Spatially asymmetric catalyst design with electron-rich Cu sites to facilitate full-spectrum photo-Fenton-like catalysis

Heterogeneous photo-Fenton catalysis stands out as a promising advanced oxidation technology but is subject to slow reaction kinetics because the electron supply is insufficient to sustain the Fenton reaction. Here, we demonstrate an asymmetric-catalyst-based copper silicate nanotube (CSN) Janus des...

Full description

Saved in:
Bibliographic Details
Published inChem catalysis Vol. 5; no. 6; p. 101358
Main Authors Zhang, Wei, Wang, Lan, Wang, Fu, Xing, Mingyang, Wang, Chuanyi, Zhao, Jincai
Format Journal Article
LanguageEnglish
Published Elsevier Inc 19.06.2025
Subjects
Online AccessGet full text
ISSN2667-1093
2667-1093
DOI10.1016/j.checat.2025.101358

Cover

Loading…
Abstract Heterogeneous photo-Fenton catalysis stands out as a promising advanced oxidation technology but is subject to slow reaction kinetics because the electron supply is insufficient to sustain the Fenton reaction. Here, we demonstrate an asymmetric-catalyst-based copper silicate nanotube (CSN) Janus design that simultaneously enables favorable full-spectrum solar absorption, H2O2 adsorption, and catalytic activity. The coordination asymmetry induces oxygen-vacancy-associated, electron-rich Cu(I) sites and an intrinsic electric field oriented from the Si-O to the Cu-O sublayer, synergistically driving the photoexcited electrons to compensate for the electron-donating capability of Cu sites, leading to remarkably enhanced H2O2 activation. The strong electron delocalization of Cu(I) sites reinforces the H2O2 adsorption on its adjacent bridging H sites. The energy barrier for H2O2 dissociation is vastly reduced (0.912 → 0.264 eV), boosting H2O2 utilization (54%, almost two times higher than that of conventional catalysts). The CSN-catalyzed photo-Fenton-like reaction attains long-lasting ·OH production, which affords exceptional performance for various types of organic pollutant elimination. [Display omitted] •Janus copper silicate with an electron-rich microenvironment as an efficient catalyst•Electron-donating Cu sites and electron delocalization for H2O2 decomposition•Full-spectrum-driven photo-Fenton catalysis enables self-boosting ROS generation The heterogeneous photo-Fenton-like process promises outstanding water decontamination, but the low H2O2 utilization stemming from an insufficient supply of energetic electrons remains a bottleneck. Here, we propose an ingenious design to overcome this challenge by creating electron-rich Cu(I) sites and defective structures in asymmetric copper silicate nanotubes (CSNs) to achieve full-spectrum-driven photo-Fenton-like catalysis. The intrinsic electric field and oxygen vacancy synergistically accelerate the directional migration of the photogenerated electrons to continuously regenerate Cu(I) for H2O2 activation. Simultaneously, the strong electron delocalization of the Cu(I) sites reduces the electron density of the adjacent bridging H sites, greatly improving the H2O2 adsorption. As a result, the utilization of H2O2 is significantly improved, realizing the superior and long-lasting CSN-catalyzed Fenton-like reaction upon full-spectrum irradiation. The provision of an electron-rich microenvironment is critical to achieving a long-lasting Cu-catalyzed Fenton-like reaction. Herein, we report an asymmetric copper silicate catalyst that simultaneously enables superior full-spectrum solar absorption, favorable H2O2 adsorption, and good catalytic activity. The photoexcited electrons are directly transported to the Cu site to compensate for its electron-donating capability upon full-spectrum irradiation, leading to an impressive 54% H2O2 utilization (almost two times higher than that of conventional catalysts). This finding paves the way to a more sustainable approach to water treatment through the use of renewable solar energy.
AbstractList Heterogeneous photo-Fenton catalysis stands out as a promising advanced oxidation technology but is subject to slow reaction kinetics because the electron supply is insufficient to sustain the Fenton reaction. Here, we demonstrate an asymmetric-catalyst-based copper silicate nanotube (CSN) Janus design that simultaneously enables favorable full-spectrum solar absorption, H2O2 adsorption, and catalytic activity. The coordination asymmetry induces oxygen-vacancy-associated, electron-rich Cu(I) sites and an intrinsic electric field oriented from the Si-O to the Cu-O sublayer, synergistically driving the photoexcited electrons to compensate for the electron-donating capability of Cu sites, leading to remarkably enhanced H2O2 activation. The strong electron delocalization of Cu(I) sites reinforces the H2O2 adsorption on its adjacent bridging H sites. The energy barrier for H2O2 dissociation is vastly reduced (0.912 → 0.264 eV), boosting H2O2 utilization (54%, almost two times higher than that of conventional catalysts). The CSN-catalyzed photo-Fenton-like reaction attains long-lasting ·OH production, which affords exceptional performance for various types of organic pollutant elimination. [Display omitted] •Janus copper silicate with an electron-rich microenvironment as an efficient catalyst•Electron-donating Cu sites and electron delocalization for H2O2 decomposition•Full-spectrum-driven photo-Fenton catalysis enables self-boosting ROS generation The heterogeneous photo-Fenton-like process promises outstanding water decontamination, but the low H2O2 utilization stemming from an insufficient supply of energetic electrons remains a bottleneck. Here, we propose an ingenious design to overcome this challenge by creating electron-rich Cu(I) sites and defective structures in asymmetric copper silicate nanotubes (CSNs) to achieve full-spectrum-driven photo-Fenton-like catalysis. The intrinsic electric field and oxygen vacancy synergistically accelerate the directional migration of the photogenerated electrons to continuously regenerate Cu(I) for H2O2 activation. Simultaneously, the strong electron delocalization of the Cu(I) sites reduces the electron density of the adjacent bridging H sites, greatly improving the H2O2 adsorption. As a result, the utilization of H2O2 is significantly improved, realizing the superior and long-lasting CSN-catalyzed Fenton-like reaction upon full-spectrum irradiation. The provision of an electron-rich microenvironment is critical to achieving a long-lasting Cu-catalyzed Fenton-like reaction. Herein, we report an asymmetric copper silicate catalyst that simultaneously enables superior full-spectrum solar absorption, favorable H2O2 adsorption, and good catalytic activity. The photoexcited electrons are directly transported to the Cu site to compensate for its electron-donating capability upon full-spectrum irradiation, leading to an impressive 54% H2O2 utilization (almost two times higher than that of conventional catalysts). This finding paves the way to a more sustainable approach to water treatment through the use of renewable solar energy.
ArticleNumber 101358
Author Wang, Fu
Wang, Lan
Zhao, Jincai
Zhang, Wei
Wang, Chuanyi
Xing, Mingyang
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P.R. China
– sequence: 2
  givenname: Lan
  surname: Wang
  fullname: Wang, Lan
  email: wanglan@sust.edu.cn
  organization: School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P.R. China
– sequence: 3
  givenname: Fu
  surname: Wang
  fullname: Wang, Fu
  organization: Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
– sequence: 4
  givenname: Mingyang
  orcidid: 0000-0002-0518-2849
  surname: Xing
  fullname: Xing, Mingyang
  email: mingyangxing@ecust.edu.cn
  organization: Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, P.R. China
– sequence: 5
  givenname: Chuanyi
  surname: Wang
  fullname: Wang, Chuanyi
  organization: School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P.R. China
– sequence: 6
  givenname: Jincai
  surname: Zhao
  fullname: Zhao, Jincai
  organization: Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
BookMark eNp9kMtKxDAUhoOM4DjOG7jIC3TMZdq0G0EGRwXBhboOaXJqM6YXkozat7elCq5c5RD-_-Oc7xwt2q4FhC4p2VBCs6vDRtegVdwwwtLpi6f5CVqyLBMJJQVf_JnP0DqEAyFjknKWsiX6eu5VtMq5AaswNA1EbzUeccoNIWIDwb61-NPGGoMDHX3XJmOixrsjDjZCwLHDldLW2agi4OroXBL6KXlscF93sUv20Max5uw7_JJtuECnlXIB1j_vCr3ub19298nj093D7uYx0SwVMRGZEFtWESbKzHCuqa5ybTIKRhSKFinjolQqhTQvDDV5Kaq8zEtGtGFbQwTlK7Sdudp3IXioZO9to_wgKZGTQHmQs0A5CZSzwLF2Pddg3O3DgpdBW2g1GOvH46Tp7P-Abw0mf70
Cites_doi 10.1186/2228-5326-3-25
10.1038/ncomms3339
10.1002/anie.201301306
10.1016/j.clay.2016.05.006
10.1073/pnas.2220608120
10.1038/s41467-023-39666-0
10.1016/j.seppur.2016.06.059
10.1039/D2TA04930A
10.1002/adfm.202100919
10.1039/D1TA09954J
10.1021/acsnano.1c08580
10.1038/nnano.2017.100
10.1016/j.seppur.2023.124944
10.1016/j.apcatb.2018.04.029
10.1002/anie.200353507
10.1016/j.seppur.2022.121099
10.1016/j.apcatb.2019.118157
10.1021/acscatal.2c00380
10.1021/acs.chemrev.5b00047
10.1016/j.cej.2020.125184
10.1016/j.apcatb.2016.05.032
10.1016/j.jcis.2018.04.020
10.1021/acs.jpclett.1c02627
10.1016/j.apcatb.2023.123490
10.1038/s41467-024-46653-6
10.1021/ja993134p
10.1002/adfm.201704730
10.1016/j.apcatb.2020.119365
10.1016/j.matt.2023.12.033
10.1016/j.apcatb.2019.117985
10.1002/anie.201915992
10.1016/j.cej.2023.148313
10.1038/s41524-021-00505-9
10.1080/10643389.2013.829765
10.1002/anie.201903027
10.1016/j.matt.2023.09.008
10.1021/acscatal.0c03860
10.1016/j.seppur.2024.126449
10.1021/jacs.6b12273
10.1016/j.cej.2023.148466
10.1073/pnas.2311585120
10.1021/acscatal.8b03515
10.1002/anie.201502226
10.1016/j.watres.2020.116719
10.1021/cr030086p
10.1021/acs.est.5b00445
10.1021/ja3034153
10.1021/acs.est.9b07245
10.1016/j.jcis.2017.09.117
10.1021/acscatal.0c04371
10.1016/j.apsusc.2021.151026
10.1021/acsami.3c01981
10.1016/j.cej.2024.154051
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.checat.2025.101358
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2667-1093
ExternalDocumentID 10_1016_j_checat_2025_101358
S266710932500096X
GroupedDBID 0R~
AALRI
AAMRU
AAXUO
AAYWO
ABJNI
AGCQF
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
EBS
EFKBS
FDB
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
AMRAJ
CITATION
ID FETCH-LOGICAL-c257t-767742f027b6d33c1cf8cd61ed79a195237baa5e589d1d8b7f8b8b20cd24d0713
ISSN 2667-1093
IngestDate Thu Jul 31 00:28:33 EDT 2025
Sat Aug 23 17:12:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords environmental remediation
photo-Fenton-like
electron-rich Cu sites
SDG6: Clean water and sanitation
full-spectrum absorption
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-767742f027b6d33c1cf8cd61ed79a195237baa5e589d1d8b7f8b8b20cd24d0713
ORCID 0000-0002-0518-2849
ParticipantIDs crossref_primary_10_1016_j_checat_2025_101358
elsevier_sciencedirect_doi_10_1016_j_checat_2025_101358
PublicationCentury 2000
PublicationDate 2025-06-19
PublicationDateYYYYMMDD 2025-06-19
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-19
  day: 19
PublicationDecade 2020
PublicationTitle Chem catalysis
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhu, Wang, Zhang, Hou, Wang, Zhao (bib5) 2024; 481
Wang, Zhao, Rehman, Liu, Xu, Huang, Wang, Zhao, Mei, Ma (bib21) 2022; 12
Guo, Sun, Huang, Han, Wang, Chen, Liu, Zheng, Zhang, Hong, Li (bib3) 2023; 120
Čižmar, Panžić, Capan, Gajović (bib24) 2021; 569
Kemnade, Gebhardt, Haselmann, Cherevan, Wilde, Eder (bib42) 2018; 28
Zhan, Zhang, Mi, Zhao, Hu, Lyu (bib32) 2020; 54
Lopez-Ramon, Alvarez, Moreno-Castilla, Fontecha-Camara, Yebra-Rodriguez, Bailon-Garcia (bib50) 2018; 511
Bölle, Mikkelsen, Thygesen, Vegge, Castelli (bib16) 2021; 7
Guo, Hu, Meng, Sun, Han (bib47) 2020; 260
DuBois, Mukherjee, Stack, Hedman, Solomon, Hodgson (bib38) 2000; 122
Zhou, Zhou, Zhou, Xing, Zhang (bib10) 2020; 279
Li, Jiangli, Lee, Yu, Zhang, Chen, Sanders, Al-Hashimi, Banerjee, Fang (bib2) 2024; 7
Khiem, Huy, Kwon, Lee, Oh, Duan, Wacławek, Wang, Lisak, Ghanbari, Lin (bib54) 2024; 343
Lu, Zhu, Xiao, Chuu, Han, Chiu, Cheng, Yang, Wei, Yang (bib15) 2017; 12
Zhao, Liu (bib28) 2021; 12
James, Shivakumar, Rodney, Joshi, Dalimba, Kim, Udayashankar (bib45) 2024; 481
Wang, Zhuang, Chen, Zhou, Li (bib19) 2004; 43
Zhang, Zhao, Shi, Zhou, Waterhouse, Wu, Tung, Zhang (bib12) 2020; 10
Yu, Yang, Zhang, Ge, Zimina, Pruessmann, Zheng, Grunwaldt, Sun (bib13) 2020; 10
Wang, Wang, Zhang, Zhang, Wang, Zhu, Xiang, Wang (bib29) 2024; 49
Gong, Yue, Zhao, Zhao, Zhao, Lv, Wang, Ma (bib57) 2012; 134
Subramanian, Prakash (bib7) 2021; 190
Merino, Vela, Heine (bib55) 2005; 105
Taifan, Li, Baltrus, Zhang, Frenkel, Baltrusaitis (bib36) 2018; 9
Chen, An, Zhang, Liang, Liu, Xing (bib52) 2023; 120
Ji, Wei, Xu, Wang, Huo, Li, Cui, Li, Cui, Jiang (bib43) 2024; 496
Wang, Pumera (bib14) 2015; 115
Choudhury, Dey, Choudhury (bib23) 2013; 3
Yu, Xu, Fu, Liu, Wang, Wu, Lu, Lv, Luo (bib1) 2024; 15
Zhang, Wang, Wang, Yu, Wang, Zhao, Fu (bib51) 2023; 327
Huang, Zhang, Peng, Gao, Wang, Wang, Wei (bib17) 2022; 16
Li, Wang, Duan, Yu, Wang, Ji, Liu (bib56) 2022; 293
Wang, Wang, Yin, Wang (bib58) 2016; 132–133
Wang, Bahnemann, Bian, Dong, Zhao, Wang (bib18) 2019; 58
Walter, Schwenk, Cope, Sudhakar, Hassig, Ferrer, Mininni, Lindsay, Barsoum (bib4) 2023; 6
Rong, Jiang, Wang, Gu, Jiang, Yu (bib22) 2022; 10
Hao, Huang, Zhang, Ma (bib34) 2021; 31
Sun, Tian, Ding, Yang, Wang, Xin, Xu, Han (bib8) 2019; 258
Bao, Zhang, Fan, Zhang, Zhou, Yang, Hu, Wang, Pan, Xie (bib31) 2015; 54
Wang, Chen, Yong, Zhang, Li, Shao, Sun, Pan, Xie (bib11) 2017; 139
Sim, Nam, Kim, Chung (bib27) 2022; 34
Hou, Wang, Zhang, Zhu, Lu, Zou, Wang (bib46) 2023; 15
Xing, Ma, Li, Wang, Liu, Han, Wu, Tu (bib41) 2022; 10
Singh, Rekha, Chand (bib49) 2016; 170
Bayarkhuu, Cho, Cho, Hong, Hong, Baek, Yang, Yavuz, Kim, Byun (bib25) 2024; 35
Pang, Zheng, Wang, Yang, Liu, Liu, Sun, Wang, Zhang (bib37) 2020; 10
Lyu, Zhang, Wang, Nie, Hu (bib6) 2015; 49
Yue, Zhao, Zhao, Wang, Ma, Gong (bib20) 2013; 4
Li, Zhong, Gan, Li, Cao, Ma, Li, Li (bib33) 2024; 338
Gu, Wang, Zhang, Liu, Jiang, Yu (bib39) 2023; 120
Zhong, Li, Fu, Wang, Muhammad, Li, Wang, Zhao, Zhao (bib9) 2020; 395
Xu, Zhu, Cao, Wen, Wang, François-Xavier, Wintgens (bib53) 2018; 234
Fontecha-Cámara, Moreno-Castilla, López-Ramón, Álvarez (bib48) 2016; 196
Oturan, Aaron (bib44) 2014; 44
Sudrajat, Hartuti (bib35) 2018; 524
Wang, Zhou, Jia, Yu, Zhang (bib30) 2020; 59
Li, Li, Chen, Chu, Liu, Naisa, Pohl, Löffler, Feng (bib26) 2023; 14
Wang, Huang, Ma, Wang, Qin, Zhang, Dai, Whangbo (bib40) 2013; 52
Wang (10.1016/j.checat.2025.101358_bib14) 2015; 115
Zhu (10.1016/j.checat.2025.101358_bib5) 2024; 481
Wang (10.1016/j.checat.2025.101358_bib58) 2016; 132–133
Sim (10.1016/j.checat.2025.101358_bib27) 2022; 34
Čižmar (10.1016/j.checat.2025.101358_bib24) 2021; 569
Wang (10.1016/j.checat.2025.101358_bib19) 2004; 43
Yue (10.1016/j.checat.2025.101358_bib20) 2013; 4
Bölle (10.1016/j.checat.2025.101358_bib16) 2021; 7
Ji (10.1016/j.checat.2025.101358_bib43) 2024; 496
Lopez-Ramon (10.1016/j.checat.2025.101358_bib50) 2018; 511
Lu (10.1016/j.checat.2025.101358_bib15) 2017; 12
Xu (10.1016/j.checat.2025.101358_bib53) 2018; 234
Gong (10.1016/j.checat.2025.101358_bib57) 2012; 134
Walter (10.1016/j.checat.2025.101358_bib4) 2023; 6
Wang (10.1016/j.checat.2025.101358_bib29) 2024; 49
Zhan (10.1016/j.checat.2025.101358_bib32) 2020; 54
Hao (10.1016/j.checat.2025.101358_bib34) 2021; 31
Wang (10.1016/j.checat.2025.101358_bib11) 2017; 139
Yu (10.1016/j.checat.2025.101358_bib13) 2020; 10
Zhou (10.1016/j.checat.2025.101358_bib10) 2020; 279
Wang (10.1016/j.checat.2025.101358_bib18) 2019; 58
Sudrajat (10.1016/j.checat.2025.101358_bib35) 2018; 524
James (10.1016/j.checat.2025.101358_bib45) 2024; 481
Fontecha-Cámara (10.1016/j.checat.2025.101358_bib48) 2016; 196
Zhang (10.1016/j.checat.2025.101358_bib12) 2020; 10
Oturan (10.1016/j.checat.2025.101358_bib44) 2014; 44
Zhong (10.1016/j.checat.2025.101358_bib9) 2020; 395
Lyu (10.1016/j.checat.2025.101358_bib6) 2015; 49
Hou (10.1016/j.checat.2025.101358_bib46) 2023; 15
Zhang (10.1016/j.checat.2025.101358_bib51) 2023; 327
Li (10.1016/j.checat.2025.101358_bib2) 2024; 7
Li (10.1016/j.checat.2025.101358_bib56) 2022; 293
Li (10.1016/j.checat.2025.101358_bib33) 2024; 338
Subramanian (10.1016/j.checat.2025.101358_bib7) 2021; 190
Bao (10.1016/j.checat.2025.101358_bib31) 2015; 54
Choudhury (10.1016/j.checat.2025.101358_bib23) 2013; 3
Li (10.1016/j.checat.2025.101358_bib26) 2023; 14
Bayarkhuu (10.1016/j.checat.2025.101358_bib25) 2024; 35
Sun (10.1016/j.checat.2025.101358_bib8) 2019; 258
Kemnade (10.1016/j.checat.2025.101358_bib42) 2018; 28
Wang (10.1016/j.checat.2025.101358_bib40) 2013; 52
Huang (10.1016/j.checat.2025.101358_bib17) 2022; 16
Xing (10.1016/j.checat.2025.101358_bib41) 2022; 10
Wang (10.1016/j.checat.2025.101358_bib21) 2022; 12
Guo (10.1016/j.checat.2025.101358_bib47) 2020; 260
Yu (10.1016/j.checat.2025.101358_bib1) 2024; 15
Khiem (10.1016/j.checat.2025.101358_bib54) 2024; 343
Gu (10.1016/j.checat.2025.101358_bib39) 2023; 120
Singh (10.1016/j.checat.2025.101358_bib49) 2016; 170
Rong (10.1016/j.checat.2025.101358_bib22) 2022; 10
Zhao (10.1016/j.checat.2025.101358_bib28) 2021; 12
Merino (10.1016/j.checat.2025.101358_bib55) 2005; 105
DuBois (10.1016/j.checat.2025.101358_bib38) 2000; 122
Wang (10.1016/j.checat.2025.101358_bib30) 2020; 59
Taifan (10.1016/j.checat.2025.101358_bib36) 2018; 9
Chen (10.1016/j.checat.2025.101358_bib52) 2023; 120
Guo (10.1016/j.checat.2025.101358_bib3) 2023; 120
Pang (10.1016/j.checat.2025.101358_bib37) 2020; 10
References_xml – volume: 279
  year: 2020
  ident: bib10
  article-title: Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 18333
  year: 2022
  end-page: 18342
  ident: bib41
  article-title: Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity
  publication-title: J. Mater. Chem. A
– volume: 120
  year: 2023
  ident: bib3
  article-title: Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 115
  start-page: 8704
  year: 2015
  end-page: 8735
  ident: bib14
  article-title: Fabrication of micro/nanoscale motors
  publication-title: Chem. Rev.
– volume: 139
  start-page: 4737
  year: 2017
  end-page: 4742
  ident: bib11
  article-title: Giant electron-hole interactions in confined layered structures for molecular oxygen activation
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  ident: bib27
  article-title: Two-dimensional Janus like scandium-based MXenes as photocatalysts for overall water splitting: a first-principles study
  publication-title: Sustain. Mater. Techno.
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  ident: bib30
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 2339
  year: 2013
  ident: bib20
  article-title: A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions
  publication-title: Nat. Commun.
– volume: 481
  year: 2024
  ident: bib45
  article-title: Mechanistic insights and DFT analysis of bimetal doped Styrofoam-like LaFeO
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2020
  ident: bib12
  article-title: Efficient photocatalytic nitrogen fixation over Cu
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 4810
  year: 2013
  end-page: 4813
  ident: bib40
  article-title: Cu
  publication-title: Angew. Chem. Int. Ed.
– volume: 170
  start-page: 321
  year: 2016
  end-page: 336
  ident: bib49
  article-title: Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye
  publication-title: Sep. Purif. Technol.
– volume: 258
  year: 2019
  ident: bib8
  article-title: Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction
  publication-title: Appl. Catal. B Environ.
– volume: 43
  start-page: 2017
  year: 2004
  end-page: 2020
  ident: bib19
  article-title: Thermally stable silicate nanotubes
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 4724
  year: 2022
  end-page: 4736
  ident: bib21
  article-title: Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol
  publication-title: ACS Catal.
– volume: 524
  start-page: 227
  year: 2018
  end-page: 235
  ident: bib35
  article-title: Structural properties and catalytic activity of a novel ternary CuO/gC
  publication-title: J. Colloid Interface Sci.
– volume: 132–133
  start-page: 17
  year: 2016
  end-page: 23
  ident: bib58
  article-title: Insights into the physicochemical characteristics from vermiculite to silica nanosheets
  publication-title: Appl. Clay Sci.
– volume: 134
  start-page: 13922
  year: 2012
  end-page: 13925
  ident: bib57
  article-title: Synthesis of ethanol via syngas on Cu/SiO
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 4034
  year: 2023
  ident: bib26
  article-title: Accessing parity-forbidden d-d transitions for photocatalytic CO
  publication-title: Nat. Commun.
– volume: 35
  year: 2024
  ident: bib25
  article-title: Engineering single-atom catalysts on conjugated porphyrin polymer photocatalysts via E-waste for sustainable photocatalysis
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 269
  year: 2018
  end-page: 285
  ident: bib36
  article-title: Operando structure determination of Cu and Zn on supported MgO/SiO
  publication-title: ACS Catal.
– volume: 54
  start-page: 7399
  year: 2015
  end-page: 7404
  ident: bib31
  article-title: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 23124
  year: 2023
  end-page: 23135
  ident: bib46
  article-title: Construction of TiO
  publication-title: ACS Appl. Mater. Inter.
– volume: 49
  year: 2024
  ident: bib29
  article-title: Fabrication of N-doped graphitic carbon encapsulated Fe
  publication-title: Surf. Interfaces
– volume: 7
  start-page: 1146
  year: 2024
  end-page: 1160
  ident: bib2
  article-title: Versatile and efficient photopolymerization approach to zinc oxide-composed dual functional membranes for sustainable water treatment
  publication-title: Matter
– volume: 120
  year: 2023
  ident: bib39
  article-title: Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 569
  year: 2021
  ident: bib24
  article-title: Nanostructured TiO
  publication-title: Appl. Surf. Sci.
– volume: 49
  start-page: 8639
  year: 2015
  end-page: 8647
  ident: bib6
  article-title: Enhanced Fenton catalytic efficiency of γ-Cu-Al
  publication-title: Environ. Sci. Technol.
– volume: 190
  year: 2021
  ident: bib7
  article-title: Photo augmented copper-based Fenton disinfection under visible LED light and natural sunlight irradiation
  publication-title: Water Res.
– volume: 10
  start-page: 6231
  year: 2022
  end-page: 6241
  ident: bib22
  article-title: Photocatalytic degradation of methylene blue (MB) with Cu1–ZnO single atom catalysts on graphene-coated flexible substrates
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 8333
  year: 2020
  end-page: 8343
  ident: bib32
  article-title: Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides
  publication-title: Environ. Sci. Technol.
– volume: 196
  start-page: 207
  year: 2016
  end-page: 215
  ident: bib48
  article-title: Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions
  publication-title: Appl. Catal. B Environ.
– volume: 511
  start-page: 193
  year: 2018
  end-page: 202
  ident: bib50
  article-title: Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water
  publication-title: J. Colloid Interf. Sci.
– volume: 122
  start-page: 5775
  year: 2000
  end-page: 5787
  ident: bib38
  article-title: A systematic K-edge X-ray absorption spectroscopic study of Cu(III) sites
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 8103
  year: 2019
  end-page: 8108
  ident: bib18
  article-title: Two-dimensional layered zinc silicate nanosheets with excellent photocatalytic performance for organic pollutant degradation and CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 260
  year: 2020
  ident: bib47
  article-title: Catalytic degradation of anthraquinones-containing H
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 13624
  year: 2020
  end-page: 13629
  ident: bib37
  article-title: Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation
  publication-title: ACS Catal.
– volume: 16
  start-page: 974
  year: 2022
  end-page: 983
  ident: bib17
  article-title: A multifunctional layered nickel silicate nanogenerator of synchronous oxygen self-supply and superoxide radical generation for hypoxic tumor therapy
  publication-title: ACS Nano
– volume: 6
  start-page: 4086
  year: 2023
  end-page: 4105
  ident: bib4
  article-title: Adsorption and self-sensitized, visible-light photodegradation of rhodamine 6G and crystal violet by one-dimensional lepidocrocite titanium oxide
  publication-title: Matter
– volume: 12
  start-page: 10863
  year: 2021
  end-page: 10873
  ident: bib28
  article-title: Rational design of a two-dimensional Janus CuFeO
  publication-title: J. Phys. Chem. Lett.
– volume: 481
  year: 2024
  ident: bib5
  article-title: Ultrathin CuNi
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 2241
  year: 2024
  ident: bib1
  article-title: Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H
  publication-title: Nat. Commun.
– volume: 120
  year: 2023
  ident: bib52
  article-title: Single-atom Mo-Co catalyst with low biotoxicity for sustainable degradation of high-ionization-potential organic pollutants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 744
  year: 2017
  end-page: 749
  ident: bib15
  article-title: Janus monolayers of transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
– volume: 293
  year: 2022
  ident: bib56
  article-title: Zn/Co-ZIFs@MIL-101(Fe) metal-organic frameworks are effective photo-Fenton catalysts for RhB removal
  publication-title: Sep. Purif. Technol.
– volume: 338
  year: 2024
  ident: bib33
  article-title: Oxygen vacancy mediated Ruddlesden-Popper Cu-based perovskites with a dual-reaction-center for enhanced Fenton-like removal of coal pyrolysis wastewater
  publication-title: Sep. Purif. Technol.
– volume: 234
  start-page: 223
  year: 2018
  end-page: 233
  ident: bib53
  article-title: Cu-Al
  publication-title: Appl. Catal. B Environ.
– volume: 327
  year: 2023
  ident: bib51
  article-title: Selective oxidation of organic pollutants over a new Co-based MOF via peroxymonosulfate activation under UV light: performance and mechanism
  publication-title: Sep. Purif. Technol.
– volume: 496
  year: 2024
  ident: bib43
  article-title: Enhanced organic contaminant eradication using boron-doped bimetallic cathodes in electro-Fenton: unveiling structure–activity relationship
  publication-title: Chem. Eng. J.
– volume: 395
  year: 2020
  ident: bib9
  article-title: Construction of Cu-bridged Cu
  publication-title: Chem. Eng. J.
– volume: 343
  year: 2024
  ident: bib54
  article-title: Electron transfer-mediated enhancement of superoxide radical generation in Fenton-like process: key role of oxygen vacancy-regulated local electron density of cobalt sites
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 14694
  year: 2020
  end-page: 14706
  ident: bib13
  article-title: Stabilizing Cu
  publication-title: ACS Catal.
– volume: 44
  start-page: 2577
  year: 2014
  end-page: 2641
  ident: bib44
  article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 105
  start-page: 3812
  year: 2005
  end-page: 3841
  ident: bib55
  article-title: Description of electron delocalization via the analysis of molecular fields
  publication-title: Chem. Rev.
– volume: 31
  year: 2021
  ident: bib34
  article-title: Oxygen vacant semiconductor photocatalysts
  publication-title: Adv. Funct. Mater.
– volume: 28
  year: 2018
  ident: bib42
  article-title: How to evaluate and manipulate charge transfer and photocatalytic response at hybrid nanocarbon-metal oxide interfaces
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 41
  year: 2021
  ident: bib16
  article-title: Structural and chemical mechanisms governing stability of inorganic Janus nanotubes
  publication-title: npj Comput. Mater.
– volume: 3
  start-page: 25
  year: 2013
  ident: bib23
  article-title: Defect generation, d-d transition, and band gap reduction in Cu-doped TiO
  publication-title: Int. Nano Lett.
– volume: 3
  start-page: 25
  year: 2013
  ident: 10.1016/j.checat.2025.101358_bib23
  article-title: Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles
  publication-title: Int. Nano Lett.
  doi: 10.1186/2228-5326-3-25
– volume: 4
  start-page: 2339
  year: 2013
  ident: 10.1016/j.checat.2025.101358_bib20
  article-title: A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3339
– volume: 52
  start-page: 4810
  year: 2013
  ident: 10.1016/j.checat.2025.101358_bib40
  article-title: Cu2(OH)PO4, a near-infrared-activated photocatalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301306
– volume: 132–133
  start-page: 17
  year: 2016
  ident: 10.1016/j.checat.2025.101358_bib58
  article-title: Insights into the physicochemical characteristics from vermiculite to silica nanosheets
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2016.05.006
– volume: 120
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib3
  article-title: Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2220608120
– volume: 49
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib29
  article-title: Fabrication of N-doped graphitic carbon encapsulated Fe3C/Fe nanoparticles with dual-reaction centers for highly effective Fenton-like degradation of organic pollutants
  publication-title: Surf. Interfaces
– volume: 14
  start-page: 4034
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib26
  article-title: Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39666-0
– volume: 170
  start-page: 321
  year: 2016
  ident: 10.1016/j.checat.2025.101358_bib49
  article-title: Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.06.059
– volume: 10
  start-page: 18333
  year: 2022
  ident: 10.1016/j.checat.2025.101358_bib41
  article-title: Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA04930A
– volume: 31
  year: 2021
  ident: 10.1016/j.checat.2025.101358_bib34
  article-title: Oxygen vacant semiconductor photocatalysts
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100919
– volume: 10
  start-page: 6231
  year: 2022
  ident: 10.1016/j.checat.2025.101358_bib22
  article-title: Photocatalytic degradation of methylene blue (MB) with Cu1–ZnO single atom catalysts on graphene-coated flexible substrates
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09954J
– volume: 16
  start-page: 974
  year: 2022
  ident: 10.1016/j.checat.2025.101358_bib17
  article-title: A multifunctional layered nickel silicate nanogenerator of synchronous oxygen self-supply and superoxide radical generation for hypoxic tumor therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08580
– volume: 120
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib52
  article-title: Single-atom Mo-Co catalyst with low biotoxicity for sustainable degradation of high-ionization-potential organic pollutants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 744
  year: 2017
  ident: 10.1016/j.checat.2025.101358_bib15
  article-title: Janus monolayers of transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.100
– volume: 35
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib25
  article-title: Engineering single-atom catalysts on conjugated porphyrin polymer photocatalysts via E-waste for sustainable photocatalysis
  publication-title: Adv. Funct. Mater.
– volume: 327
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib51
  article-title: Selective oxidation of organic pollutants over a new Co-based MOF via peroxymonosulfate activation under UV light: performance and mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.124944
– volume: 234
  start-page: 223
  year: 2018
  ident: 10.1016/j.checat.2025.101358_bib53
  article-title: Cu-Al2O3-g-C3N4 and Cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.04.029
– volume: 43
  start-page: 2017
  year: 2004
  ident: 10.1016/j.checat.2025.101358_bib19
  article-title: Thermally stable silicate nanotubes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200353507
– volume: 293
  year: 2022
  ident: 10.1016/j.checat.2025.101358_bib56
  article-title: Zn/Co-ZIFs@MIL-101(Fe) metal-organic frameworks are effective photo-Fenton catalysts for RhB removal
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121099
– volume: 260
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib47
  article-title: Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: defects facilitating hydroxyl radicals generation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118157
– volume: 12
  start-page: 4724
  year: 2022
  ident: 10.1016/j.checat.2025.101358_bib21
  article-title: Copper phyllosilicate nanotube catalysts for the chemosynthesis of cyclohexane via hydrodeoxygenation of phenol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00380
– volume: 115
  start-page: 8704
  year: 2015
  ident: 10.1016/j.checat.2025.101358_bib14
  article-title: Fabrication of micro/nanoscale motors
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00047
– volume: 395
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib9
  article-title: Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125184
– volume: 196
  start-page: 207
  year: 2016
  ident: 10.1016/j.checat.2025.101358_bib48
  article-title: Mixed iron oxides as Fenton catalysts for gallic acid removal from aqueous solutions
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.05.032
– volume: 524
  start-page: 227
  year: 2018
  ident: 10.1016/j.checat.2025.101358_bib35
  article-title: Structural properties and catalytic activity of a novel ternary CuO/gC3N4/Bi2O3 photocatalyst
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.04.020
– volume: 12
  start-page: 10863
  year: 2021
  ident: 10.1016/j.checat.2025.101358_bib28
  article-title: Rational design of a two-dimensional Janus CuFeO2+δ single layer as a photocatalyst and photoelectrode
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02627
– volume: 343
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib54
  article-title: Electron transfer-mediated enhancement of superoxide radical generation in Fenton-like process: key role of oxygen vacancy-regulated local electron density of cobalt sites
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2023.123490
– volume: 15
  start-page: 2241
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib1
  article-title: Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46653-6
– volume: 122
  start-page: 5775
  year: 2000
  ident: 10.1016/j.checat.2025.101358_bib38
  article-title: A systematic K-edge X-ray absorption spectroscopic study of Cu(III) sites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja993134p
– volume: 28
  year: 2018
  ident: 10.1016/j.checat.2025.101358_bib42
  article-title: How to evaluate and manipulate charge transfer and photocatalytic response at hybrid nanocarbon-metal oxide interfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704730
– volume: 279
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib10
  article-title: Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.119365
– volume: 7
  start-page: 1146
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib2
  article-title: Versatile and efficient photopolymerization approach to zinc oxide-composed dual functional membranes for sustainable water treatment
  publication-title: Matter
  doi: 10.1016/j.matt.2023.12.033
– volume: 34
  year: 2022
  ident: 10.1016/j.checat.2025.101358_bib27
  article-title: Two-dimensional Janus like scandium-based MXenes as photocatalysts for overall water splitting: a first-principles study
  publication-title: Sustain. Mater. Techno.
– volume: 258
  year: 2019
  ident: 10.1016/j.checat.2025.101358_bib8
  article-title: Revealing the active species of Cu-based catalysts for heterogeneous Fenton reaction
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117985
– volume: 59
  start-page: 5350
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib30
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 481
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib5
  article-title: Ultrathin CuNi2Al-LDH nanosheets with enhanced electron transfer for visible-light-driven photo-Fenton-like water decontamination
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.148313
– volume: 7
  start-page: 41
  year: 2021
  ident: 10.1016/j.checat.2025.101358_bib16
  article-title: Structural and chemical mechanisms governing stability of inorganic Janus nanotubes
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00505-9
– volume: 44
  start-page: 2577
  year: 2014
  ident: 10.1016/j.checat.2025.101358_bib44
  article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.829765
– volume: 58
  start-page: 8103
  year: 2019
  ident: 10.1016/j.checat.2025.101358_bib18
  article-title: Two-dimensional layered zinc silicate nanosheets with excellent photocatalytic performance for organic pollutant degradation and CO2 conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903027
– volume: 6
  start-page: 4086
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib4
  article-title: Adsorption and self-sensitized, visible-light photodegradation of rhodamine 6G and crystal violet by one-dimensional lepidocrocite titanium oxide
  publication-title: Matter
  doi: 10.1016/j.matt.2023.09.008
– volume: 10
  start-page: 13624
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib37
  article-title: Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03860
– volume: 338
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib33
  article-title: Oxygen vacancy mediated Ruddlesden-Popper Cu-based perovskites with a dual-reaction-center for enhanced Fenton-like removal of coal pyrolysis wastewater
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.126449
– volume: 139
  start-page: 4737
  year: 2017
  ident: 10.1016/j.checat.2025.101358_bib11
  article-title: Giant electron-hole interactions in confined layered structures for molecular oxygen activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12273
– volume: 481
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib45
  article-title: Mechanistic insights and DFT analysis of bimetal doped Styrofoam-like LaFeO3 perovskites with in-built dual redox couples for enhanced photo-Fenton degradation of tetracycline
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.148466
– volume: 120
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib39
  article-title: Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2311585120
– volume: 9
  start-page: 269
  year: 2018
  ident: 10.1016/j.checat.2025.101358_bib36
  article-title: Operando structure determination of Cu and Zn on supported MgO/SiO2 catalysts during ethanol conversion to 1,3-butadiene
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03515
– volume: 54
  start-page: 7399
  year: 2015
  ident: 10.1016/j.checat.2025.101358_bib31
  article-title: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502226
– volume: 190
  year: 2021
  ident: 10.1016/j.checat.2025.101358_bib7
  article-title: Photo augmented copper-based Fenton disinfection under visible LED light and natural sunlight irradiation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116719
– volume: 105
  start-page: 3812
  year: 2005
  ident: 10.1016/j.checat.2025.101358_bib55
  article-title: Description of electron delocalization via the analysis of molecular fields
  publication-title: Chem. Rev.
  doi: 10.1021/cr030086p
– volume: 49
  start-page: 8639
  year: 2015
  ident: 10.1016/j.checat.2025.101358_bib6
  article-title: Enhanced Fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00445
– volume: 134
  start-page: 13922
  year: 2012
  ident: 10.1016/j.checat.2025.101358_bib57
  article-title: Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3034153
– volume: 54
  start-page: 8333
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib32
  article-title: Efficient Fenton-like process for pollutant removal in electron-rich/poor reaction sites induced by surface oxygen vacancy over cobalt-zinc oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07245
– volume: 511
  start-page: 193
  year: 2018
  ident: 10.1016/j.checat.2025.101358_bib50
  article-title: Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.09.117
– volume: 10
  start-page: 14694
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib13
  article-title: Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04371
– volume: 569
  year: 2021
  ident: 10.1016/j.checat.2025.101358_bib24
  article-title: Nanostructured TiO2 photocatalyst modified with Cu for improved imidacloprid degradation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151026
– volume: 15
  start-page: 23124
  year: 2023
  ident: 10.1016/j.checat.2025.101358_bib46
  article-title: Construction of TiO2-x confined by layered iron silicate toward efficient visible-light-driven photocatalysis-Fenton synergistic removal of organic pollutants
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.3c01981
– volume: 10
  year: 2020
  ident: 10.1016/j.checat.2025.101358_bib12
  article-title: Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets
  publication-title: Adv. Energy Mater.
– volume: 496
  year: 2024
  ident: 10.1016/j.checat.2025.101358_bib43
  article-title: Enhanced organic contaminant eradication using boron-doped bimetallic cathodes in electro-Fenton: unveiling structure–activity relationship
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.154051
SSID ssj0002513252
Score 2.2947772
Snippet Heterogeneous photo-Fenton catalysis stands out as a promising advanced oxidation technology but is subject to slow reaction kinetics because the electron...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101358
SubjectTerms electron-rich Cu sites
environmental remediation
full-spectrum absorption
photo-Fenton-like
Title Spatially asymmetric catalyst design with electron-rich Cu sites to facilitate full-spectrum photo-Fenton-like catalysis
URI https://dx.doi.org/10.1016/j.checat.2025.101358
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe29GUvU6dtWvclP-wNuSIGY_xYRauqdd3D1qp5Q_gDNV2TVAuRlv71u8MYSBtNW18IugCGux_m_LPvjpBPItWx0KlhqUsSGKCUOctTLpnksVG5s7FtZnTPvmUnF-mXqZgOZkwxuqTWh-ZuZ1zJY6wKMrArRsn-h2W7i4IA9sG-sAULw_afbIz1hKGVm01UrjbzORbHMlFDyGxWdWSbxRmeaQ3VbhgccRVN1hFOGjfJHarS-ETdLkIqnjWhl7_W8-j2alkvGTwvFhm-mf104cqz1dCjxYwD9_4Z8tCXbtZz9l70tQdkEB2vg2Ta1lg5g99N2X5WW1aCC1w9Nej7unCZrdWc4AxIhvmr_Mdnh6ztksUAednOjt5zDteHgGxkaPEWUJj4PPD3Umj_wEawDd6Uf8imT8keh2EFH5G9o9Pvl6cdKwfeHhyEU0_dfYV4y2ZR4MPmdvszAx_lfJ88bwcX9Mgj5QV54hYvye8OJbRHCQ0ooR4lFFFCt1BCJ2vaoITWS9qjhG6hhD5ACe2w8IpcHH8-n5ywtt4GM9Bx10xmMBbgVcylzmySmLGpcmOzsbNSlWMleCJ1WQoncmXHNteyynWu4aW2PLXIdrwmo8Vy4d4QWglZqVJLA953qkylnFYmV7GpJM_AiT0gLGituPVpVYqw3vC68FouUMuF1_IBkUG1ResaepevAED89cy3jz7zHXnWI_s9GYFW3QfwQGv9sYXNH4c0i9E
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+asymmetric+catalyst+design+with+electron-rich+Cu+sites+to+facilitate+full-spectrum+photo-Fenton-like+catalysis&rft.jtitle=Chem+catalysis&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Lan&rft.au=Wang%2C+Fu&rft.au=Xing%2C+Mingyang&rft.date=2025-06-19&rft.pub=Elsevier+Inc&rft.issn=2667-1093&rft.eissn=2667-1093&rft.volume=5&rft.issue=6&rft_id=info:doi/10.1016%2Fj.checat.2025.101358&rft.externalDocID=S266710932500096X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-1093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-1093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-1093&client=summon