM+journal+on+discrete+mathematics&rft.au=Restrepo%2C+Ricardo&rft.au=S%C3%A1tefankovic%C3%A1%2C+Daniel&rft.au=Vera%2C+Juan+C&rft.au=Vigoda%2C+Eric&rft.date=2014-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4801&rft.eissn=1095-7146&rft.volume=28&rft.issue=2&rft.spage=835&rft_id=info:doi/10.1137%2F120885498&rft.externalDocID=3324236481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4801&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4801&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4801&client=summon |