Size effect of typical hygrothermal properties test values for building insulation materials
[Display omitted] Thermal and moisture properties of building insulation materials are crucial input parameters for analyzing thermal and moisture transfer phenomena in building environments. Accurate determination of these parameters under different conditions is essential for the correct applicati...
Saved in:
Published in | Energy and buildings Vol. 325; p. 115049 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Thermal and moisture properties of building insulation materials are crucial input parameters for analyzing thermal and moisture transfer phenomena in building environments. Accurate determination of these parameters under different conditions is essential for the correct application and assessment of materials and envelope structures. However, numerous factors influence thermal and moisture properties, and while extensive research has been conducted on this topic, the effects of specimen size on typical thermal and moisture property test values remain unclear. To address the issue of unreliable data caused by random specimen sizes in thermal and moisture property testing of building insulation materials, this study selects three materials—expanded polystyrene (EPS), extruded polystyrene (XPS), and foamed cement—as test subjects to explore the size effects on typical thermal and moisture property test values. The results indicate that specimen size significantly affects the test values for typical thermal and moisture properties, with only a few experiments showing negligible size effects for certain materials. For foamed cement, recommended specimen sizes for thermal conductivity testing using the guarded hot plate method and the transient plane source method are 300 × 300 × 30 mm and 50 × 50 × 30 mm, respectively. Except for equilibrium moisture absorption experiments, the weight of other moisture property tests is generally represented by thickness > planar dimensions. |
---|---|
AbstractList | [Display omitted]
Thermal and moisture properties of building insulation materials are crucial input parameters for analyzing thermal and moisture transfer phenomena in building environments. Accurate determination of these parameters under different conditions is essential for the correct application and assessment of materials and envelope structures. However, numerous factors influence thermal and moisture properties, and while extensive research has been conducted on this topic, the effects of specimen size on typical thermal and moisture property test values remain unclear. To address the issue of unreliable data caused by random specimen sizes in thermal and moisture property testing of building insulation materials, this study selects three materials—expanded polystyrene (EPS), extruded polystyrene (XPS), and foamed cement—as test subjects to explore the size effects on typical thermal and moisture property test values. The results indicate that specimen size significantly affects the test values for typical thermal and moisture properties, with only a few experiments showing negligible size effects for certain materials. For foamed cement, recommended specimen sizes for thermal conductivity testing using the guarded hot plate method and the transient plane source method are 300 × 300 × 30 mm and 50 × 50 × 30 mm, respectively. Except for equilibrium moisture absorption experiments, the weight of other moisture property tests is generally represented by thickness > planar dimensions. |
ArticleNumber | 115049 |
Author | Liu, Jiaping Zhou, Chengyan Yang, Wen Zhang, Guanjie Wen, Jun |
Author_xml | – sequence: 1 givenname: Wen surname: Yang fullname: Yang, Wen email: yangwen@xauat.edu.cn organization: State Key Laboratory of Green Building, Xi’an Univ. of Arch. & Techn., No. 13 Yanta Road, Xi’an 710055, China – sequence: 2 givenname: Guanjie surname: Zhang fullname: Zhang, Guanjie organization: School of Architecture, Xi’an Univ. of Arch. & Techn., No. 13 Yanta Road, Xi’an 710055, China – sequence: 3 givenname: Jun surname: Wen fullname: Wen, Jun organization: School of Architecture, Xi’an Univ. of Arch. & Techn., No. 13 Yanta Road, Xi’an 710055, China – sequence: 4 givenname: Chengyan surname: Zhou fullname: Zhou, Chengyan organization: School of Architecture, Xi’an Univ. of Arch. & Techn., No. 13 Yanta Road, Xi’an 710055, China – sequence: 5 givenname: Jiaping surname: Liu fullname: Liu, Jiaping organization: State Key Laboratory of Green Building, Xi’an Univ. of Arch. & Techn., No. 13 Yanta Road, Xi’an 710055, China |
BookMark | eNqFkM1qwzAQhHVIoUnaRyjoBexKtmQ7p1JC_yDQQ9tbQcirVaLgWEZSAunT12ly72l2DjM7fDMy6X2PhNxxlnPGq_ttjn27d53JC1aInHPJxGJCpqysm6yum-aazGLcMsYqWfMp-f5wP0jRWoREvaXpODjQHd0c18GnDYbdaIbgBwzJYaQJY6IH3e3H2_pA_365fk1dH_edTs73dKcTBqe7eEOu7Ch4e9E5-Xp--ly-Zqv3l7fl4yqDQtYpqzSIVuiKG1HIRd0wNBYYcN0uSmmENZIVGkouSw2mMLoxYCsroGQVtNo25ZzIcy8EH2NAq4bgdjocFWfqhEVt1QWLOmFRZyxj7uGcw3HcwWFQERz2gMaFkYcy3v3T8AtMjnWh |
Cites_doi | 10.1016/j.cemconres.2005.11.021 10.1016/j.jfoodeng.2004.05.014 10.1016/j.buildenv.2016.07.008 10.1016/j.buildenv.2018.02.038 10.1016/j.conbuildmat.2018.03.162 10.1016/j.cemconres.2006.06.010 10.1002/pen.760120308 10.1016/j.conbuildmat.2020.121074 10.2172/928611 10.1016/j.enbuild.2008.07.011 10.1016/j.jfoodeng.2004.11.021 10.1007/s10765-012-1215-z 10.1111/j.1600-0668.1998.t01-2-00003.x 10.1016/j.cemconcomp.2009.10.005 10.1016/j.matpr.2020.07.613 10.1016/j.energy.2019.115999 10.1021/nl201359q 10.1016/j.buildenv.2014.11.036 10.1177/1744259109351441 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.enbuild.2024.115049 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_enbuild_2024_115049 S0378778824011654 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SEW SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 R2- RPZ SAC SET SSH WUQ ZMT ZY4 |
ID | FETCH-LOGICAL-c257t-6ac4b4a61d4259780edfc0c1ab935d4fd502ac3153acd2da8dcf6f4c306cbaf83 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Sun Jul 06 05:02:37 EDT 2025 Sat Nov 23 15:54:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Weight analysis Typical hygrothermal properties Building insulation materials Data analysis methods Size effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-6ac4b4a61d4259780edfc0c1ab935d4fd502ac3153acd2da8dcf6f4c306cbaf83 |
ParticipantIDs | crossref_primary_10_1016_j_enbuild_2024_115049 elsevier_sciencedirect_doi_10_1016_j_enbuild_2024_115049 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-15 |
PublicationDateYYYYMMDD | 2024-12-15 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy and buildings |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ministry of housing and urban rural development of the people's Republic of China, GB/T 32064-2015, Determination of Thermal Conductivity and Thermal Diffusivity of Building Materials: Transient Plane Heat Source Test Method [S], China Standards Press, Beijing, 2015. Chi (b0030) 2014 Huang, Xue, Fan (b0275) 2019; 08 Ministry of housing and urban rural development of the people's Republic of China. GB/T 10294-2008, Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties of Thermal Insulation Materials-Guarded Hot Plate Apparatus [S]. China Standards Press, Beijing, 2008. Wu, Lai, Chen (b0270) 2017; 26 Hanˇziˇc, Kosec, Anˇzel (b0125) 2010; 32 (b0020) 1991 Wang, Wang (b0005) 1983; 02 Jamali, Kouhila, Ait (b0065) 2006; 72 D. Yifan, Research on Size Effect of Steel Fiber Reinforced Recycled Concrete Compression Performance [D]. Hunan University, 2020. Sun, Yan, Dong (b0010) 2017; 33 EN ISO 12572 (b0070) 2016 Cao (b0110) 2021 Ke (b0210) 2020 Pang, Liu, Mao (b0105) 2023; 26 L. yanjuan, S. lixin, Y. jingfen, Z. menglin, Z. songhao, Study on the influence of size effect in the capillary water absorption test of autoclaved aerated concrete [J], Build. Energy Efficiency 48 (09) (2020) 71–73+138. ISO-12571:2000(E). Hydrothermal Performance of Building Materials and Products - Determination of Hygroscopic Sorption Properties, International Standards Organization, Geneva, Switzerland 1-7[S], 2000. Xia, Chen, Wang (b0265) 2020; 41 Gomes, Flores-Colen, Da Silva (b0180) 2018; 172 Wenzhuo (b0195) 2021 Y. Xiaofeng (Ed.) China Building Materials Industry Yearbook [M], Editorial Board of China Building Materials Industry Yearbook, 2023. Feng, Janssen (b0190) 2018; 134 He, Donadio, Galli (b0255) 2011; 11 K.E. Wilkes, J.A. Atchley, P.W. Childs, Effect of drying protocols on measurement of sorption isotherms of gypsum building materials [C], In: International Conference on Performance of Exterior Envelopes of Whole Buildings IX, Principles Track, Clearwater Beach, Florida, 2004. Korpa, Trettin (b0165) 2006; 36 ISO 8302, Thermal Insulation - Determination of Steady-State Thermal Resistance and Related Properties - Guarded Hot Plate Apparatus First Edition [S], 1991. Hansen, Bernier (b0185) 1972; 12 R. Peuhkuri, C. Rode, K.K. Hansen, Effect of method, step size and drying temperature on sorption isotherms [C]. In: Proceedings of the 7th Nordic Symposium on Building Physics, Reykjavik, 2005. (b0015) 2000 ASTM C1699-09, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates[S], 2009. Fang, Clausen, Fanger (b0250) 1998; 8 Feng, Janssen, Feng, Meng (b0135) 2015; 85 ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-cement Concretes, 2013. Lei, Hanyu, Zhang (b0220) 2021; 37 Swami, Das, Maiti (b0060) 2005; 67 Richards, Burch, Thomas (b0155) 1992; 98 Espinosa, Franke (b0170) 2006; 36 Yang (b0025) 2003 Abuku, Janssen, Roels (b0245) 2009; 41 Geving, Holme (b0240) 2010; 33 ISO-22007-2, Plastics-Determination of Thermal Conductivity and Thermal Diffusivity -Part 2: Transient Plane Heat Source (Hot Disc) Method [S], 2008. Abdullah (b0085) 2021; 46 Wang (b0120) 2023 Dell’Isola, D’Ambrosio Alfano, Giovinco (b0175) 2012; 33 Karagiannis, Karoglou, Bakolas, Moropoulou (b0130) 2016; 106 Siyang (b0205) 2016 Yang, Wang, Liu (b0225) 2018; 50 ASTM C177-19, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[S], 2019. Zhang (b0100) 2023 WenYang, Liu (b0035) 2022; 332 ISO15148: 2002, Hygrothermal Performance of Building Materials and Products, Determination of Water Vapour Transmission Properties [S], 2002. S. Wilcox, W. Marion, Users Manual for TMY3 Datasets Revised) [R], No. NREL/TP-581-43156, 2008. Montgomery (b0145) 2008 Wang, Huang, Wang (b0115) 2019; 188 Zhang, Li, Abdelhady (b0090) 2021; 266 (10.1016/j.enbuild.2024.115049_b0020) 1991 Gomes (10.1016/j.enbuild.2024.115049_b0180) 2018; 172 Chi (10.1016/j.enbuild.2024.115049_b0030) 2014 Xia (10.1016/j.enbuild.2024.115049_b0265) 2020; 41 Dell’Isola (10.1016/j.enbuild.2024.115049_b0175) 2012; 33 Abuku (10.1016/j.enbuild.2024.115049_b0245) 2009; 41 Richards (10.1016/j.enbuild.2024.115049_b0155) 1992; 98 Ke (10.1016/j.enbuild.2024.115049_b0210) 2020 EN ISO 12572 (10.1016/j.enbuild.2024.115049_b0070) 2016 Hansen (10.1016/j.enbuild.2024.115049_b0185) 1972; 12 Cao (10.1016/j.enbuild.2024.115049_b0110) 2021 He (10.1016/j.enbuild.2024.115049_b0255) 2011; 11 WenYang (10.1016/j.enbuild.2024.115049_b0035) 2022; 332 10.1016/j.enbuild.2024.115049_b0140 10.1016/j.enbuild.2024.115049_b0260 Lei (10.1016/j.enbuild.2024.115049_b0220) 2021; 37 Jamali (10.1016/j.enbuild.2024.115049_b0065) 2006; 72 Abdullah (10.1016/j.enbuild.2024.115049_b0085) 2021; 46 Feng (10.1016/j.enbuild.2024.115049_b0190) 2018; 134 Montgomery (10.1016/j.enbuild.2024.115049_b0145) 2008 10.1016/j.enbuild.2024.115049_b0055 10.1016/j.enbuild.2024.115049_b0215 Siyang (10.1016/j.enbuild.2024.115049_b0205) 2016 10.1016/j.enbuild.2024.115049_b0050 Yang (10.1016/j.enbuild.2024.115049_b0225) 2018; 50 Wenzhuo (10.1016/j.enbuild.2024.115049_b0195) 2021 10.1016/j.enbuild.2024.115049_b0095 Yang (10.1016/j.enbuild.2024.115049_b0025) 2003 Espinosa (10.1016/j.enbuild.2024.115049_b0170) 2006; 36 Wu (10.1016/j.enbuild.2024.115049_b0270) 2017; 26 (10.1016/j.enbuild.2024.115049_b0015) 2000 Zhang (10.1016/j.enbuild.2024.115049_b0100) 2023 Geving (10.1016/j.enbuild.2024.115049_b0240) 2010; 33 10.1016/j.enbuild.2024.115049_b0200 10.1016/j.enbuild.2024.115049_b0045 Korpa (10.1016/j.enbuild.2024.115049_b0165) 2006; 36 Karagiannis (10.1016/j.enbuild.2024.115049_b0130) 2016; 106 10.1016/j.enbuild.2024.115049_b0160 Sun (10.1016/j.enbuild.2024.115049_b0010) 2017; 33 Swami (10.1016/j.enbuild.2024.115049_b0060) 2005; 67 10.1016/j.enbuild.2024.115049_b0080 Pang (10.1016/j.enbuild.2024.115049_b0105) 2023; 26 10.1016/j.enbuild.2024.115049_b0040 Zhang (10.1016/j.enbuild.2024.115049_b0090) 2021; 266 Wang (10.1016/j.enbuild.2024.115049_b0115) 2019; 188 Hanˇziˇc (10.1016/j.enbuild.2024.115049_b0125) 2010; 32 Feng (10.1016/j.enbuild.2024.115049_b0135) 2015; 85 10.1016/j.enbuild.2024.115049_b0235 Huang (10.1016/j.enbuild.2024.115049_b0275) 2019; 08 Wang (10.1016/j.enbuild.2024.115049_b0120) 2023 Wang (10.1016/j.enbuild.2024.115049_b0005) 1983; 02 10.1016/j.enbuild.2024.115049_b0230 10.1016/j.enbuild.2024.115049_b0075 10.1016/j.enbuild.2024.115049_b0150 Fang (10.1016/j.enbuild.2024.115049_b0250) 1998; 8 |
References_xml | – year: 2008 ident: b0145 article-title: Design and Analysis of Experiments – volume: 33 start-page: 163 year: 2017 end-page: 167 ident: b0010 article-title: Determination and method of environmental factors affecting thermal conductivity of building thermal insulation materials [J] publication-title: Build. Sci. – year: 2020 ident: b0210 article-title: Study on Test Method of Capillary Water Absorption Coefficient of Porous Building Materials [D] – volume: 8 start-page: 80 year: 1998 end-page: 90 ident: b0250 article-title: Impact of temperature and humidity on the perception of indoor air quality [J] publication-title: Indoor Air – year: 2016 ident: b0070 article-title: Hygrothermal Performance of Building Materials and Products - Determination of Water Vapour Transmission Properties – reference: L. yanjuan, S. lixin, Y. jingfen, Z. menglin, Z. songhao, Study on the influence of size effect in the capillary water absorption test of autoclaved aerated concrete [J], Build. Energy Efficiency 48 (09) (2020) 71–73+138. – volume: 266 year: 2021 ident: b0090 article-title: Effects of specimen shape and size on the permeability and mechanical properties of porous concrete[J] publication-title: Constr. Build. Mater. – reference: K.E. Wilkes, J.A. Atchley, P.W. Childs, Effect of drying protocols on measurement of sorption isotherms of gypsum building materials [C], In: International Conference on Performance of Exterior Envelopes of Whole Buildings IX, Principles Track, Clearwater Beach, Florida, 2004. – reference: ISO15148: 2002, Hygrothermal Performance of Building Materials and Products, Determination of Water Vapour Transmission Properties [S], 2002. – year: 2000 ident: b0015 publication-title: Architectural Physics [M] – year: 2021 ident: b0195 article-title: Study on the Influence of Specimen Size and Test Conditions on the Capillary Water Absorption Coefficient of Porous Building Materials [D] – reference: ISO-12571:2000(E). Hydrothermal Performance of Building Materials and Products - Determination of Hygroscopic Sorption Properties, International Standards Organization, Geneva, Switzerland 1-7[S], 2000. – volume: 26 start-page: 119 year: 2017 end-page: 129 ident: b0270 article-title: Landslide risk assessment based on random forest weight: a case study of Dongjiang River Basin [J] publication-title: J. Nat. Disast. – volume: 32 start-page: 84 year: 2010 end-page: 91 ident: b0125 article-title: Capillary absorption in concrete and the Lucas-Washburn Equation [J] publication-title: Cem. Concr. Compos. – year: 2023 ident: b0120 article-title: Preparation and Performance Study of Para-Aramid Aerogels for Thermal Protection [D] – volume: 172 start-page: 696 year: 2018 end-page: 705 ident: b0180 article-title: Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods[J] publication-title: Constr. Build. Mater. – volume: 08 year: 2019 ident: b0275 article-title: Sand liquefaction prediction model based on random forest [J] publication-title: China Rural Water Conserv. Hydropower – volume: 72 start-page: 77 year: 2006 end-page: 84 ident: b0065 article-title: Sorption isotherms of Chenopodium ambrosioides leaves at three temperatures [J] publication-title: J. Food Eng. – year: 2023 ident: b0100 article-title: Research on the Preparation and Properties of Autoclaved Aerated Concrete from Copper Tailings [D] – volume: 98 start-page: 475 year: 1992 end-page: 485 ident: b0155 article-title: Water vapor sorption measurements of common building materials [J] publication-title: Trans. – Am. Soc. Heat. Refrigerat. Air Condition. Eng. – reference: S. Wilcox, W. Marion, Users Manual for TMY3 Datasets Revised) [R], No. NREL/TP-581-43156, 2008. – volume: 02 start-page: 146 year: 1983 end-page: 152 ident: b0005 article-title: Thermal conductivity of wet building materials [J] publication-title: J. Eng. Thermophys. – volume: 36 start-page: 1969 year: 2006 end-page: 1984 ident: b0170 article-title: Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste [J] publication-title: Cem. Concr. Res. – reference: Ministry of housing and urban rural development of the people's Republic of China, GB/T 32064-2015, Determination of Thermal Conductivity and Thermal Diffusivity of Building Materials: Transient Plane Heat Source Test Method [S], China Standards Press, Beijing, 2015. – year: 2021 ident: b0110 article-title: Study on the Hygrothermal Properties and Applications of Novel Cork Cement Mortar [D] – volume: 134 start-page: 21 year: 2018 end-page: 34 ident: b0190 article-title: Hygric properties of porous building materials (III): impact factors and data processing methods of the capillary absorption test[J] publication-title: Build. Environ. – volume: 188 year: 2019 ident: b0115 article-title: Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment [J] publication-title: Energy – volume: 33 start-page: 1674 year: 2012 end-page: 1685 ident: b0175 article-title: Experimental analysis of thermal conductivity for building materials depending on moisture content[J] publication-title: Int. J. Thermophys. – volume: 106 start-page: 402 year: 2016 end-page: 408 ident: b0130 article-title: Effect of temperature onwater capillary rise coefficient of building materials publication-title: Build. Environ. – reference: ASTM C1699-09, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates[S], 2009. – year: 2003 ident: b0025 article-title: Building Climate Analysis and Design Strategy Research [D] – reference: ISO 8302, Thermal Insulation - Determination of Steady-State Thermal Resistance and Related Properties - Guarded Hot Plate Apparatus First Edition [S], 1991. – volume: 11 start-page: 3608 year: 2011 end-page: 3611 ident: b0255 article-title: Morphology and temperature dependence of the thermal conductivity of nanoporous SiGe [J] publication-title: Nano Lett. – volume: 41 start-page: 2057 year: 2020 end-page: 2065 ident: b0265 article-title: Analysis of influencing factors of PM2.5 concentration in China based on random forest model [J] publication-title: Environ. Sci. – volume: 85 start-page: 160 year: 2015 end-page: 172 ident: b0135 article-title: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility[J] publication-title: Build. Environ. – volume: 41 start-page: 101 year: 2009 end-page: 110 ident: b0245 article-title: Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: numerical analyses of mould growth risk, indoor climate and energy consumption [J] publication-title: Energ. Buildings – year: 2014 ident: b0030 article-title: Study on the Test Method of Wet Physical Properties of Porous Building Materials [D] – reference: ASTM C177-19, Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[S], 2019. – year: 1991 ident: b0020 publication-title: Fundamentals of Building Thermophysics [M] – volume: 26 start-page: 853 year: 2023 end-page: 861 ident: b0105 article-title: Application and temperature control technology of functional lightweight aggregates in mass concrete [J] publication-title: J. Build. Mater. – volume: 33 start-page: 249 year: 2010 end-page: 269 ident: b0240 article-title: The drying potential and risk for mold growth in compact wood frame roofs with built-in moisture [J] publication-title: J. Build. Phys. – reference: ISO-22007-2, Plastics-Determination of Thermal Conductivity and Thermal Diffusivity -Part 2: Transient Plane Heat Source (Hot Disc) Method [S], 2008. – reference: ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-cement Concretes, 2013. – volume: 50 start-page: 57 year: 2018 end-page: 64 ident: b0225 article-title: Review of thermal conductivity measurement by protected hot plate method [J] publication-title: J. Xi'an Univ. Architect. Technol. (Nat. Sci. Ed.) – volume: 46 start-page: 1783 year: 2021 end-page: 1786 ident: b0085 article-title: Effects of specimen sizes and loading rates on compressive strength of concrete[J] publication-title: Mater. Today Proc. – reference: Ministry of housing and urban rural development of the people's Republic of China. GB/T 10294-2008, Thermal Insulation-Determination of Steady-State Thermal Resistance and Related Properties of Thermal Insulation Materials-Guarded Hot Plate Apparatus [S]. China Standards Press, Beijing, 2008. – volume: 67 start-page: 477 year: 2005 end-page: 482 ident: b0060 article-title: Moisture sorption isotherms of black gram nuggets (bori) at varied temperatures [J] publication-title: J. Food Eng. – year: 2016 ident: b0205 article-title: Research on Transient Measurement Method of Water Vapor Effective Diffusion Coefficient of Porous Building Materials for Building Energy Conservation [D] – volume: 332 year: 2022 ident: b0035 article-title: Optimization of the thermal conductivity test for building insulation materials under multifactor impact [J] publication-title: Constr. Build. Mater. – volume: 12 start-page: 204 year: 1972 end-page: 208 ident: b0185 article-title: Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity[J] publication-title: Polym. Eng. Sci. – reference: Y. Xiaofeng (Ed.) China Building Materials Industry Yearbook [M], Editorial Board of China Building Materials Industry Yearbook, 2023. – reference: R. Peuhkuri, C. Rode, K.K. Hansen, Effect of method, step size and drying temperature on sorption isotherms [C]. In: Proceedings of the 7th Nordic Symposium on Building Physics, Reykjavik, 2005. – volume: 36 start-page: 634 year: 2006 end-page: 649 ident: b0165 article-title: The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods [J] publication-title: Cem. Concr. Res. – reference: D. Yifan, Research on Size Effect of Steel Fiber Reinforced Recycled Concrete Compression Performance [D]. Hunan University, 2020. – volume: 37 year: 2021 ident: b0220 article-title: Review of testing methods and status quo of thermal and wet physical properties of porous building materials [J] publication-title: Build. Sci. – year: 2000 ident: 10.1016/j.enbuild.2024.115049_b0015 – volume: 332 year: 2022 ident: 10.1016/j.enbuild.2024.115049_b0035 article-title: Optimization of the thermal conductivity test for building insulation materials under multifactor impact [J] publication-title: Constr. Build. Mater. – ident: 10.1016/j.enbuild.2024.115049_b0075 – volume: 36 start-page: 634 issue: 4 year: 2006 ident: 10.1016/j.enbuild.2024.115049_b0165 article-title: The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods [J] publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2005.11.021 – year: 2020 ident: 10.1016/j.enbuild.2024.115049_b0210 – volume: 67 start-page: 477 issue: 4 year: 2005 ident: 10.1016/j.enbuild.2024.115049_b0060 article-title: Moisture sorption isotherms of black gram nuggets (bori) at varied temperatures [J] publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2004.05.014 – year: 2014 ident: 10.1016/j.enbuild.2024.115049_b0030 – volume: 106 start-page: 402 year: 2016 ident: 10.1016/j.enbuild.2024.115049_b0130 article-title: Effect of temperature onwater capillary rise coefficient of building materials publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.07.008 – volume: 134 start-page: 21 year: 2018 ident: 10.1016/j.enbuild.2024.115049_b0190 article-title: Hygric properties of porous building materials (III): impact factors and data processing methods of the capillary absorption test[J] publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.02.038 – volume: 172 start-page: 696 year: 2018 ident: 10.1016/j.enbuild.2024.115049_b0180 article-title: Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.03.162 – volume: 36 start-page: 1969 issue: 10 year: 2006 ident: 10.1016/j.enbuild.2024.115049_b0170 article-title: Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste [J] publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2006.06.010 – volume: 12 start-page: 204 issue: 3 year: 1972 ident: 10.1016/j.enbuild.2024.115049_b0185 article-title: Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity[J] publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760120308 – year: 2023 ident: 10.1016/j.enbuild.2024.115049_b0100 – volume: 266 year: 2021 ident: 10.1016/j.enbuild.2024.115049_b0090 article-title: Effects of specimen shape and size on the permeability and mechanical properties of porous concrete[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121074 – ident: 10.1016/j.enbuild.2024.115049_b0055 – volume: 98 start-page: 475 year: 1992 ident: 10.1016/j.enbuild.2024.115049_b0155 article-title: Water vapor sorption measurements of common building materials [J] publication-title: Trans. – Am. Soc. Heat. Refrigerat. Air Condition. Eng. – ident: 10.1016/j.enbuild.2024.115049_b0200 – ident: 10.1016/j.enbuild.2024.115049_b0260 doi: 10.2172/928611 – ident: 10.1016/j.enbuild.2024.115049_b0040 – volume: 41 start-page: 101 issue: 1 year: 2009 ident: 10.1016/j.enbuild.2024.115049_b0245 article-title: Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: numerical analyses of mould growth risk, indoor climate and energy consumption [J] publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2008.07.011 – volume: 08 year: 2019 ident: 10.1016/j.enbuild.2024.115049_b0275 article-title: Sand liquefaction prediction model based on random forest [J] publication-title: China Rural Water Conserv. Hydropower – volume: 26 start-page: 119 issue: 05 year: 2017 ident: 10.1016/j.enbuild.2024.115049_b0270 article-title: Landslide risk assessment based on random forest weight: a case study of Dongjiang River Basin [J] publication-title: J. Nat. Disast. – ident: 10.1016/j.enbuild.2024.115049_b0235 – volume: 72 start-page: 77 issue: 1 year: 2006 ident: 10.1016/j.enbuild.2024.115049_b0065 article-title: Sorption isotherms of Chenopodium ambrosioides leaves at three temperatures [J] publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2004.11.021 – ident: 10.1016/j.enbuild.2024.115049_b0160 – volume: 37 issue: 02 year: 2021 ident: 10.1016/j.enbuild.2024.115049_b0220 article-title: Review of testing methods and status quo of thermal and wet physical properties of porous building materials [J] publication-title: Build. Sci. – ident: 10.1016/j.enbuild.2024.115049_b0140 – year: 2008 ident: 10.1016/j.enbuild.2024.115049_b0145 – year: 2023 ident: 10.1016/j.enbuild.2024.115049_b0120 – volume: 33 start-page: 1674 year: 2012 ident: 10.1016/j.enbuild.2024.115049_b0175 article-title: Experimental analysis of thermal conductivity for building materials depending on moisture content[J] publication-title: Int. J. Thermophys. doi: 10.1007/s10765-012-1215-z – volume: 8 start-page: 80 issue: 2 year: 1998 ident: 10.1016/j.enbuild.2024.115049_b0250 article-title: Impact of temperature and humidity on the perception of indoor air quality [J] publication-title: Indoor Air doi: 10.1111/j.1600-0668.1998.t01-2-00003.x – volume: 32 start-page: 84 issue: 1 year: 2010 ident: 10.1016/j.enbuild.2024.115049_b0125 article-title: Capillary absorption in concrete and the Lucas-Washburn Equation [J] publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.10.005 – ident: 10.1016/j.enbuild.2024.115049_b0150 – volume: 46 start-page: 1783 year: 2021 ident: 10.1016/j.enbuild.2024.115049_b0085 article-title: Effects of specimen sizes and loading rates on compressive strength of concrete[J] publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.07.613 – ident: 10.1016/j.enbuild.2024.115049_b0045 – volume: 188 year: 2019 ident: 10.1016/j.enbuild.2024.115049_b0115 article-title: Experimental investigation on thermal conductivity of aerogel-incorporated concrete under various hygrothermal environment [J] publication-title: Energy doi: 10.1016/j.energy.2019.115999 – year: 2003 ident: 10.1016/j.enbuild.2024.115049_b0025 – ident: 10.1016/j.enbuild.2024.115049_b0230 – ident: 10.1016/j.enbuild.2024.115049_b0215 – ident: 10.1016/j.enbuild.2024.115049_b0050 – year: 2021 ident: 10.1016/j.enbuild.2024.115049_b0110 – volume: 02 start-page: 146 year: 1983 ident: 10.1016/j.enbuild.2024.115049_b0005 article-title: Thermal conductivity of wet building materials [J] publication-title: J. Eng. Thermophys. – ident: 10.1016/j.enbuild.2024.115049_b0080 – volume: 41 start-page: 2057 issue: 5 year: 2020 ident: 10.1016/j.enbuild.2024.115049_b0265 article-title: Analysis of influencing factors of PM2.5 concentration in China based on random forest model [J] publication-title: Environ. Sci. – year: 2016 ident: 10.1016/j.enbuild.2024.115049_b0070 – volume: 11 start-page: 3608 issue: 9 year: 2011 ident: 10.1016/j.enbuild.2024.115049_b0255 article-title: Morphology and temperature dependence of the thermal conductivity of nanoporous SiGe [J] publication-title: Nano Lett. doi: 10.1021/nl201359q – volume: 85 start-page: 160 year: 2015 ident: 10.1016/j.enbuild.2024.115049_b0135 article-title: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility[J] publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.11.036 – year: 2016 ident: 10.1016/j.enbuild.2024.115049_b0205 – volume: 50 start-page: 57 issue: 01 year: 2018 ident: 10.1016/j.enbuild.2024.115049_b0225 article-title: Review of thermal conductivity measurement by protected hot plate method [J] publication-title: J. Xi'an Univ. Architect. Technol. (Nat. Sci. Ed.) – year: 2021 ident: 10.1016/j.enbuild.2024.115049_b0195 – volume: 33 start-page: 249 issue: 3 year: 2010 ident: 10.1016/j.enbuild.2024.115049_b0240 article-title: The drying potential and risk for mold growth in compact wood frame roofs with built-in moisture [J] publication-title: J. Build. Phys. doi: 10.1177/1744259109351441 – ident: 10.1016/j.enbuild.2024.115049_b0095 – volume: 26 start-page: 853 issue: 08 year: 2023 ident: 10.1016/j.enbuild.2024.115049_b0105 article-title: Application and temperature control technology of functional lightweight aggregates in mass concrete [J] publication-title: J. Build. Mater. – volume: 33 start-page: 163 issue: 08 year: 2017 ident: 10.1016/j.enbuild.2024.115049_b0010 article-title: Determination and method of environmental factors affecting thermal conductivity of building thermal insulation materials [J] publication-title: Build. Sci. – year: 1991 ident: 10.1016/j.enbuild.2024.115049_b0020 |
SSID | ssj0006571 |
Score | 2.4456427 |
Snippet | [Display omitted]
Thermal and moisture properties of building insulation materials are crucial input parameters for analyzing thermal and moisture transfer... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 115049 |
SubjectTerms | Building insulation materials Data analysis methods Size effect Typical hygrothermal properties Weight analysis |
Title | Size effect of typical hygrothermal properties test values for building insulation materials |
URI | https://dx.doi.org/10.1016/j.enbuild.2024.115049 |
Volume | 325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxGA2lXvQgrliXkoPXzHQmySzHUix1K2It9CAMWSbaou1QxkM9-NvNNwutIB48zUICw8uXLy_D-14QujRaxF6axkRTxQjzJSci5JxwxnzthTo0ERQK3w-DwZjdTPikgXp1LQzIKqvcX-b0IltXb9wKTTebTt1Rh9pgszs4uyaBhwx4gjIWQpQ7X2uZR8CLTRc0JtB6XcXjzhywF5i-gWGozxzgRmCp-dv6tLHm9PfQbkUWcbf8nn3USOcHaGfDQvAQPY-mnykuVRl4YXC-ygB2_Lp6WRbFVe_2IYM_7kuwTsWWWeYYHL7tveWrWFbHYuNClF4ME7YktozLIzTuXz31BqQ6MYEoO_VyEgjFJBOBp-1UBG-hVBvVUZ6QMeWaGc07vlDUZjmhtK9FpJUJDFN236CkMBE9Rs35Yp6eIEx5AAJTO45SMSoioWNL7ULJqBKxiWULOTVOSVYaYyS1YmyWVMAmAGxSAttCUY1m8mOEE5u8_-56-v-uZ2gbnkCA4vFz1MyXH-mFpRG5bBdx0kZb3d7j3QNcr28Hw2-hGcxr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevpbTdLe2REAnK4wIkHEyafXS1RKEh9YC_3p22KCbGg7e-Nmm-mZ39ZjPzLcCdVjx04ji0lCepRV3BLN5izGKUusppqZYOsFF4OPJ7U_o4Y7MKdDa9MFhWWcb-Iqbn0bp8Ypdo2mmS2OOmZ5zNZHBmTUINGboDNVSnYlWotR_6vdFXQPZZnnfh9xYO-G7ksecNVBhIXlEz1KUNpEeoqvnbErW17HQP4aDki6Rd_NIRVOLFMexvqQiewNM4-YhJUZhBlppk6xSRJy_r51XeX_VmblLcdF-heiox5DIjKPJtrg1lJaI8GZvkdem5pYjhsYVrnsK0ez_p9Kzy0ARLmtmXWT6XVFDuO8rMRpQXipWWTelwEXpMUa1Y0-XSM4GOS-UqHiipfU2lSR2k4DrwzqC6WC7icyAe87HG1JhSSOrxgKvQsLuWoJ7koQ5FHRobnKK00MaINkVj86gENkJgowLYOgQbNKMfRo5M_P576MX_h97Cbm8yHESDh1H_EvbwDdajOOwKqtnqPb42rCITN6XXfAJDpc2H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+effect+of+typical+hygrothermal+properties+test+values+for+building+insulation+materials&rft.jtitle=Energy+and+buildings&rft.au=Yang%2C+Wen&rft.au=Zhang%2C+Guanjie&rft.au=Wen%2C+Jun&rft.au=Zhou%2C+Chengyan&rft.date=2024-12-15&rft.issn=0378-7788&rft.volume=325&rft.spage=115049&rft_id=info:doi/10.1016%2Fj.enbuild.2024.115049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2024_115049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |