Investigating single-chain structure during the crystallization process by atomic force microscopy

Crystalline polymers have gained significant traction in various fields owing to their exceptional thermal and mechanical properties. However, the precise mechanism underlying polymer crystallization remains a subject of ongoing debate. In this study, we employed atomic force microscopy (AFM)-based...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 316; p. 127883
Main Authors Wang, Dingrui, Liang, Xiaobin, Nakajima, Ken
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crystalline polymers have gained significant traction in various fields owing to their exceptional thermal and mechanical properties. However, the precise mechanism underlying polymer crystallization remains a subject of ongoing debate. In this study, we employed atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), also called nanofishing to investigate the mechanical properties, chain-level structure, and interactions of individual polymer chains, thereby shedding light on the crystallization mechanism. Through control of the crystallization temperature and time of polyethylene oxide (PEO) in solution, in conjunction with differential scanning calorimetry (DSC), we present compelling evidence that polymer crystallization begins with the folding of individual chains into cluster-like forms and the subsequent aggregation of these clusters to form larger crystalline structures. The clusters adopt chain-folding structures with lengths ranging from 7.9 to 9.1 nm at distinct crystallization temperatures. Remarkably, we observed the formation of these clusters in the initial stages, even preceding the 5-min mark. Over time, these clusters progressively aggregate and grow, ultimately leading to lamella structures. This suggests that the primary chain-folding process occurs in the early stage of crystallization, presenting a significant advancement in our understanding of the behavior of polymers at the chain level during the crystallization process. These insights hold immense value in the design and development of advanced crystal-based polymer materials. [Display omitted] •Investigating the chain-level behavior during crystallization.•Discovering the interchain and intrachain structure in the early stage of crystallization.•Polymer chains first fold to form small clusters and then aggregate to form crystals during crystallization.
AbstractList Crystalline polymers have gained significant traction in various fields owing to their exceptional thermal and mechanical properties. However, the precise mechanism underlying polymer crystallization remains a subject of ongoing debate. In this study, we employed atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), also called nanofishing to investigate the mechanical properties, chain-level structure, and interactions of individual polymer chains, thereby shedding light on the crystallization mechanism. Through control of the crystallization temperature and time of polyethylene oxide (PEO) in solution, in conjunction with differential scanning calorimetry (DSC), we present compelling evidence that polymer crystallization begins with the folding of individual chains into cluster-like forms and the subsequent aggregation of these clusters to form larger crystalline structures. The clusters adopt chain-folding structures with lengths ranging from 7.9 to 9.1 nm at distinct crystallization temperatures. Remarkably, we observed the formation of these clusters in the initial stages, even preceding the 5-min mark. Over time, these clusters progressively aggregate and grow, ultimately leading to lamella structures. This suggests that the primary chain-folding process occurs in the early stage of crystallization, presenting a significant advancement in our understanding of the behavior of polymers at the chain level during the crystallization process. These insights hold immense value in the design and development of advanced crystal-based polymer materials. [Display omitted] •Investigating the chain-level behavior during crystallization.•Discovering the interchain and intrachain structure in the early stage of crystallization.•Polymer chains first fold to form small clusters and then aggregate to form crystals during crystallization.
ArticleNumber 127883
Author Nakajima, Ken
Liang, Xiaobin
Wang, Dingrui
Author_xml – sequence: 1
  givenname: Dingrui
  orcidid: 0009-0002-3321-274X
  surname: Wang
  fullname: Wang, Dingrui
  email: wang.d.aj@m.titech.ac.jp
– sequence: 2
  givenname: Xiaobin
  orcidid: 0000-0003-2497-2085
  surname: Liang
  fullname: Liang, Xiaobin
  email: liang.x.ac@m.titech.ac.jp
– sequence: 3
  givenname: Ken
  orcidid: 0000-0001-7495-0445
  surname: Nakajima
  fullname: Nakajima, Ken
  email: nakajima.k.aa@m.titech.ac.jp, knakaji@mct.isct.ac.jp
BookMark eNqFkMtqwzAQRbVIoUnaTyjoB-zqYTv2qpTQRyDQTfZCj1Ei41hGUgLu19cm2XczM3Dn3hnOCi163wNCL5TklNDqtc0H341nCDkjrMgp29Q1X6AlIZxlvK7oI1rF2BJCWMmKJVK7_goxuaNMrj_iOJUOMn2SrscxhYtOlwDYXMKsphNgHcaYZNe538nhezwEryFGrEYskz87ja0PGvA0BR-1H8Yn9GBlF-H53tfo8Plx2H5n-5-v3fZ9n2lWblJWK0us5ExVpim5Ak4kZYZrYwttFSOVrcqmaqRtJG8qqE2pSjntN4VquKV8jcpb7Hw3BrBiCO4swygoETMb0Yo7GzGzETc2k-_t5oPpt6ub1Kgd9BqMC6CTMN79k_AHdLJ32w
Cites_doi 10.1021/ma2017666
10.1021/ma5025895
10.1038/s41467-023-41138-4
10.1021/acsmacrolett.8b00355
10.1021/ma4004659
10.1021/ma102380m
10.1103/PhysRevE.72.011804
10.1021/acs.macromol.8b02702
10.1021/ar040288n
10.1002/polb.24908
10.1021/acs.macromol.8b01544
10.1021/ja108022h
10.1021/acsmacrolett.1c00789
10.1021/acsmacrolett.5b00818
10.1002/pol.1982.180200705
10.1021/ma801824u
10.1021/ja050457e
10.1063/1.433919
10.1007/12_009
10.1021/acsmacrolett.5b00668
10.1021/acs.macromol.6b02000
10.1021/acs.macromol.5b01321
10.6028/jres.064A.007
10.1021/la305157p
10.1016/S0032-3861(98)00864-7
10.1021/acs.macromol.6b02124
10.1021/ma702636g
10.1107/S2052252521003821
10.3390/polym10070775
10.1021/acs.macromol.2c01466
10.6028/jres.065A.035
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.polymer.2024.127883
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_polymer_2024_127883
S0032386124012199
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
53G
6TJ
6TU
AAQXK
AATTM
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
M24
M41
R2-
RIG
SCB
SSH
T9H
WUQ
ID FETCH-LOGICAL-c257t-8bf0fa32b6d953be30a12d3cdf4cfb206f65969af9a396e8d5b5aa3294b93f13
IEDL.DBID .~1
ISSN 0032-3861
IngestDate Tue Jul 01 02:37:24 EDT 2025
Sat Dec 21 16:01:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crystallization mechanism
Single-molecule force spectroscopy
Chain structure
Single polymer chain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-8bf0fa32b6d953be30a12d3cdf4cfb206f65969af9a396e8d5b5aa3294b93f13
ORCID 0009-0002-3321-274X
0000-0001-7495-0445
0000-0003-2497-2085
ParticipantIDs crossref_primary_10_1016_j_polymer_2024_127883
elsevier_sciencedirect_doi_10_1016_j_polymer_2024_127883
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-10
PublicationDateYYYYMMDD 2025-01-10
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-10
  day: 10
PublicationDecade 2020
PublicationTitle Polymer (Guilford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kumaki, Kawauchi, Yashima (bib33) 2005; 127
Muthukuma (bib18) 2007; 126
Allegra (bib11) 1977; 66
Luo, Kroger, Sommer (bib15) 2016
Li, Hong, Yuan, Kang, Kamimura, Otsubo, Miyoshi (bib22) 2015; 48
Yi, Locker, Rutledge (bib17) 2013; 46
Song, Feng, Liu, Yang, Zhang, Zhang (bib40) 2013; 29
Yuan, Li, Hong, Ke, Kang, Kamimura, Otsubo, Miyoshi (bib20) 2015; 4
Migler, Kotula, Hight Walker (bib31) 2015; 48
Muthukumar (bib9) 2004; 128
Muthukumar (bib10) 2005
Li, Ding, Chen, Zheng, Zhang, Tian (bib30) 2021; 8
Kanomi, Marubayashi, Miyata, Jinnai (bib32) 2023; 14
Reddy, Tashiro, Sakurai, Yamaguchi (bib25) 2008; 41
Sasaki, Tashiro, Kobayashi, Izumi, Kobayashi (bib27) 1999; 40
Liang, Shiomi, Nakajima (bib36) 2022; 55
Allegra, Meille (bib12) 2005; 191
Lauritzen, Hoffman (bib6) 1960; 64A
Konishi, Okamoto, Tadokoro, Kawahara, Fukao, Miyamoto (bib29) 2018; 2
Hu, Cai (bib16) 2008; 41
Fritzsching, Mao, Schmidt-Rohr (bib23) 2017; 50
Keller, Hikosaka, Rastogi, Toda, Barham, Goldbeck-Wood (bib4) 1994; 29
Luo, Sommer (bib14) 2016; 5
Lyu, Song, Feng, Zhang (bib37) 2018; 7
Corradini, Auriemma, De Rosa (bib1) 2006; 39
Liu, Muthukumar (bib8) 1998; 109
Jing, Krimm (bib26) 1982; 20
Liu, Song, Feng, Liu, Zhang, Zhang (bib34) 2011; 133
Song, Ma, Yang, Zhang, Lyu, Jiang, Zhang (bib39) 2019; 52
Xu, Matkar, Kyu (bib19) 2005; 72
Jin, Yuan, Wang, Zhang, Zheng, Hong, Miyoshi (bib21) 2022; 11
Wasanasuk, Tashiro (bib28) 2011; 44
Tadokoro (bib2) 1990
Liang, Nakajima (bib35) 2019; 57
Luo, Sommer (bib13) 2011; 44
Yang, Song, Feng, Zhang (bib38) 2018; 51
Cheng (bib3) 2008
Corradini, Auriemma, De Rosa (bib5) 2006; 39
Wang, Hong, Yuan, Chen, Zhou, Li, Wang, Min, Konishi, Miyoshi (bib24) 2018; 10
Hoffman, Lauritzen (bib7) 1961; 65A
Li (10.1016/j.polymer.2024.127883_bib22) 2015; 48
Hu (10.1016/j.polymer.2024.127883_bib16) 2008; 41
Kumaki (10.1016/j.polymer.2024.127883_bib33) 2005; 127
Muthukumar (10.1016/j.polymer.2024.127883_bib9) 2004; 128
Allegra (10.1016/j.polymer.2024.127883_bib12) 2005; 191
Wasanasuk (10.1016/j.polymer.2024.127883_bib28) 2011; 44
Kanomi (10.1016/j.polymer.2024.127883_bib32) 2023; 14
Liu (10.1016/j.polymer.2024.127883_bib8) 1998; 109
Luo (10.1016/j.polymer.2024.127883_bib13) 2011; 44
Yang (10.1016/j.polymer.2024.127883_bib38) 2018; 51
Corradini (10.1016/j.polymer.2024.127883_bib1) 2006; 39
Sasaki (10.1016/j.polymer.2024.127883_bib27) 1999; 40
Muthukumar (10.1016/j.polymer.2024.127883_bib10) 2005
Yi (10.1016/j.polymer.2024.127883_bib17) 2013; 46
Tadokoro (10.1016/j.polymer.2024.127883_bib2) 1990
Reddy (10.1016/j.polymer.2024.127883_bib25) 2008; 41
Hoffman (10.1016/j.polymer.2024.127883_bib7) 1961; 65A
Keller (10.1016/j.polymer.2024.127883_bib4) 1994; 29
Lyu (10.1016/j.polymer.2024.127883_bib37) 2018; 7
Luo (10.1016/j.polymer.2024.127883_bib14) 2016; 5
Fritzsching (10.1016/j.polymer.2024.127883_bib23) 2017; 50
Song (10.1016/j.polymer.2024.127883_bib39) 2019; 52
Wang (10.1016/j.polymer.2024.127883_bib24) 2018; 10
Lauritzen (10.1016/j.polymer.2024.127883_bib6) 1960; 64A
Allegra (10.1016/j.polymer.2024.127883_bib11) 1977; 66
Cheng (10.1016/j.polymer.2024.127883_bib3) 2008
Jin (10.1016/j.polymer.2024.127883_bib21) 2022; 11
Yuan (10.1016/j.polymer.2024.127883_bib20) 2015; 4
Luo (10.1016/j.polymer.2024.127883_bib15) 2016
Muthukuma (10.1016/j.polymer.2024.127883_bib18) 2007; 126
Song (10.1016/j.polymer.2024.127883_bib40) 2013; 29
Xu (10.1016/j.polymer.2024.127883_bib19) 2005; 72
Jing (10.1016/j.polymer.2024.127883_bib26) 1982; 20
Konishi (10.1016/j.polymer.2024.127883_bib29) 2018; 2
Liang (10.1016/j.polymer.2024.127883_bib36) 2022; 55
Liu (10.1016/j.polymer.2024.127883_bib34) 2011; 133
Liang (10.1016/j.polymer.2024.127883_bib35) 2019; 57
Migler (10.1016/j.polymer.2024.127883_bib31) 2015; 48
Corradini (10.1016/j.polymer.2024.127883_bib5) 2006; 39
Li (10.1016/j.polymer.2024.127883_bib30) 2021; 8
References_xml – start-page: 191
  year: 2005
  ident: bib10
  article-title: Modeling polymer crystallization
  publication-title: Adv. Polym. Sci.
– volume: 52
  start-page: 1327
  year: 2019
  end-page: 1333
  ident: bib39
  article-title: Single-molecule force spectroscopy study on force-induced melting in polymer single crystals: the chain conformation matters
  publication-title: Macromolecules
– volume: 29
  start-page: 2579
  year: 1994
  end-page: 2604
  ident: bib4
  article-title: Mater.The size factor in phase transitions: its role in polymer crystal formation and wider implications
  publication-title: Sci.
– volume: 55
  start-page: 10891
  year: 2022
  end-page: 10899
  ident: bib36
  article-title: Study of the dynamic viscoelasticity of single poly(N-isopropylacrylamide) chains using atomic force microscopy
  publication-title: Macromolecules
– volume: 8
  start-page: 595
  year: 2021
  end-page: 607
  ident: bib30
  article-title: Detection and characterization of folded chain clusters in the structured melt of isotactic polypropylene
  publication-title: IUCrJ
– volume: 64A
  start-page: 73
  year: 1960
  end-page: 102
  ident: bib6
  article-title: Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites
  publication-title: J. Res. Natl. Bur. Stand., Sect. A
– volume: 39
  start-page: 314
  year: 2006
  end-page: 323
  ident: bib1
  article-title: Crystals and crystallinity in polymeric materials
  publication-title: Acc. Chem. Res.
– volume: 191
  start-page: 87
  year: 2005
  ident: bib12
  article-title: Pre-Crystalline, High-Entropy Aggregates: a role in polymer crystallization
  publication-title: Adv. Polym. Sci.
– volume: 2
  year: 2018
  ident: bib29
  article-title: Origin of SAXS Intensity in the low-q region during the early stage of polymer crystallization from both the melt and glassy state
  publication-title: Phys. Rev. Mater.
– volume: 66
  start-page: 5453
  year: 1977
  end-page: 5463
  ident: bib11
  article-title: Chain folding and polymer crystallization: a statistical–mechanical approach
  publication-title: J. Chem. Phys.
– volume: 50
  start-page: 1521
  year: 2017
  end-page: 1540
  ident: bib23
  article-title: Avoidance of density anomalies as a structural principle for semicrystalline polymers: the importance of chain ends and chain tilt
  publication-title: Macromolecules
– volume: 57
  start-page: 1736
  year: 2019
  end-page: 1743
  ident: bib35
  article-title: Investigating the dynamic viscoelasticity of single polymer chains using atomic force microscopy. J. Polym. Sci., Part B
  publication-title: Polym. Phys
– volume: 46
  start-page: 4723
  year: 2013
  end-page: 4733
  ident: bib17
  article-title: Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene
  publication-title: Macromolecules
– start-page: 9017
  year: 2016
  end-page: 9025
  ident: bib15
  article-title: Entanglements and crystallization of concentrated polymer solutions: molecular dynamics simulations
  publication-title: Macromolecules
– year: 1990
  ident: bib2
  article-title: Structure of crystalline polymers
  publication-title: Malabar: Kriege
– volume: 14
  start-page: 5531
  year: 2023
  ident: bib32
  article-title: Reassessing chain tilt in the lamellar crystals of polyethylene
  publication-title: Nat. Commun.
– volume: 51
  start-page: 7052
  year: 2018
  end-page: 7060
  ident: bib38
  article-title: Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: toward better force precision and more accurate description of molecular behaviors
  publication-title: Macromolecules
– volume: 44
  start-page: 1523
  year: 2011
  end-page: 1529
  ident: bib13
  article-title: Growth pathway and precursor states in single lamellar crystallization: MD simulations
  publication-title: Macromolecules
– volume: 20
  start-page: 1155
  year: 1982
  end-page: 1173
  ident: bib26
  article-title: Mixed-crystal infrared studies of chain folding in polyethylene single crystals: effect of crystallization temperature. J. Polym. Sci
  publication-title: Polym. Phys.
– volume: 40
  start-page: 7125
  year: 1999
  end-page: 7135
  ident: bib27
  article-title: Microscopically viewed structural change of PE during the isothermal crystallization from the melt: II. Conformational ordering and lamellar formation mechanism derived from the coupled interpretation of time-resolved SAXS and FTIR data
  publication-title: Polymer
– volume: 5
  start-page: 30
  year: 2016
  end-page: 34
  ident: bib14
  article-title: Role of thermal history and entanglement related thickness selection in polymer crystallization
  publication-title: ACS Macro Lett.
– volume: 126
  year: 2007
  ident: bib18
  article-title: Monte Carlo simulations of single crystals from polymer solutions
  publication-title: J. Chem. Phys.
– volume: 48
  start-page: 5752
  year: 2015
  end-page: 5760
  ident: bib22
  article-title: Determination of chain-folding structure of isotactic polypropylene in melt-grown α crystals by
  publication-title: Macromolecules
– volume: 128
  start-page: 1
  year: 2004
  ident: bib9
  article-title: Nucleation in polymer crystallization
  publication-title: Adv. Chem. Phys.
– volume: 10
  start-page: 775
  year: 2018
  ident: bib24
  article-title: Chain trajectory, chain packing, and molecular dynamics of semicrystalline polymers as studied by solid-state NMR
  publication-title: Polymers
– volume: 41
  start-page: 2049
  year: 2008
  end-page: 2061
  ident: bib16
  article-title: Regime transitions of polymer crystal growth rates: molecular simulations and interpretation beyond LauritzenHoffman model
  publication-title: Macromolecules
– volume: 41
  start-page: 9807
  year: 2008
  end-page: 9813
  ident: bib25
  article-title: Cocrystallization phenomenon between the H and D species of isotactic polypropylene blends as revealed by thermal and infrared spectroscopic analyses for a series of D/H blend samples
  publication-title: Macromolecules
– volume: 109
  start-page: 2536
  year: 1998
  ident: bib8
  article-title: Langevin dynamics simulations of early-stage polymer nucleation and crystallization
  publication-title: Chem. Phys.
– volume: 127
  start-page: 5788
  year: 2005
  end-page: 5789
  ident: bib33
  article-title: Two-dimensional folded chain crystals of a synthetic polymer in a Langmuir-Blodgett film
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 314
  year: 2006
  end-page: 323
  ident: bib5
  article-title: Crystals and crystallinity in polymeric materials
  publication-title: Acc. Chem. Res.
– volume: 72
  year: 2005
  ident: bib19
  article-title: Phase-field modeling on morphological landscape of isotactic polystyrene single crystals
  publication-title: Phys. Rev. E
– volume: 65A
  start-page: 297
  year: 1961
  end-page: 336
  ident: bib7
  article-title: Theory of formation of polymer crystals with folded chains in dilute solution
  publication-title: J. Res. Natl. Bur. Stand., Sect. A
– volume: 48
  start-page: 4555
  year: 2015
  end-page: 4561
  ident: bib31
  article-title: Trans-rich structures in early stage crystallization of polyethylene
  publication-title: Macromolecules
– volume: 133
  start-page: 3226
  year: 2011
  end-page: 3229
  ident: bib34
  article-title: Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 284
  year: 2022
  end-page: 288
  ident: bib21
  article-title: Polymer chains fold prior to crystallization
  publication-title: ACS Macro Lett.
– year: 2008
  ident: bib3
  article-title: Phase Transitions in Polymers: the Role of Metastable States
– volume: 7
  start-page: 762
  year: 2018
  end-page: 766
  ident: bib37
  article-title: Direct observation of single-molecule stick-slip motion in polyamide single crystals
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 9650
  year: 2011
  end-page: 9660
  ident: bib28
  article-title: Structural regulation in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings
  publication-title: Macromolecules
– volume: 29
  start-page: 3853
  year: 2013
  end-page: 3857
  ident: bib40
  article-title: Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations
  publication-title: Langmuir
– volume: 4
  start-page: 1382
  year: 2015
  end-page: 1385
  ident: bib20
  article-title: Folding of polymer chains in the early stage of crystallization
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 9650
  year: 2011
  ident: 10.1016/j.polymer.2024.127883_bib28
  article-title: Structural regulation in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings
  publication-title: Macromolecules
  doi: 10.1021/ma2017666
– volume: 48
  start-page: 4555
  year: 2015
  ident: 10.1016/j.polymer.2024.127883_bib31
  article-title: Trans-rich structures in early stage crystallization of polyethylene
  publication-title: Macromolecules
  doi: 10.1021/ma5025895
– volume: 14
  start-page: 5531
  year: 2023
  ident: 10.1016/j.polymer.2024.127883_bib32
  article-title: Reassessing chain tilt in the lamellar crystals of polyethylene
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41138-4
– volume: 7
  start-page: 762
  year: 2018
  ident: 10.1016/j.polymer.2024.127883_bib37
  article-title: Direct observation of single-molecule stick-slip motion in polyamide single crystals
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00355
– year: 1990
  ident: 10.1016/j.polymer.2024.127883_bib2
  article-title: Structure of crystalline polymers
  publication-title: Malabar: Kriege
– volume: 46
  start-page: 4723
  year: 2013
  ident: 10.1016/j.polymer.2024.127883_bib17
  article-title: Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene
  publication-title: Macromolecules
  doi: 10.1021/ma4004659
– volume: 44
  start-page: 1523
  year: 2011
  ident: 10.1016/j.polymer.2024.127883_bib13
  article-title: Growth pathway and precursor states in single lamellar crystallization: MD simulations
  publication-title: Macromolecules
  doi: 10.1021/ma102380m
– volume: 2
  year: 2018
  ident: 10.1016/j.polymer.2024.127883_bib29
  article-title: Origin of SAXS Intensity in the low-q region during the early stage of polymer crystallization from both the melt and glassy state
  publication-title: Phys. Rev. Mater.
– volume: 72
  year: 2005
  ident: 10.1016/j.polymer.2024.127883_bib19
  article-title: Phase-field modeling on morphological landscape of isotactic polystyrene single crystals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.011804
– volume: 52
  start-page: 1327
  year: 2019
  ident: 10.1016/j.polymer.2024.127883_bib39
  article-title: Single-molecule force spectroscopy study on force-induced melting in polymer single crystals: the chain conformation matters
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b02702
– volume: 39
  start-page: 314
  year: 2006
  ident: 10.1016/j.polymer.2024.127883_bib1
  article-title: Crystals and crystallinity in polymeric materials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040288n
– volume: 57
  start-page: 1736
  year: 2019
  ident: 10.1016/j.polymer.2024.127883_bib35
  article-title: Investigating the dynamic viscoelasticity of single polymer chains using atomic force microscopy. J. Polym. Sci., Part B
  publication-title: Polym. Phys
  doi: 10.1002/polb.24908
– volume: 51
  start-page: 7052
  year: 2018
  ident: 10.1016/j.polymer.2024.127883_bib38
  article-title: Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: toward better force precision and more accurate description of molecular behaviors
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01544
– volume: 133
  start-page: 3226
  year: 2011
  ident: 10.1016/j.polymer.2024.127883_bib34
  article-title: Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja108022h
– volume: 29
  start-page: 2579
  year: 1994
  ident: 10.1016/j.polymer.2024.127883_bib4
  article-title: Mater.The size factor in phase transitions: its role in polymer crystal formation and wider implications
  publication-title: Sci.
– volume: 39
  start-page: 314
  year: 2006
  ident: 10.1016/j.polymer.2024.127883_bib5
  article-title: Crystals and crystallinity in polymeric materials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar040288n
– volume: 11
  start-page: 284
  year: 2022
  ident: 10.1016/j.polymer.2024.127883_bib21
  article-title: Polymer chains fold prior to crystallization
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.1c00789
– volume: 4
  start-page: 1382
  year: 2015
  ident: 10.1016/j.polymer.2024.127883_bib20
  article-title: Folding of polymer chains in the early stage of crystallization
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00818
– volume: 20
  start-page: 1155
  year: 1982
  ident: 10.1016/j.polymer.2024.127883_bib26
  article-title: Mixed-crystal infrared studies of chain folding in polyethylene single crystals: effect of crystallization temperature. J. Polym. Sci
  publication-title: Polym. Phys.
  doi: 10.1002/pol.1982.180200705
– volume: 128
  start-page: 1
  year: 2004
  ident: 10.1016/j.polymer.2024.127883_bib9
  article-title: Nucleation in polymer crystallization
  publication-title: Adv. Chem. Phys.
– start-page: 191
  year: 2005
  ident: 10.1016/j.polymer.2024.127883_bib10
  article-title: Modeling polymer crystallization
  publication-title: Adv. Polym. Sci.
– volume: 41
  start-page: 9807
  year: 2008
  ident: 10.1016/j.polymer.2024.127883_bib25
  article-title: Cocrystallization phenomenon between the H and D species of isotactic polypropylene blends as revealed by thermal and infrared spectroscopic analyses for a series of D/H blend samples
  publication-title: Macromolecules
  doi: 10.1021/ma801824u
– volume: 127
  start-page: 5788
  year: 2005
  ident: 10.1016/j.polymer.2024.127883_bib33
  article-title: Two-dimensional folded chain crystals of a synthetic polymer in a Langmuir-Blodgett film
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja050457e
– volume: 66
  start-page: 5453
  issue: 12
  year: 1977
  ident: 10.1016/j.polymer.2024.127883_bib11
  article-title: Chain folding and polymer crystallization: a statistical–mechanical approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.433919
– volume: 191
  start-page: 87
  year: 2005
  ident: 10.1016/j.polymer.2024.127883_bib12
  article-title: Pre-Crystalline, High-Entropy Aggregates: a role in polymer crystallization
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/12_009
– volume: 5
  start-page: 30
  year: 2016
  ident: 10.1016/j.polymer.2024.127883_bib14
  article-title: Role of thermal history and entanglement related thickness selection in polymer crystallization
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00668
– volume: 50
  start-page: 1521
  year: 2017
  ident: 10.1016/j.polymer.2024.127883_bib23
  article-title: Avoidance of density anomalies as a structural principle for semicrystalline polymers: the importance of chain ends and chain tilt
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02000
– volume: 48
  start-page: 5752
  year: 2015
  ident: 10.1016/j.polymer.2024.127883_bib22
  article-title: Determination of chain-folding structure of isotactic polypropylene in melt-grown α crystals by 13C−13C double quantum NMR and selective isotopic labeling
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01321
– volume: 64A
  start-page: 73
  year: 1960
  ident: 10.1016/j.polymer.2024.127883_bib6
  article-title: Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites
  publication-title: J. Res. Natl. Bur. Stand., Sect. A
  doi: 10.6028/jres.064A.007
– volume: 29
  start-page: 3853
  year: 2013
  ident: 10.1016/j.polymer.2024.127883_bib40
  article-title: Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations
  publication-title: Langmuir
  doi: 10.1021/la305157p
– volume: 40
  start-page: 7125
  year: 1999
  ident: 10.1016/j.polymer.2024.127883_bib27
  article-title: Microscopically viewed structural change of PE during the isothermal crystallization from the melt: II. Conformational ordering and lamellar formation mechanism derived from the coupled interpretation of time-resolved SAXS and FTIR data
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00864-7
– year: 2008
  ident: 10.1016/j.polymer.2024.127883_bib3
– start-page: 9017
  year: 2016
  ident: 10.1016/j.polymer.2024.127883_bib15
  article-title: Entanglements and crystallization of concentrated polymer solutions: molecular dynamics simulations
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02124
– volume: 41
  start-page: 2049
  year: 2008
  ident: 10.1016/j.polymer.2024.127883_bib16
  article-title: Regime transitions of polymer crystal growth rates: molecular simulations and interpretation beyond LauritzenHoffman model
  publication-title: Macromolecules
  doi: 10.1021/ma702636g
– volume: 8
  start-page: 595
  year: 2021
  ident: 10.1016/j.polymer.2024.127883_bib30
  article-title: Detection and characterization of folded chain clusters in the structured melt of isotactic polypropylene
  publication-title: IUCrJ
  doi: 10.1107/S2052252521003821
– volume: 126
  year: 2007
  ident: 10.1016/j.polymer.2024.127883_bib18
  article-title: Monte Carlo simulations of single crystals from polymer solutions
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 775
  year: 2018
  ident: 10.1016/j.polymer.2024.127883_bib24
  article-title: Chain trajectory, chain packing, and molecular dynamics of semicrystalline polymers as studied by solid-state NMR
  publication-title: Polymers
  doi: 10.3390/polym10070775
– volume: 55
  start-page: 10891
  issue: 24
  year: 2022
  ident: 10.1016/j.polymer.2024.127883_bib36
  article-title: Study of the dynamic viscoelasticity of single poly(N-isopropylacrylamide) chains using atomic force microscopy
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c01466
– volume: 65A
  start-page: 297
  year: 1961
  ident: 10.1016/j.polymer.2024.127883_bib7
  article-title: Theory of formation of polymer crystals with folded chains in dilute solution
  publication-title: J. Res. Natl. Bur. Stand., Sect. A
  doi: 10.6028/jres.065A.035
– volume: 109
  start-page: 2536
  year: 1998
  ident: 10.1016/j.polymer.2024.127883_bib8
  article-title: Langevin dynamics simulations of early-stage polymer nucleation and crystallization
  publication-title: Chem. Phys.
SSID ssj0002524
Score 2.4714692
Snippet Crystalline polymers have gained significant traction in various fields owing to their exceptional thermal and mechanical properties. However, the precise...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127883
SubjectTerms Chain structure
Crystallization mechanism
Single polymer chain
Single-molecule force spectroscopy
Title Investigating single-chain structure during the crystallization process by atomic force microscopy
URI https://dx.doi.org/10.1016/j.polymer.2024.127883
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG6IHtSDUdSID9KD1wLbF9sjIRLUyAkTbpttd6oQXiF44OJvd8ruBkyMB6-bTnbztTuPZr5vCHloW53JttYsgtQzqYRjqYc2s7wdxkEqLSBcDbwOdP9NPo_UqEK6JRcmtFUWvj_36VtvXTxpFmg2l-Nx4PgKjDcYoWXQJTOBxCfxtXimG1-7Ng-ueK7ELDgLq3csnuaksVxMNzMIsqBcNiKO5aD4PT7txZzeGTktkkXayb_nnFRgXiVH3XJGW5Wc7MkJXhC7J5oxf6fhFmAKzH1g8U9zndjPFdCcmEgx8aNutcHkcDotuJh0mbMGqN1QrMVnY0cxpXVAZ6FrL_BXNpdk2HscdvusmKHAHP6MaxZb3_Kp4LglRgkLopVGPBMu89J5y1vaa2W0Sb1JhdEQZ8qqFNcbaY3wkbgiB_PFHK4JNVEMOsoilaItF9a6WIOOtYJIA8i4RholcMkyV8pIyhaySVIgnQSkkxzpGolLeJMfW56gN__b9Ob_prfkmIcRvq3QyXdHDhB9uMe8Ym3r24NTJ4edp5f-4Bsnm9Cp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOxQGxFO88cDqtrFjNx5RRVXoYyoSWxQ7ZyjqI6rKkH-PTRIoEmJgjXJS9F18D-u-7wBuO1qmYUdKGmBiaSi4oYnFDtWs49dBCsnRXw2MxrL_FD4-i-ct6FZcGD9WWcb-IqZ_RuvySatEs5VNp57jy12-cRk69LpkSm1D3atTiRrU7x4G_fFXQGaCFWLMnFFv8E3kab01s-Usn6NXBmVhM2CuI-S_p6iNtNPbh72yXiR3xScdwBYuDqHRrda0HcLuhqLgEegN3YzFC_EXATOk5tX1_6SQin1fISm4icTVfsSsclcfzmYlHZNkBXGA6Jy4dnw-NcRVtQbJ3A_ueQpLfgyT3v2k26flGgVq3Hlc00jbtk04c15Rgmvk7SRgKTepDY3VrC2tFEqqxKqEK4lRKrRI3Psq1IrbgJ9AbbFc4CkQFUQogzQQibNlXGsTSZSRFBhIxDA6g2YFXJwVYhlxNUX2FpdIxx7puED6DKIK3viH12MX0P82Pf-_6Q00-pPRMB4-jAcXsMP8Rt-2H-y7hJrzBF65MmOtr8vf6ANVq9Na
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+single-chain+structure+during+the+crystallization+process+by+atomic+force+microscopy&rft.jtitle=Polymer+%28Guilford%29&rft.au=Wang%2C+Dingrui&rft.au=Liang%2C+Xiaobin&rft.au=Nakajima%2C+Ken&rft.date=2025-01-10&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.volume=316&rft_id=info:doi/10.1016%2Fj.polymer.2024.127883&rft.externalDocID=S0032386124012199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon