Spatio-temporal variations in hexachlorobenzene partitioning in a near shore Antarctic marine environment from a one-dimensional coupled ecosystem-chemical distribution model
Hexachlorobenzene (HCB) is an example of a persistent organic pollutant (POP) that is relatively abundant and widespread in near shore Antarctic marine environments. By definition, POPs may distribute with an ecosystem, bioaccumulating and potentially reaching hazardous levels in some organisms. Mod...
Saved in:
Published in | Journal of marine systems Vol. 196; pp. 65 - 76 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hexachlorobenzene (HCB) is an example of a persistent organic pollutant (POP) that is relatively abundant and widespread in near shore Antarctic marine environments. By definition, POPs may distribute with an ecosystem, bioaccumulating and potentially reaching hazardous levels in some organisms. Modelling approaches may provide insight into this behaviour and complement physical sampling that is difficult in such environments. Here, a dynamic, trophically complex ecosystem (biological) model comprising biological groups from plankton to apex predators is coupled to a mass conserving, fugacity based chemical distribution model with vertical resolution of the seawater compartment. The model accommodates seasonal variations in solar irradiance, sea ice coverage, and boundary layer air temperature.
The greatest proportion of the HCB is predicted to be in sediment with comparatively little intra-annual variation. For biota, highest lipid based concentrations are in aerial seabirds, baleen whales and seals but considerable seasonal variation is apparent. The POPcline, the water depth where vertical HCB concentration gradient is greatest, is coupled with the base of the mixed layer throughout the Antarctic year. Seasonal partitioning of POPs in Antarctic environments is shown to be subject to oscillating or “flip-flop” dynamics with significantly different controlling factors in summer and winter. In summer, HCB in the surface waters, where most of the biological activity is occurring, is isolated from the sediments that contain most of the POP mass. During winter however, fractional sea ice cover increases turbulent diffusion and the mixed layer and POPcline deepen increasing homogenisation in water column. Surface waters are more likely to come into direct contact with sediments, and biota such as krill migrate to the ocean floor and feed on detritus produced from summer plankton blooms that has since sunk to the ocean floor.
•A vertically-resolved model of POP (HCB) dynamics in an Antarctic ecosystem•Simulations predict a POP-cline associated with sea surface mixed layer.•Spatio-temporal variations in POP concentrations and processes are evident.•POP dynamics in summer are effectively an ocean-atmosphere system.•POP dynamics in winter are effectively an ocean-sediment system. |
---|---|
AbstractList | Hexachlorobenzene (HCB) is an example of a persistent organic pollutant (POP) that is relatively abundant and widespread in near shore Antarctic marine environments. By definition, POPs may distribute with an ecosystem, bioaccumulating and potentially reaching hazardous levels in some organisms. Modelling approaches may provide insight into this behaviour and complement physical sampling that is difficult in such environments. Here, a dynamic, trophically complex ecosystem (biological) model comprising biological groups from plankton to apex predators is coupled to a mass conserving, fugacity based chemical distribution model with vertical resolution of the seawater compartment. The model accommodates seasonal variations in solar irradiance, sea ice coverage, and boundary layer air temperature.
The greatest proportion of the HCB is predicted to be in sediment with comparatively little intra-annual variation. For biota, highest lipid based concentrations are in aerial seabirds, baleen whales and seals but considerable seasonal variation is apparent. The POPcline, the water depth where vertical HCB concentration gradient is greatest, is coupled with the base of the mixed layer throughout the Antarctic year. Seasonal partitioning of POPs in Antarctic environments is shown to be subject to oscillating or “flip-flop” dynamics with significantly different controlling factors in summer and winter. In summer, HCB in the surface waters, where most of the biological activity is occurring, is isolated from the sediments that contain most of the POP mass. During winter however, fractional sea ice cover increases turbulent diffusion and the mixed layer and POPcline deepen increasing homogenisation in water column. Surface waters are more likely to come into direct contact with sediments, and biota such as krill migrate to the ocean floor and feed on detritus produced from summer plankton blooms that has since sunk to the ocean floor.
•A vertically-resolved model of POP (HCB) dynamics in an Antarctic ecosystem•Simulations predict a POP-cline associated with sea surface mixed layer.•Spatio-temporal variations in POP concentrations and processes are evident.•POP dynamics in summer are effectively an ocean-atmosphere system.•POP dynamics in winter are effectively an ocean-sediment system. |
Author | Cropp, Roger W Hawker, Darryl L Bates, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: L Bates fullname: L Bates, Michael organization: School of Environment and Science, Griffith University, Gold Coast, QLD 4215, Australia – sequence: 2 givenname: Darryl surname: W Hawker fullname: W Hawker, Darryl organization: School of Environment and Science, Griffith University, Gold Coast, QLD 4215, Australia – sequence: 3 givenname: Roger orcidid: 0000-0001-9582-857X surname: Cropp fullname: Cropp, Roger email: r.cropp@griffith.edu.au organization: School of Environment and Science, Griffith University, Gold Coast, QLD 4215, Australia |
BookMark | eNqFkN9K5TAQxsOisMc_j7CQF2g3aU3bXImIroKwF6vXIZ3M8cyhTUoSD-pD-YybovdeDcx88803vxN25INHxn5JUUshu9_7ej_bmN5S3Qipa6FqIeQPtpFDryup-vaIbYRuLqped-1PdpLSXgjRyUFt2Me_xWYKVcZ5CdFO_GAjrR2fOHm-w1cLuynEMKJ_R498sTHTOif_vCos92gjT7sQkV_5bCNkAl4CUVGjP1AMfkaf-TaGuchL9spR6aRiUg5CeFkmdBwhlBdKjgp2OBOUkaOUI40v6zk-B4fTGTve2inh-Vc9ZU-3N4_Xd9XD3z_311cPFTSqz9WgFbRdN7RjAQLDdhTWglOjGF2PMAI2wtmhv9Bt41qrhx575XSDuutA2k61p0x9-kIMKUXcmiVS-enNSGFW6GZvvqCbFboRyhToZe_ycw9LuANhNAkIPaCjiJCNC_SNw3_WnZbz |
Cites_doi | 10.1007/s002270050066 10.1016/j.marpolbul.2003.08.004 10.1890/06-0426.1 10.1016/j.dsr2.2005.01.010 10.1016/j.ecolmodel.2009.04.052 10.1016/j.scitotenv.2008.03.045 10.1016/j.marpolbul.2009.05.009 10.1021/es962399q 10.1021/es902625u 10.1016/0771-050X(80)90013-3 10.1071/EN10108 10.1016/S0924-7963(98)00066-9 10.1016/j.ecocom.2016.03.003 10.1021/es401441n 10.1038/43174 10.1021/es00008a016 10.1016/j.envpol.2007.06.051 10.1016/j.cub.2008.01.059 10.1021/es8004514 10.1002/etc.2603 10.1021/es00091a001 10.1021/es025724k 10.1021/acs.est.6b01970 10.1038/nclimate1175 10.1016/j.envsoft.2005.04.003 10.1098/rsta.2013.0047 10.1039/c0em00230e 10.1038/ngeo2101 10.1021/es990168o 10.1016/j.jmarsys.2012.08.005 10.1038/ngeo812 10.1897/03-518 10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2 10.1016/S0269-7491(99)00093-7 10.1007/s10021-011-9503-1 10.1016/j.jmarsys.2017.02.005 10.1093/plankt/fbp042 10.1017/S0954102007000363 10.1016/j.scitotenv.2008.08.034 10.1002/etc.5620181132 10.1002/etc.3403 10.1093/plankt/fbs062 10.1016/j.jmarsys.2014.12.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmarsys.2019.05.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 1879-1573 |
EndPage | 76 |
ExternalDocumentID | 10_1016_j_jmarsys_2019_05_001 S0924796318304366 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SCU SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c257t-895c36683b019c8fb0aacd5b0bd7ecbce20da874932d3a987e75d92e966c1a653 |
IEDL.DBID | .~1 |
ISSN | 0924-7963 |
IngestDate | Tue Jul 01 00:51:19 EDT 2025 Fri Feb 23 02:25:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | POP Fugacity Climate change Vertically-resolved model Ecosystem Biomagnification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-895c36683b019c8fb0aacd5b0bd7ecbce20da874932d3a987e75d92e966c1a653 |
ORCID | 0000-0001-9582-857X |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_jmarsys_2019_05_001 elsevier_sciencedirect_doi_10_1016_j_jmarsys_2019_05_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of marine systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hoff, Wania, Mackay, Gilham (bb0160) 1995; 29 Quetin, Ross, Fritsen, Vernet (bb0215) 2007; 19 Dachs (bb0100) 2011; 1 Flynn, Stoecker, Mitra, Raven, Glibert, Hansen, Graneli, Burkholder (bb0140) 2013, Sep; 35 Cropp, Norbury (bb0090) 2012, Nov; 15 Tagliabue, Sallee, Bowie, Levy, Swart, Boyd (bb0255) 2014; 7 Bengtson-Nash (bb0025) 2011; 13 Bengtson Nash, Poulsen, Kawaguchi, Vetter, Schlabach (bb0030) 2008; 407 Scheringer, Wania (bb0230) 2003 Wania, Breivik, Persson, McLachlan (bb0260) 2006; 21 Dueri, Dahllof, Hjorth, Marinov, Zaldivar (bb0125) 2009; 220 Bates, Bengtson Nash, Hawker, Shaw, Cropp (bb0005) 2017; 170 Bigot, Muir, Hawker, Cropp, Dachs, Teixeira, Bengtson Nash (bb0040) 2016; 50 Schwarzenbach (bb0240) 2003 Wania, Mackay (bb0270) 1999; 100 De Laender, Van Oevelen, Frantzen, Middelburg, Soetaert (bb0115) 2010; 44 Dachs, Lohmann, Ockenden, Méjanelle, Eisenreich, Jones (bb0110) 2002; 36 Cropp, Norbury (bb0085) 2009; 31 Mackay, Paterson (bb0200) 1981; 15 Swadling, Gibson, Ritz, Nichols, Hughes (bb0250) 1997, Apr; 128 Wania, Mackay (bb0265) 1996; 30 Borga, Fisk, Hoekstra, Muir (bb0045) 2004; 23 Pondaven, Fravalo, Ruiz-Pino, Treguer, Queguiner, Jeandel (bb0210) 1998; 17 Schiesser (bb0235) 1991 Cropp, Bengtson Nash, Hawker (bb0065) 2012; 74 Klanjscek, Nisbet, Caswell, Neubert (bb0175) 2007; 17 Clarke, Tyler (bb0060) 2008; 18 Bengtson-Nash, Waugh, Schlabach (bb0035) 2013; 47 Kelly, Ikonomou, Blair, Gobas (bb0170) 2008; 401 Bates, Bengtson Nash, Hawker, Norbury, Stark, Cropp (bb0010) 2015; 145 Dachs, Eisenreich, J.E., Ko, Jeremiason (bb0105) 1999; 33 Lizotte (bb0180) 2001; 41 Stearns, Keller, Sievers (bb0245) 1993 Hickie, Mackay, de Koning (bb0155) 1999; 18 Mackay (bb0195) 2001 Cisewski, Strass, Prandke (bb0055) 2005; 52 Kawaguchi, Ishikawa, Matsuda (bb0165) 1986; 44 Cropp, Bengtson Nash, Hawker (bb0070) 2012; 74 Dormand, Prince (bb0120) 1980; 6 Cropp, Bengtson Nash, Hawker (bb0075) 2014; 33 Brown, Wania (bb0050) 2008; 42 Lohmann, Breivik, Dachs, Muir (bb0190) 2007; 150 Cropp, Kerr, Bengtson-Nash, Hawker (bb0080) 2011, Jun; 8 Heywood, Schmidtko, Heuze, Kaiser, Jickells, Queste, Stevens, Wadley, Thompson, Fielding, Guihen, Creed, Ridley, Smith (bb0150) 2014; 372 Fetterer, Knowles, Meier, Savoie, Windnagel, Windnagel (bb0135) 2017 Sallee, Speer, Rintoul (bb0225) 2010; 3 Cropp, Norbury (bb0095) 2013; 125 Loeb, Siegel, Holm-Hansen, Hewitt, Fraser, Trivelpiece, Trivelpiece (bb0185) 1997; 387 Ridgway, Dunn, Wilkin (bb0220) 2002; 19 Bates, Cropp, Hawker, Norbury (bb0020) 2016; 26 Marinov, Dueri, Puillat, Carafa, Jurado, Berrojalbiz, Dachs, Zaldívar (bb0205) 2009; 58 Elton (bb0130) 1927 Bates, Bigot, Cropp, Engwirda, Friedman, Hawker (bb0015) 2016; 35 Goerke, Weber, Bornemann, Ramdohr, Plotz (bb0145) 2004; 48 Cisewski (10.1016/j.jmarsys.2019.05.001_bb0055) 2005; 52 Stearns (10.1016/j.jmarsys.2019.05.001_bb0245) 1993 De Laender (10.1016/j.jmarsys.2019.05.001_bb0115) 2010; 44 Fetterer (10.1016/j.jmarsys.2019.05.001_bb0135) 2017 Cropp (10.1016/j.jmarsys.2019.05.001_bb0085) 2009; 31 Cropp (10.1016/j.jmarsys.2019.05.001_bb0065) 2012; 74 Cropp (10.1016/j.jmarsys.2019.05.001_bb0090) 2012; 15 Heywood (10.1016/j.jmarsys.2019.05.001_bb0150) 2014; 372 Bengtson Nash (10.1016/j.jmarsys.2019.05.001_bb0030) 2008; 407 Cropp (10.1016/j.jmarsys.2019.05.001_bb0080) 2011; 8 Hickie (10.1016/j.jmarsys.2019.05.001_bb0155) 1999; 18 Wania (10.1016/j.jmarsys.2019.05.001_bb0270) 1999; 100 Lohmann (10.1016/j.jmarsys.2019.05.001_bb0190) 2007; 150 Loeb (10.1016/j.jmarsys.2019.05.001_bb0185) 1997; 387 Mackay (10.1016/j.jmarsys.2019.05.001_bb0200) 1981; 15 Bates (10.1016/j.jmarsys.2019.05.001_bb0005) 2017; 170 Bates (10.1016/j.jmarsys.2019.05.001_bb0020) 2016; 26 Wania (10.1016/j.jmarsys.2019.05.001_bb0265) 1996; 30 Ridgway (10.1016/j.jmarsys.2019.05.001_bb0220) 2002; 19 Kelly (10.1016/j.jmarsys.2019.05.001_bb0170) 2008; 401 Klanjscek (10.1016/j.jmarsys.2019.05.001_bb0175) 2007; 17 Quetin (10.1016/j.jmarsys.2019.05.001_bb0215) 2007; 19 Dachs (10.1016/j.jmarsys.2019.05.001_bb0105) 1999; 33 Swadling (10.1016/j.jmarsys.2019.05.001_bb0250) 1997; 128 Dormand (10.1016/j.jmarsys.2019.05.001_bb0120) 1980; 6 Tagliabue (10.1016/j.jmarsys.2019.05.001_bb0255) 2014; 7 Wania (10.1016/j.jmarsys.2019.05.001_bb0260) 2006; 21 Cropp (10.1016/j.jmarsys.2019.05.001_bb0075) 2014; 33 Scheringer (10.1016/j.jmarsys.2019.05.001_bb0230) 2003 Lizotte (10.1016/j.jmarsys.2019.05.001_bb0180) 2001; 41 Elton (10.1016/j.jmarsys.2019.05.001_bb0130) 1927 Dachs (10.1016/j.jmarsys.2019.05.001_bb0100) 2011; 1 Hoff (10.1016/j.jmarsys.2019.05.001_bb0160) 1995; 29 Cropp (10.1016/j.jmarsys.2019.05.001_bb0095) 2013; 125 Marinov (10.1016/j.jmarsys.2019.05.001_bb0205) 2009; 58 Cropp (10.1016/j.jmarsys.2019.05.001_bb0070) 2012; 74 Clarke (10.1016/j.jmarsys.2019.05.001_bb0060) 2008; 18 Dueri (10.1016/j.jmarsys.2019.05.001_bb0125) 2009; 220 Pondaven (10.1016/j.jmarsys.2019.05.001_bb0210) 1998; 17 Kawaguchi (10.1016/j.jmarsys.2019.05.001_bb0165) 1986; 44 Borga (10.1016/j.jmarsys.2019.05.001_bb0045) 2004; 23 Bengtson-Nash (10.1016/j.jmarsys.2019.05.001_bb0035) 2013; 47 Bengtson-Nash (10.1016/j.jmarsys.2019.05.001_bb0025) 2011; 13 Brown (10.1016/j.jmarsys.2019.05.001_bb0050) 2008; 42 Schwarzenbach (10.1016/j.jmarsys.2019.05.001_bb0240) 2003 Bates (10.1016/j.jmarsys.2019.05.001_bb0015) 2016; 35 Goerke (10.1016/j.jmarsys.2019.05.001_bb0145) 2004; 48 Dachs (10.1016/j.jmarsys.2019.05.001_bb0110) 2002; 36 Bates (10.1016/j.jmarsys.2019.05.001_bb0010) 2015; 145 Flynn (10.1016/j.jmarsys.2019.05.001_bb0140) 2013; 35 Sallee (10.1016/j.jmarsys.2019.05.001_bb0225) 2010; 3 Mackay (10.1016/j.jmarsys.2019.05.001_bb0195) 2001 Schiesser (10.1016/j.jmarsys.2019.05.001_bb0235) 1991 Bigot (10.1016/j.jmarsys.2019.05.001_bb0040) 2016; 50 |
References_xml | – volume: 372 start-page: 20130047 year: 2014 ident: bb0150 article-title: Ocean processes at the Antarctic continental slope publication-title: Phil. Trans. R. Soc. A – start-page: 261 year: 2001 ident: bb0195 article-title: Multimedia Environmental Models: The Fugacity Approach – volume: 18 start-page: 2622 year: 1999 end-page: 2633 ident: bb0155 article-title: Lifetime pharmacokinetic model for hydrophobic contaminants in marine mammals publication-title: Environ. Toxicol. Chem. – volume: 33 start-page: 3653 year: 1999 end-page: 3660 ident: bb0105 article-title: Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants publication-title: Environ. Sci. Technol. – volume: 128 start-page: 39 year: 1997, Apr end-page: 48 ident: bb0250 article-title: Grazing of phytoplankton by copepods in eastern Antarctic coastal waters publication-title: Mar. Biol. – volume: 6 start-page: 19 year: 1980 end-page: 26 ident: bb0120 article-title: A family of embedded Runge-Kutta formulae publication-title: J. Comput. Appl. Math. – volume: 74 start-page: 367 year: 2012 end-page: 370 ident: bb0070 article-title: Modelling of the seasonal distribution and behaviour of PCBs in a dynamic Antarctic plankton ecosystem publication-title: Organohalogen Compd. – start-page: 256 year: 1927 ident: bb0130 article-title: Animal Ecology – start-page: 237 year: 2003 end-page: 269 ident: bb0230 article-title: Multimedia Models of Global Transport and Fate of Persistent Organic Pollutants – year: 2003 ident: bb0240 article-title: Environmental Organic Chemistry – start-page: 1 year: 1993 end-page: 21 ident: bb0245 article-title: Monthly Mean Climatic Data for Antarctic Automatic Weather Stations – start-page: 326 year: 1991 ident: bb0235 article-title: The Numerical Method of Lines: Integration of Partial Differential Equations – volume: 44 start-page: 67 year: 1986 end-page: 85 ident: bb0165 article-title: The overwintering strategy of Antarctic krill ( publication-title: Mem. Natl. Inst. Polar Res. – volume: 13 start-page: 497 year: 2011 end-page: 504 ident: bb0025 article-title: Persistent organic pollutants in Antarctica; current and future research priorities publication-title: J. Environ. Monit. – volume: 41 start-page: 57 year: 2001 end-page: 73 ident: bb0180 article-title: The contributions of sea ice algae to Antarctic marine primary production publication-title: Am. Zool. – volume: 125 start-page: 3 year: 2013 end-page: 13 ident: bb0095 article-title: Modelling plankton ecosystems and the Library of Lotka publication-title: J. Mar. Syst. – volume: 58 start-page: 1554 year: 2009 end-page: 1561 ident: bb0205 article-title: Integrated modelling of polycyclic aromatic hydrocarbons in the marine environment: coupling of hydrodynamic, fate and transport, bioaccumulation and planktonic food-web models publication-title: Mar. Pollut. Bull. – volume: 26 start-page: 57 year: 2016 end-page: 67 ident: bb0020 article-title: Which functional responses preclude extinction in ecological population-dynamic models? publication-title: Ecol. Complex. – volume: 145 start-page: 1 year: 2015 end-page: 14 ident: bb0010 article-title: Construction of a trophically complex near-shore Antarctic food web model using the Conservative Normal framework with structural coexistence publication-title: J. Mar. Syst. – volume: 74 start-page: 355 year: 2012 end-page: 358 ident: bb0065 article-title: The environmental relevance of laboratory measured toxicity threshold concentrations of p,p publication-title: Organohalogen Compd. – volume: 35 start-page: 3 year: 2013, Sep end-page: 11 ident: bb0140 article-title: Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types publication-title: J. Plankton Res. – year: 2017 ident: bb0135 article-title: Sea Ice Index, Version 3 – volume: 17 start-page: 587 year: 1998 end-page: 619 ident: bb0210 article-title: Modelling the silica pump in the permanently open ocean zone of the Southern Ocean publication-title: J. Marine Sys. – volume: 18 start-page: 282 year: 2008 end-page: 285 ident: bb0060 article-title: Adult Antarctic krill feeding at abyssal depths publication-title: Curr. Biol. – volume: 23 start-page: 2367 year: 2004 ident: bb0045 article-title: Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs publication-title: Environ. Toxicol. Chem. – volume: 15 start-page: 1006 year: 1981 end-page: 1014 ident: bb0200 article-title: Calculating fugacity publication-title: Environ. Sci. Technol. – volume: 31 start-page: 939 year: 2009 end-page: 963 ident: bb0085 article-title: Parameterizing plankton functional type models: insights from a dynamical systems perspective publication-title: J. Plankton Res. – volume: 44 start-page: 356 year: 2010 end-page: 361 ident: bb0115 article-title: Seasonal PCB bioaccumulation in an Arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration publication-title: Environ. Sci. Technol. – volume: 19 start-page: 1357 year: 2002 end-page: 1375 ident: bb0220 article-title: Ocean interpolation by four-dimensional least squares - application to the waters around Australia publication-title: J. Atmos. Ocean. Tech. – volume: 52 start-page: 1087 year: 2005 end-page: 1108 ident: bb0055 article-title: Upper-ocean vertical mixing in the Antarctic Polar Front Zone publication-title: Deep-Sea Res. II – volume: 170 start-page: 103 year: 2017 end-page: 114 ident: bb0005 article-title: The distribution of persistent organic pollutants in a trophically complex Antarctic ecosystem model publication-title: J. Mar. Syst. – volume: 36 start-page: 4229 year: 2002 end-page: 4237 ident: bb0110 article-title: Oceanic biogeochemical controls on global dynamics of persistent organic pollutants publication-title: Environ. Sci. Technol. – volume: 7 start-page: 314 year: 2014 end-page: 320 ident: bb0255 article-title: Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing publication-title: Nat. Geosci. – volume: 17 start-page: 2233 year: 2007 end-page: 2250 ident: bb0175 article-title: A model for energetics and bioaccumulation in marine mammals with applications to the right whale publication-title: Ecol. Appl. – volume: 15 start-page: 200 year: 2012, Nov end-page: 212 ident: bb0090 article-title: The mechanisms of coexistence and competitive exclusion in complex plankton ecosystem models publication-title: Ecosystems – volume: 42 start-page: 5202 year: 2008 end-page: 5209 ident: bb0050 article-title: Screening chemicals for the potential to be persistent organic pollutants: a case study of Arctic contaminants publication-title: Environ. Sci. Technol. – volume: 19 start-page: 253 year: 2007 end-page: 266 ident: bb0215 article-title: Ecological responses of Antarctic krill to environmental variability: can we predict the future? publication-title: Antarct. Sci. – volume: 100 start-page: 223 year: 1999 end-page: 240 ident: bb0270 article-title: The evolution of mass balance models of persistent organic pollutant fate in the environment publication-title: Environ. Pollut. – volume: 21 start-page: 868 year: 2006 end-page: 884 ident: bb0260 article-title: CoZMo-POP2. A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants publication-title: Environ. Modell. Softw. – volume: 407 start-page: 304 year: 2008 end-page: 314 ident: bb0030 article-title: Persistent organohalogen contaminant burdens in Antarctic krill ( publication-title: Sci. Total Environ. – volume: 150 start-page: 150 year: 2007 end-page: 165 ident: bb0190 article-title: Global fate of POPs: current and future research directions publication-title: Environ. Pollut. – volume: 29 start-page: 1982 year: 1995 end-page: 1989 ident: bb0160 article-title: Sorption of nonpolar organic vapors by ice and snow publication-title: Environ. Sci. Technol. – volume: 387 start-page: 897 year: 1997 end-page: 900 ident: bb0185 article-title: Effects of sea-ice extent and krill or salp dominance on the Antarctic food web publication-title: Nature – volume: 50 start-page: 8001 year: 2016 end-page: 8009 ident: bb0040 article-title: Air-seawater exchange of organochlorine pesticides in the southern ocean between Australia and Antarctica publication-title: Environ. Sci. Technol. – volume: 33 start-page: 1638 year: 2014 end-page: 1649 ident: bb0075 article-title: A model to resolve the dynamics of organochlorine pharmacokinetics in migrating humpback whales publication-title: Environ. Toxicol. Chem. – volume: 48 start-page: 295 year: 2004 end-page: 302 ident: bb0145 article-title: Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota publication-title: Mar. Pollut. Bull. – volume: 30 start-page: 390 year: 1996 end-page: 396 ident: bb0265 article-title: Tracking the distribution of persistent organic pollutants publication-title: Environ. Sci. Technol. – volume: 3 start-page: 273 year: 2010 end-page: 279 ident: bb0225 article-title: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode publication-title: Nat. Geosci. – volume: 47 start-page: 9404 year: 2013 end-page: 9413 ident: bb0035 article-title: Metabolic concentrations of lipid soluble organochlorine burdens in the blubber of southern hemisphere Humpback whales during migration and fasting publication-title: Environ. Sci. Technol. – volume: 401 start-page: 60 year: 2008 end-page: 72 ident: bb0170 article-title: Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web publication-title: Sci. Total Environ. – volume: 220 start-page: 2060 year: 2009 end-page: 2067 ident: bb0125 article-title: Modeling the combined effect of nutrient and pyrene on the plankton population: validation using mesocosm experiment data and scenario analysis publication-title: Ecol. Modell. – volume: 35 start-page: 2182 year: 2016 end-page: 2191 ident: bb0015 article-title: On the formulation of environmental fugacity models and their numerical solutions publication-title: Environ. Toxicol. Chem. – volume: 1 start-page: 247 year: 2011 end-page: 248 ident: bb0100 article-title: Atmospheric science: coming in from the cold publication-title: Nat. Clim. Change – volume: 8 start-page: 263 year: 2011, Jun ident: bb0080 article-title: A dynamic biophysical fugacity model of the movement of a persistent organic pollutant in Antarctic marine food webs publication-title: Environ. Chem. – volume: 128 start-page: 39 issn: 0025-3162 issue: 1 year: 1997 ident: 10.1016/j.jmarsys.2019.05.001_bb0250 article-title: Grazing of phytoplankton by copepods in eastern Antarctic coastal waters publication-title: Mar. Biol. doi: 10.1007/s002270050066 – volume: 48 start-page: 295 year: 2004 ident: 10.1016/j.jmarsys.2019.05.001_bb0145 article-title: Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2003.08.004 – volume: 17 start-page: 2233 year: 2007 ident: 10.1016/j.jmarsys.2019.05.001_bb0175 article-title: A model for energetics and bioaccumulation in marine mammals with applications to the right whale publication-title: Ecol. Appl. doi: 10.1890/06-0426.1 – volume: 52 start-page: 1087 issue: 9–10 year: 2005 ident: 10.1016/j.jmarsys.2019.05.001_bb0055 article-title: Upper-ocean vertical mixing in the Antarctic Polar Front Zone publication-title: Deep-Sea Res. II doi: 10.1016/j.dsr2.2005.01.010 – volume: 220 start-page: 2060 year: 2009 ident: 10.1016/j.jmarsys.2019.05.001_bb0125 article-title: Modeling the combined effect of nutrient and pyrene on the plankton population: validation using mesocosm experiment data and scenario analysis publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2009.04.052 – volume: 401 start-page: 60 year: 2008 ident: 10.1016/j.jmarsys.2019.05.001_bb0170 article-title: Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.03.045 – volume: 58 start-page: 1554 year: 2009 ident: 10.1016/j.jmarsys.2019.05.001_bb0205 article-title: Integrated modelling of polycyclic aromatic hydrocarbons in the marine environment: coupling of hydrodynamic, fate and transport, bioaccumulation and planktonic food-web models publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2009.05.009 – volume: 30 start-page: 390 issue: 9 year: 1996 ident: 10.1016/j.jmarsys.2019.05.001_bb0265 article-title: Tracking the distribution of persistent organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/es962399q – volume: 44 start-page: 356 year: 2010 ident: 10.1016/j.jmarsys.2019.05.001_bb0115 article-title: Seasonal PCB bioaccumulation in an Arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration publication-title: Environ. Sci. Technol. doi: 10.1021/es902625u – volume: 6 start-page: 19 issue: 1 year: 1980 ident: 10.1016/j.jmarsys.2019.05.001_bb0120 article-title: A family of embedded Runge-Kutta formulae publication-title: J. Comput. Appl. Math. doi: 10.1016/0771-050X(80)90013-3 – start-page: 237 year: 2003 ident: 10.1016/j.jmarsys.2019.05.001_bb0230 – volume: 8 start-page: 263 issn: 1448-2517 issue: 3 year: 2011 ident: 10.1016/j.jmarsys.2019.05.001_bb0080 article-title: A dynamic biophysical fugacity model of the movement of a persistent organic pollutant in Antarctic marine food webs publication-title: Environ. Chem. doi: 10.1071/EN10108 – start-page: 256 year: 1927 ident: 10.1016/j.jmarsys.2019.05.001_bb0130 – volume: 44 start-page: 67 year: 1986 ident: 10.1016/j.jmarsys.2019.05.001_bb0165 article-title: The overwintering strategy of Antarctic krill (Euphausia superba Dana) under the coastal fast ice off the Ongul Islands in Lutzow Bay, Antarctica publication-title: Mem. Natl. Inst. Polar Res. – volume: 17 start-page: 587 issue: 1–4 year: 1998 ident: 10.1016/j.jmarsys.2019.05.001_bb0210 article-title: Modelling the silica pump in the permanently open ocean zone of the Southern Ocean publication-title: J. Marine Sys. doi: 10.1016/S0924-7963(98)00066-9 – volume: 26 start-page: 57 year: 2016 ident: 10.1016/j.jmarsys.2019.05.001_bb0020 article-title: Which functional responses preclude extinction in ecological population-dynamic models? publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2016.03.003 – volume: 47 start-page: 9404 year: 2013 ident: 10.1016/j.jmarsys.2019.05.001_bb0035 article-title: Metabolic concentrations of lipid soluble organochlorine burdens in the blubber of southern hemisphere Humpback whales during migration and fasting publication-title: Environ. Sci. Technol. doi: 10.1021/es401441n – volume: 387 start-page: 897 year: 1997 ident: 10.1016/j.jmarsys.2019.05.001_bb0185 article-title: Effects of sea-ice extent and krill or salp dominance on the Antarctic food web publication-title: Nature doi: 10.1038/43174 – volume: 29 start-page: 1982 issue: 8 year: 1995 ident: 10.1016/j.jmarsys.2019.05.001_bb0160 article-title: Sorption of nonpolar organic vapors by ice and snow publication-title: Environ. Sci. Technol. doi: 10.1021/es00008a016 – volume: 150 start-page: 150 year: 2007 ident: 10.1016/j.jmarsys.2019.05.001_bb0190 article-title: Global fate of POPs: current and future research directions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.06.051 – start-page: 1 year: 1993 ident: 10.1016/j.jmarsys.2019.05.001_bb0245 – volume: 18 start-page: 282 year: 2008 ident: 10.1016/j.jmarsys.2019.05.001_bb0060 article-title: Adult Antarctic krill feeding at abyssal depths publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.01.059 – volume: 42 start-page: 5202 year: 2008 ident: 10.1016/j.jmarsys.2019.05.001_bb0050 article-title: Screening chemicals for the potential to be persistent organic pollutants: a case study of Arctic contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/es8004514 – volume: 33 start-page: 1638 issue: 7 year: 2014 ident: 10.1016/j.jmarsys.2019.05.001_bb0075 article-title: A model to resolve the dynamics of organochlorine pharmacokinetics in migrating humpback whales publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2603 – year: 2017 ident: 10.1016/j.jmarsys.2019.05.001_bb0135 – start-page: 261 year: 2001 ident: 10.1016/j.jmarsys.2019.05.001_bb0195 – volume: 15 start-page: 1006 year: 1981 ident: 10.1016/j.jmarsys.2019.05.001_bb0200 article-title: Calculating fugacity publication-title: Environ. Sci. Technol. doi: 10.1021/es00091a001 – volume: 36 start-page: 4229 year: 2002 ident: 10.1016/j.jmarsys.2019.05.001_bb0110 article-title: Oceanic biogeochemical controls on global dynamics of persistent organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/es025724k – volume: 50 start-page: 8001 year: 2016 ident: 10.1016/j.jmarsys.2019.05.001_bb0040 article-title: Air-seawater exchange of organochlorine pesticides in the southern ocean between Australia and Antarctica publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01970 – volume: 1 start-page: 247 year: 2011 ident: 10.1016/j.jmarsys.2019.05.001_bb0100 article-title: Atmospheric science: coming in from the cold publication-title: Nat. Clim. Change doi: 10.1038/nclimate1175 – volume: 21 start-page: 868 year: 2006 ident: 10.1016/j.jmarsys.2019.05.001_bb0260 article-title: CoZMo-POP2. A fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2005.04.003 – volume: 372 start-page: 20130047 year: 2014 ident: 10.1016/j.jmarsys.2019.05.001_bb0150 article-title: Ocean processes at the Antarctic continental slope publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2013.0047 – volume: 74 start-page: 355 year: 2012 ident: 10.1016/j.jmarsys.2019.05.001_bb0065 article-title: The environmental relevance of laboratory measured toxicity threshold concentrations of p,p′-dde in Antarctic krill (Euphausia superba); a modeling assessment based on measured environmental levels publication-title: Organohalogen Compd. – volume: 13 start-page: 497 year: 2011 ident: 10.1016/j.jmarsys.2019.05.001_bb0025 article-title: Persistent organic pollutants in Antarctica; current and future research priorities publication-title: J. Environ. Monit. doi: 10.1039/c0em00230e – volume: 7 start-page: 314 year: 2014 ident: 10.1016/j.jmarsys.2019.05.001_bb0255 article-title: Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing publication-title: Nat. Geosci. doi: 10.1038/ngeo2101 – volume: 33 start-page: 3653 year: 1999 ident: 10.1016/j.jmarsys.2019.05.001_bb0105 article-title: Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/es990168o – volume: 125 start-page: 3 year: 2013 ident: 10.1016/j.jmarsys.2019.05.001_bb0095 article-title: Modelling plankton ecosystems and the Library of Lotka publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2012.08.005 – start-page: 326 year: 1991 ident: 10.1016/j.jmarsys.2019.05.001_bb0235 – volume: 3 start-page: 273 year: 2010 ident: 10.1016/j.jmarsys.2019.05.001_bb0225 article-title: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode publication-title: Nat. Geosci. doi: 10.1038/ngeo812 – volume: 23 start-page: 2367 year: 2004 ident: 10.1016/j.jmarsys.2019.05.001_bb0045 article-title: Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs publication-title: Environ. Toxicol. Chem. doi: 10.1897/03-518 – volume: 19 start-page: 1357 issue: 9 year: 2002 ident: 10.1016/j.jmarsys.2019.05.001_bb0220 article-title: Ocean interpolation by four-dimensional least squares - application to the waters around Australia publication-title: J. Atmos. Ocean. Tech. doi: 10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2 – volume: 100 start-page: 223 year: 1999 ident: 10.1016/j.jmarsys.2019.05.001_bb0270 article-title: The evolution of mass balance models of persistent organic pollutant fate in the environment publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(99)00093-7 – volume: 15 start-page: 200 issn: 1432-9840 issue: 2 year: 2012 ident: 10.1016/j.jmarsys.2019.05.001_bb0090 article-title: The mechanisms of coexistence and competitive exclusion in complex plankton ecosystem models publication-title: Ecosystems doi: 10.1007/s10021-011-9503-1 – volume: 74 start-page: 367 year: 2012 ident: 10.1016/j.jmarsys.2019.05.001_bb0070 article-title: Modelling of the seasonal distribution and behaviour of PCBs in a dynamic Antarctic plankton ecosystem publication-title: Organohalogen Compd. – volume: 170 start-page: 103 year: 2017 ident: 10.1016/j.jmarsys.2019.05.001_bb0005 article-title: The distribution of persistent organic pollutants in a trophically complex Antarctic ecosystem model publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2017.02.005 – volume: 41 start-page: 57 issue: 1 year: 2001 ident: 10.1016/j.jmarsys.2019.05.001_bb0180 article-title: The contributions of sea ice algae to Antarctic marine primary production publication-title: Am. Zool. – volume: 31 start-page: 939 year: 2009 ident: 10.1016/j.jmarsys.2019.05.001_bb0085 article-title: Parameterizing plankton functional type models: insights from a dynamical systems perspective publication-title: J. Plankton Res. doi: 10.1093/plankt/fbp042 – volume: 19 start-page: 253 issue: 2 year: 2007 ident: 10.1016/j.jmarsys.2019.05.001_bb0215 article-title: Ecological responses of Antarctic krill to environmental variability: can we predict the future? publication-title: Antarct. Sci. doi: 10.1017/S0954102007000363 – volume: 407 start-page: 304 year: 2008 ident: 10.1016/j.jmarsys.2019.05.001_bb0030 article-title: Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: a baseline study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.08.034 – volume: 18 start-page: 2622 year: 1999 ident: 10.1016/j.jmarsys.2019.05.001_bb0155 article-title: Lifetime pharmacokinetic model for hydrophobic contaminants in marine mammals publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620181132 – volume: 35 start-page: 2182 year: 2016 ident: 10.1016/j.jmarsys.2019.05.001_bb0015 article-title: On the formulation of environmental fugacity models and their numerical solutions publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3403 – volume: 35 start-page: 3 issn: 0142-7873 issue: 1 year: 2013 ident: 10.1016/j.jmarsys.2019.05.001_bb0140 article-title: Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types publication-title: J. Plankton Res. doi: 10.1093/plankt/fbs062 – year: 2003 ident: 10.1016/j.jmarsys.2019.05.001_bb0240 – volume: 145 start-page: 1 year: 2015 ident: 10.1016/j.jmarsys.2019.05.001_bb0010 article-title: Construction of a trophically complex near-shore Antarctic food web model using the Conservative Normal framework with structural coexistence publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2014.12.002 |
SSID | ssj0006185 |
Score | 2.2493207 |
Snippet | Hexachlorobenzene (HCB) is an example of a persistent organic pollutant (POP) that is relatively abundant and widespread in near shore Antarctic marine... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 65 |
SubjectTerms | Biomagnification Climate change Ecosystem Fugacity POP Vertically-resolved model |
Title | Spatio-temporal variations in hexachlorobenzene partitioning in a near shore Antarctic marine environment from a one-dimensional coupled ecosystem-chemical distribution model |
URI | https://dx.doi.org/10.1016/j.jmarsys.2019.05.001 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXoyJ8RnxQXrwWnaX3dLukRAJasQDknDbdPsIEFwILkY9-JP8jU53S8CYePC4m2m2O51Ov2lmvkHoOuKhEoBDCTNck4grQ0TIAMgJHYiYGhMUbPsP_VZvGN2N6KiCOutaGJtW6Xx_6dMLb-3eeE6b3mIy8QY-hA4M7AeM0vKoW9rtKGLWyhufmzSPVlC05bTCxEpvqni8aWP6DNHju2XtDuKCwNP1hvl1Pm2dOd0DtO_AIm6X8zlEFZ0dob1HqUXmmKaP0degyIkmjmNqhl8h-i2v4fAkw2P9JuQYgvJ5qrMPcGx4YX_PXcNaCYEzsHb8Mp4vNW5nOVg-fA7DnAGA4q1COGxLUUB8nmmibFOAktADy_lqMdMKQyBb8kIT6VgIsLK0vK6jFi6a7pygYffmqdMjrgkDkbCbc8JjKkG5PExBR5Kb1BdCKpr6qWJaplI3fSU4iwAHqlDEnGlGVdzUEEbJQLRoeIqqGUzsDGHQDgU0yphRImpRIwAyG04joQUPA2NqqLFWfbIouTaSdRLaNHFrldi1Snxqk_FqiK8XKPlhNAmcB38PPf__0Au0a5_KLMBLVM2XK30FyCRP64Xp1dFO-_a-1_8GhbHrew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOICQEE_xJgeuYS1tmvQ4IdCAbRwGErcqzUPbNLoJBgJ-FL8Rp814CIkD1zZWU8dxPkf2Z4CjWERaIg6l3ApDY6EtlRFHICdNKFNmbViy7Xe6Ses2vrxjdzU4ndXCuLRK7_srn156a_-k4bXZmAwGjV6AoQNH-0GjdDzqyRzMO3YqVof55sVVq_vpkJOw7MzpxlMn8FXI0xgeD-8xgHx1xN1hWnJ4-vYwv46ob8fO-Qose7xImtWUVqFmijVYulZGFp5seh3ee2VaNPU0UyPyjAFwdRNHBgXpmxep-hiXj3NTvKFvIxP3h_4m1o2QpECDJ4_98YMhzWKKxo-fIzhnxKDkWy0ccdUoOHxcGKpdX4CK04Oo8dNkZDTBWLaihqbKExEQ7Zh5fVMtUvbd2YDb87Ob0xb1fRiowg09pSJlCvUrohx1pITNAymVZnmQa25UrsxJoKXgMUJBHclUcMOZTk8MRlIqlAmLNqFe4MS2gKB2GAJSzq2WccKsRNRsBYulkSIKrd2G45nqs0lFt5HN8tCGmV-rzK1VFjCXj7cNYrZA2Q-7yfBI-Ft05_-ih7DQuum0s_ZF92oXFt2bKilwD-rThyezj0Blmh94Q_wAh93uLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+variations+in+hexachlorobenzene+partitioning+in+a+near+shore+Antarctic+marine+environment+from+a+one-dimensional+coupled+ecosystem-chemical+distribution+model&rft.jtitle=Journal+of+marine+systems&rft.au=L+Bates%2C+Michael&rft.au=W+Hawker%2C+Darryl&rft.au=Cropp%2C+Roger&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-7963&rft.eissn=1879-1573&rft.volume=196&rft.spage=65&rft.epage=76&rft_id=info:doi/10.1016%2Fj.jmarsys.2019.05.001&rft.externalDocID=S0924796318304366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-7963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-7963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-7963&client=summon |