Exploring the atmospheric and ecological impacts of a major dust storm: Insights from WRF–Chem simulations
•A severe dust event was simulated by the WRF–Chem model.•Dust aerosols generally had a negative impact on GPP.•Dust aerosols reduced GPP exceeding 10% in some areas.•Changes in GPP were caused by interactions among various factors. Sand and dust storm (SDS) is disastrous weather phenomenon on a glo...
Saved in:
Published in | Aeolian research Vol. 73; p. 100977 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A severe dust event was simulated by the WRF–Chem model.•Dust aerosols generally had a negative impact on GPP.•Dust aerosols reduced GPP exceeding 10% in some areas.•Changes in GPP were caused by interactions among various factors.
Sand and dust storm (SDS) is disastrous weather phenomenon on a global scale. Previous studies have demonstrated that SDS significantly affects weather, air quality, and human health. However, the interaction between SDS and ecological systems has previously been underexplored. In this study, we aim to elucidate the impact mechanisms of SDS on vegetation dynamics. We employed Weather Research and Forecast (WRF) model with Chemistry (WRF–Chem) to investigate the severe SDS in East Asia in May 2017. Our results reveal that the WRF–Chem model reasonably reproduced the large scale eastward movement of the SDS caused by the Mongolia cyclone in multiple aspects. SDS decreased downward shortwave (SW) radiation at surface (DSWS) and increased longwave radiation at the surface, causing non-uniform spatiotemporal changes in skin temperature (SKT) determined by the local surface energy balance. Crucially, SDS detrimentally impacted gross primary production (GPP) during the critical germination phases, with reductions in GPP exceeding 10% in certain areas. The total reductions were −20.17 kt, −81.55 kt, and −218.88 kt, respectively for May 2, 3, and 4 over the domain. Changes in GPP were attributed to variations in SKT and DSWS, as determined by calculating the partial correlation coefficients (PCC). The sensitivity, magnitude, and direction of GPP variation due to SKT and DSWS were influenced by altitude, which inherently affects radiation levels. These variations were further modulated by local conditions, including moisture availability. Our study illuminates the interaction between SDS and ecological systems, a subject that has been poorly understood. |
---|---|
AbstractList | •A severe dust event was simulated by the WRF–Chem model.•Dust aerosols generally had a negative impact on GPP.•Dust aerosols reduced GPP exceeding 10% in some areas.•Changes in GPP were caused by interactions among various factors.
Sand and dust storm (SDS) is disastrous weather phenomenon on a global scale. Previous studies have demonstrated that SDS significantly affects weather, air quality, and human health. However, the interaction between SDS and ecological systems has previously been underexplored. In this study, we aim to elucidate the impact mechanisms of SDS on vegetation dynamics. We employed Weather Research and Forecast (WRF) model with Chemistry (WRF–Chem) to investigate the severe SDS in East Asia in May 2017. Our results reveal that the WRF–Chem model reasonably reproduced the large scale eastward movement of the SDS caused by the Mongolia cyclone in multiple aspects. SDS decreased downward shortwave (SW) radiation at surface (DSWS) and increased longwave radiation at the surface, causing non-uniform spatiotemporal changes in skin temperature (SKT) determined by the local surface energy balance. Crucially, SDS detrimentally impacted gross primary production (GPP) during the critical germination phases, with reductions in GPP exceeding 10% in certain areas. The total reductions were −20.17 kt, −81.55 kt, and −218.88 kt, respectively for May 2, 3, and 4 over the domain. Changes in GPP were attributed to variations in SKT and DSWS, as determined by calculating the partial correlation coefficients (PCC). The sensitivity, magnitude, and direction of GPP variation due to SKT and DSWS were influenced by altitude, which inherently affects radiation levels. These variations were further modulated by local conditions, including moisture availability. Our study illuminates the interaction between SDS and ecological systems, a subject that has been poorly understood. |
ArticleNumber | 100977 |
Author | Yang, Hongwei Fu, Wenxuan |
Author_xml | – sequence: 1 givenname: Hongwei orcidid: 0000-0003-4009-5887 surname: Yang fullname: Yang, Hongwei email: hyangimu@163.com – sequence: 2 givenname: Wenxuan surname: Fu fullname: Fu, Wenxuan |
BookMark | eNp9kMFKxDAYhHNYwd3VN_CQF-iapk3TehBk2dWFBUEUjyGmf7YpTVOSrOjNd_ANfRK71LOngRlmGL4FmvWuB4SuUrJKSVpctysJrjNyRQllo0UqzmdonpacJVWR8XO0CKElhBOSpXPUbT6GznnTH3BsAMtoXRga8EZh2dcYlOvcwSjZYWMHqWLATmOJrWydx_UxRByi8_YG7_pgDs2Ya-8sfn3a_nx9rxuwOBh77GQ0rg8X6EzLLsDlny7Ry3bzvH5I9o_3u_XdPlGU8ZgUJdNU8UoWtJC1zvmbzquclkA40FQVSkqmZFWPKctoTiumSFERRTPGSg0qW6J82lXeheBBi8EbK_2nSIk4URKtmCiJEyUxURprt1MNxm_vBrwIykCvoDYeVBS1M_8P_AID4XiP |
Cites_doi | 10.1029/1999JD900169 10.1016/j.atmosres.2024.107282 10.5194/gmd-3-43-2010 10.1002/2015GL067589 10.3389/frwa.2022.925852 10.1007/s004420100760 10.1002/2015JD023096 10.1029/2008JD011249 10.1029/2008JD009944 10.1016/j.geomorph.2006.07.028 10.3390/atmos12030339 10.3390/jrfm14070326 10.1016/j.scitotenv.2011.06.026 10.1016/j.atmosres.2016.12.008 10.1016/j.agrformet.2019.107815 10.2151/jmsj.2015-001 10.1016/j.uclim.2022.101202 10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2 10.1007/s10661-022-10775-5 10.1080/17538940903506006 10.1175/BAMS-D-21-0014.1 10.5194/acp-6-3181-2006 10.1002/qj.3803 10.1016/j.scitotenv.2020.140361 10.1029/2000JD900788 10.1007/s10546-005-9030-8 10.1175/jhm-d-17-0205.1 10.1016/j.rse.2015.08.033 10.1029/2002GL015311 10.5194/gmd-13-2125-2020 10.2113/gselements.6.4.247 10.5194/acp-15-199-2015 10.1093/nsr/nwab165 10.5194/acp-19-1301-2019 10.1016/j.scitotenv.2020.139791 10.1016/j.apr.2023.101874 10.5194/acp-15-11411-2015 10.1029/2000JD000053 10.5194/gmd-5-369-2012 10.3390/atmos12010125 10.1029/2003JD004372 10.1016/j.scitotenv.2017.02.028 10.5194/essd-14-1063-2022 10.1175/2008MWR2556.1 10.1016/j.atmosenv.2022.119297 10.1016/j.atmosenv.2018.05.005 10.1175/JCLI-D-16-0613.1 10.1016/j.atmosenv.2017.08.051 10.1016/j.atmosenv.2023.119794 10.1002/2015JD023446 10.1016/j.asr.2019.04.026 10.1175/JCLI-D-16-0609.1 10.1016/S0921-8181(03)00028-6 10.3390/atmos12101350 10.1016/j.atmosenv.2011.05.065 10.1016/j.gloplacha.2006.02.011 10.1016/j.atmosenv.2019.04.017 10.1007/s11783-017-0904-z 10.1016/j.uclim.2023.101534 10.1029/2010JD014649 10.1029/95JD00690 10.1016/j.atmosenv.2015.11.004 10.5194/acp-8-545-2008 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 10.1016/j.gloplacha.2006.02.002 10.1071/PP9920519 10.1007/s40333-021-0005-5 10.1017/9781009157896 10.3390/rs10101595 10.1016/0168-1923(91)90002-8 10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2 10.1016/j.jag.2019.05.009 10.5194/acp-14-6523-2014 10.1029/2010JD015139 10.1016/j.scitotenv.2020.138878 10.1007/s11430-022-1052-1 10.1360/TB-2023-0311 10.1016/j.atmosenv.2017.03.045 10.5194/acp-18-8353-2018 10.3390/atmos10030135 10.1016/j.quaint.2015.12.103 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aeolia.2025.100977 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
ExternalDocumentID | 10_1016_j_aeolia_2025_100977 S1875963725000187 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BKOJK BLXMC BNPGV EBS EFJIC EJD EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IMUCA J1W KOM M41 MO0 N9A O-L O9- OAUVE OKI OZT P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSE SSH SSZ T5K ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c257t-685f2c79a626adf47bf49428e07e21c6caa5ca9d26a5324295c0690c23558fec3 |
IEDL.DBID | .~1 |
ISSN | 1875-9637 |
IngestDate | Thu Jul 03 08:37:30 EDT 2025 Sat Jul 05 17:10:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | WRF–Chem Dust aerosol GPP Ecological effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c257t-685f2c79a626adf47bf49428e07e21c6caa5ca9d26a5324295c0690c23558fec3 |
ORCID | 0000-0003-4009-5887 |
ParticipantIDs | crossref_primary_10_1016_j_aeolia_2025_100977 elsevier_sciencedirect_doi_10_1016_j_aeolia_2025_100977 |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Aeolian research |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sellers, Randall, Collatz, Berry, Field, Dazlich, Zhang, Collelo, Bounoua (b0345) 1996; 9 Sternberg, Tsolmon, Middleton, Thomas (b0395) 2011; 4 Sharma, Zhang, Anshika, J., Zhang, H., Kota, S.H. (b0365) 2020; 728 Wang, Zhao, Gerlein-Safdi, Mu, Wang, Lu (b0425) 2017; 11 Jiao, Wang, Cai, Hua (b0205) 2021; 13 Randles, da Silva, Buchard, Colarco, Darmenov, Govindaraju, Smirnov, Holben, Ferrare, Hair, Shinozuka, Flynn (b0330) 2017; 30 Kedia, Kumar, Islam, Sathe, Kaginalkar (b0220) 2018; 185 Shao, Dong (b0350) 2006; 52 Zhang, Sharratt, Lei, J.–Q., Wu, C.–L., Zhang, J., Zhao, C., Wang, Z.–F., Wu, S.–X., Li, S.–Y., Liu, L.–Y., Huang, S.–Y., Guo, Y.–H., Mao, R., Li, J., Tang, X., Hao, J.–Q. (b0470) 2019; 209 Nakanishi, Niino (b0295) 2006; 119 Iacono, Delamere, Mlawer, Shephard, Clough, Collins (b0180) 2008; 113 Emmons, Walters, Hess, Lamarque, Pfister, Fillmore, Granier, Guenther, Kinnison, Laepple, Orlando, Tie, Tyndall, Wiedinmyer, Baughcum, Kloster (b0095) 2010; 3 Collatz, Ball, Grivet, Berry (b0080) 1991; 54 Hong, Lakshmi, Small, Chen, Tewari, Manning (b0155) 2009 Ali, Bilal, Wang, Nichol, Mhawish, Qiu, de Leeuw, Zhang, Zhan, Liao, Almazroui, Dambul, Shahid, Islam (b0005) 2022; 288 Zeng, Wang, Zhao, Chen, Liu, Huang, Gao (b0465) 2020; 13 Marticorena, Bergametti (b0275) 1995; 100 Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, de Rosnay, Rozum, Vamborg, Villaume, Thépaut (b0150) 2020; 146 IPCC (2021) Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press doi: 10.1017/9781009157896. Basha, Phanikumar, Kumar, Ouarda, Marpu (b0030) 2015; 169 Nagashima, Suzuki, Irino, Nakagawa, Tada, Hara, Yamada, Kurosaki (b0290) 2016; 43 Yin, Wan, Zhang, Wang (b0455) 2022; 9 Kang, Yoon, S.–C., Shao, Y., Kim, S.–W. (b0210) 2011; 116 Morrison, Thompson, Tatarskii (b0285) 2009; 137 Shao, Ishizuka, Mikami, Leys (b0355) 2011; 116 Song, Fei, Li, Huang (b0380) 2019; 10 Remoundaki, Bourliva, Kokkalis, Mamouri, Papayannis, Grigoratos, Samara, Tsezos (b0335) 2011; 409 Hamidi, Roshani (b0135) 2023; 14 Mahesh, Rama, Spandana, Sarma, Niranjan, Sreekanth (b0265) 2019; 64 Yang, Niu, G.–Y. (b0450) 2003; 38 Guevara-Macías, M.d. J., Pineda–Martínez, L.F., Carbajal, N. (b0125) 2023; 16 Tian, Wang, Pan, Li, Yang, Wang, Liu, Liu, Zhang, Lei, Sun, Fu, Uno, Wang (b0410) 2020; 739 Janjić, Z.I., 2002. Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. Office Note 437 NCEP Office Washington, DC. Roderick, Farquhar, Berry, Noble (b0340) 2001; 129 Hamzeh, Karami, Kaskaoutis, Tegen, Moradi, Opp (b0140) 2021; 12 Buchard, Randles, da Silva, Darmenov, Colarco, Govindaraju, Ferrare, Hair, Beyersdorf, Ziemba, Yu (b0050) 2017; 30 Yu, Wang, Liu, Pu (b0460) 2017; 7 Feng, Li, Zhang, Chen (b0100) 2017; 592 Li, Liu, Qi, Zhang, Yu (b0245) 2023; 195 Bao, Chen, Chopping, Bao, Bayarsaikhan, Dorjsuren, Tuya, Jirigala, Qin (b0025) 2019; 81 Zhou, Feng, Huang, Wang, Zhang (b0480) 2021; 12 Kim, Chin, Kemp, Tao, Peters-Lidard, Ginoux (b0225) 2017; 159 Hu (b0170) 1990; 45 Opp, Groll, Abbasi, Foroushani (b0305) 2021; 14 Sikka (b0370) 1997; 72 Su, Fung (b0400) 2015; 120 Lu, Shao (b0255) 1999; 104 Kobayashi, Ota, Harada, Ebita, Moriya, Onoda, Onogi, Kamahori, Kobayashi, Endo, Miyaoka, Takahashi (b0230) 2015; 93 Soni, Verma, Mishra, Mall, Payra (b0385) 2022; 44 Pu, Jin (b0320) 2021; 102 Hosseini, Mocko, Brunsell, Kumar, Mahanama, Arsenault, Roundy (b0165) 2022 Chin, Ginoux, Kinne, Torres, Holben, Duncan, Martin, Logan, Higurashi, Nakajima (b0070) 2002; 59 Cirino, G.G., Souza, R.A. F., Adams, D.K., Artaxo, P., 2014. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 14, 6523–6543. doi: 10.5194/acp-14-6523-201410.5194/acpd-13-28819-2013. Buchard, da Silva, Randles, Colarco, Ferrare, Hair, Hostetler, Tackett, Winker (b0045) 2016; 125 Wild, Teubner, Moesinger, Zotta, Forkel, van der Schalie, Sitch, Dorigo (b0440) 2022; 14 Karyampudi, Carlson (b0215) 1988; 45 Victor, Potdar, Siingh, Gokul, Kamra, Singh, Gopalakrishnan, Pandithurai (b0420) 2024; 301 Bonan, G.B., 1996. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide. Technical Report NCAR/TN–417+STR University Corporation for Atmospheric Research doi: 10.5065/D6DF6P5X. Wang, Meng, Lyu, Huang, He, Cheng (b0435) 2020; 739 Song, Wang, Zhang, Hong, Zhou (b0375) 2017; 167 Ginoux, Chin, Tegen, Prospero, Holben, Dubovik, Lin (b0110) 2001; 106 Sprigg (b0390) 1982 Wang, Zhang, Gong, Zhou, Hu, Liu, Niu, Yang (b0430) 2008; 8 Collatz, Ribas-Carbo, Berry (b0085) 1992; 19 Chen, Zhang, Zhu, Skorokhod (b0060) 2017; 187 Guenther, Karl, Harley, Wiedinmyer, Palmer, Geron (b0120) 2006; 6 Guo, Yin (b0130) 2015; 120 Niu, Yang, Z.–L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., Xia, Y. (b0300) 2011; 116 Ball, Woodrow, Berry (b0015) 1987 Liu, Xu, Ziegler, Zeng (b0250) 2022; 2 Janssens-Maenhout, Crippa, Guizzardi, Dentener, Muntean, Pouliot, Keating, Zhang, Kurokawa, Wankmüller, van der Gon, Kuenen, Klimont, Frost, Darras, Koffi, Li (b0195) 2015; 15 Chang, Liao, Wang, Zhang, Chen, Wu, Hu (b0055) 2020; 281 Gasso, Grassian, Miller (b0105) 2010; 6 Zhang, Sharratt, Liu, L.–Y., Wang, Z.–F., Pan, X.–L., Lei, J.–Q., Wu, S.–X., Huang, S.–Y., Guo, Y.–H., Li, J., Tang, X., Yang, T., Tian, Y., Chen, X.–S., Hao, J.–Q., Zheng, H.–T., Yang, Y.–Y., Lyu, Y.–L. (b0475) 2018; 18 Lamarque, Emmons, Hess, Kinnison, Tilmes, Vitt, Heald, Holland, Lauritzen, Neu, Orlando, Rasch, Tyndall (b0235) 2012; 5 Bi, Chen, Zhang, Wang, Kang, Alam, Tang, Chen, Zhang, Wang (b0035) 2024; 105 Shao (b0360) 2004; 109 Malavelle, Haywood, Mercado, Folberth, Bellouin, Sitch, Artaxo (b0270) 2019; 19 Madronich, Flocke (b0260) 1995 Hamzeh, Kaskaoutis, Rashki, Mohammadpour (b0145) 2021; 12 Prakash, Stenchikov, Kalenderski, Osipov, Bangalath (b0315) 2015; 15 Tanaka, Chiba (b0405) 2006; 52 Arsenault, Nearing, Wang, Yatheendradas, Peters-Lidard (b0010) 2018; 19 Chen, Lu, Wu, Wang, Lyu (b0065) 2023; 66 Dickinson, Shaikh, Bryant, Graumlich (b0090) 1998; 11 Péwé (b0325) 1981 Hosseini Dehshiri, Firoozabadi (b0160) 2023; 49 Lee, Sohn, B.–J. (b0240) 2011; 45 Xu, Zhang, Wang, Sun, Li (b0445) 2023; 305 Opp, Groll, Aslanov, Lotz, Vereshagina (b0310) 2017; 429 Tsarpalis, Papadopoulos, Mihalopoulos, Spyrou, Michaelides, Katsafados (b0415) 2018; 10 Husar, Tratt, Schichtel, Falke, Li, Jaffe, Gassó, Gill, Laulainen, Lu, Reheis, Chun, Westphal, Holben, Gueymard, McKendry, Kuring, Feldman, McClain, Frouin, Merrill, Dubois, Vignola, Murayama, Nickovic, Wilson, Sassen, Sugimoto, Malm (b0175) 2001; 106 McTainsh, Strong (b0280) 2007; 89 Jiang, Feng, Zhou, Liu, Zeng (b0200) 2024; 69 Grell, Dévényi (b0115) 2002; 29 Buchard (10.1016/j.aeolia.2025.100977_b0050) 2017; 30 Collatz (10.1016/j.aeolia.2025.100977_b0085) 1992; 19 Dickinson (10.1016/j.aeolia.2025.100977_b0090) 1998; 11 Hosseini Dehshiri (10.1016/j.aeolia.2025.100977_b0160) 2023; 49 Roderick (10.1016/j.aeolia.2025.100977_b0340) 2001; 129 Ball (10.1016/j.aeolia.2025.100977_b0015) 1987 Guevara-Macías, M.d. J., Pineda–Martínez, L.F., Carbajal, N. (10.1016/j.aeolia.2025.100977_b0125) 2023; 16 Hamzeh (10.1016/j.aeolia.2025.100977_b0145) 2021; 12 Kobayashi (10.1016/j.aeolia.2025.100977_b0230) 2015; 93 Yang (10.1016/j.aeolia.2025.100977_b0450) 2003; 38 Yin (10.1016/j.aeolia.2025.100977_b0455) 2022; 9 10.1016/j.aeolia.2025.100977_b0185 Hersbach (10.1016/j.aeolia.2025.100977_b0150) 2020; 146 Iacono (10.1016/j.aeolia.2025.100977_b0180) 2008; 113 Chin (10.1016/j.aeolia.2025.100977_b0070) 2002; 59 Hong (10.1016/j.aeolia.2025.100977_b0155) 2009 Zhang (10.1016/j.aeolia.2025.100977_b0475) 2018; 18 Ginoux (10.1016/j.aeolia.2025.100977_b0110) 2001; 106 10.1016/j.aeolia.2025.100977_b0190 Hamidi (10.1016/j.aeolia.2025.100977_b0135) 2023; 14 Victor (10.1016/j.aeolia.2025.100977_b0420) 2024; 301 Opp (10.1016/j.aeolia.2025.100977_b0305) 2021; 14 Zhang (10.1016/j.aeolia.2025.100977_b0470) 2019; 209 Pu (10.1016/j.aeolia.2025.100977_b0320) 2021; 102 Kang (10.1016/j.aeolia.2025.100977_b0210) 2011; 116 Arsenault (10.1016/j.aeolia.2025.100977_b0010) 2018; 19 Marticorena (10.1016/j.aeolia.2025.100977_b0275) 1995; 100 Feng (10.1016/j.aeolia.2025.100977_b0100) 2017; 592 Hamzeh (10.1016/j.aeolia.2025.100977_b0140) 2021; 12 Sellers (10.1016/j.aeolia.2025.100977_b0345) 1996; 9 Sikka (10.1016/j.aeolia.2025.100977_b0370) 1997; 72 Madronich (10.1016/j.aeolia.2025.100977_b0260) 1995 Sternberg (10.1016/j.aeolia.2025.100977_b0395) 2011; 4 Wang (10.1016/j.aeolia.2025.100977_b0425) 2017; 11 Bi (10.1016/j.aeolia.2025.100977_b0035) 2024; 105 10.1016/j.aeolia.2025.100977_b0075 Husar (10.1016/j.aeolia.2025.100977_b0175) 2001; 106 10.1016/j.aeolia.2025.100977_b0040 Sharma (10.1016/j.aeolia.2025.100977_b0365) 2020; 728 Lu (10.1016/j.aeolia.2025.100977_b0255) 1999; 104 Shao (10.1016/j.aeolia.2025.100977_b0350) 2006; 52 Gasso (10.1016/j.aeolia.2025.100977_b0105) 2010; 6 Péwé (10.1016/j.aeolia.2025.100977_b0325) 1981 Xu (10.1016/j.aeolia.2025.100977_b0445) 2023; 305 Guenther (10.1016/j.aeolia.2025.100977_b0120) 2006; 6 Nakanishi (10.1016/j.aeolia.2025.100977_b0295) 2006; 119 Tian (10.1016/j.aeolia.2025.100977_b0410) 2020; 739 Lee (10.1016/j.aeolia.2025.100977_b0240) 2011; 45 Sprigg (10.1016/j.aeolia.2025.100977_b0390) 1982 Mahesh (10.1016/j.aeolia.2025.100977_b0265) 2019; 64 Wang (10.1016/j.aeolia.2025.100977_b0435) 2020; 739 Randles (10.1016/j.aeolia.2025.100977_b0330) 2017; 30 Kim (10.1016/j.aeolia.2025.100977_b0225) 2017; 159 Tanaka (10.1016/j.aeolia.2025.100977_b0405) 2006; 52 Emmons (10.1016/j.aeolia.2025.100977_b0095) 2010; 3 Jiang (10.1016/j.aeolia.2025.100977_b0200) 2024; 69 Janssens-Maenhout (10.1016/j.aeolia.2025.100977_b0195) 2015; 15 Chen (10.1016/j.aeolia.2025.100977_b0060) 2017; 187 Li (10.1016/j.aeolia.2025.100977_b0245) 2023; 195 Wild (10.1016/j.aeolia.2025.100977_b0440) 2022; 14 Su (10.1016/j.aeolia.2025.100977_b0400) 2015; 120 Nagashima (10.1016/j.aeolia.2025.100977_b0290) 2016; 43 Shao (10.1016/j.aeolia.2025.100977_b0355) 2011; 116 Basha (10.1016/j.aeolia.2025.100977_b0030) 2015; 169 Chang (10.1016/j.aeolia.2025.100977_b0055) 2020; 281 Prakash (10.1016/j.aeolia.2025.100977_b0315) 2015; 15 Opp (10.1016/j.aeolia.2025.100977_b0310) 2017; 429 Morrison (10.1016/j.aeolia.2025.100977_b0285) 2009; 137 Chen (10.1016/j.aeolia.2025.100977_b0065) 2023; 66 Lamarque (10.1016/j.aeolia.2025.100977_b0235) 2012; 5 Yu (10.1016/j.aeolia.2025.100977_b0460) 2017; 7 Malavelle (10.1016/j.aeolia.2025.100977_b0270) 2019; 19 Wang (10.1016/j.aeolia.2025.100977_b0430) 2008; 8 Karyampudi (10.1016/j.aeolia.2025.100977_b0215) 1988; 45 Ali (10.1016/j.aeolia.2025.100977_b0005) 2022; 288 Buchard (10.1016/j.aeolia.2025.100977_b0045) 2016; 125 Shao (10.1016/j.aeolia.2025.100977_b0360) 2004; 109 Hosseini (10.1016/j.aeolia.2025.100977_b0165) 2022 Hu (10.1016/j.aeolia.2025.100977_b0170) 1990; 45 Niu (10.1016/j.aeolia.2025.100977_b0300) 2011; 116 Remoundaki (10.1016/j.aeolia.2025.100977_b0335) 2011; 409 McTainsh (10.1016/j.aeolia.2025.100977_b0280) 2007; 89 Soni (10.1016/j.aeolia.2025.100977_b0385) 2022; 44 Jiao (10.1016/j.aeolia.2025.100977_b0205) 2021; 13 Song (10.1016/j.aeolia.2025.100977_b0375) 2017; 167 Song (10.1016/j.aeolia.2025.100977_b0380) 2019; 10 Tsarpalis (10.1016/j.aeolia.2025.100977_b0415) 2018; 10 Zeng (10.1016/j.aeolia.2025.100977_b0465) 2020; 13 Kedia (10.1016/j.aeolia.2025.100977_b0220) 2018; 185 Grell (10.1016/j.aeolia.2025.100977_b0115) 2002; 29 Collatz (10.1016/j.aeolia.2025.100977_b0080) 1991; 54 Bao (10.1016/j.aeolia.2025.100977_b0025) 2019; 81 Liu (10.1016/j.aeolia.2025.100977_b0250) 2022; 2 Zhou (10.1016/j.aeolia.2025.100977_b0480) 2021; 12 Guo (10.1016/j.aeolia.2025.100977_b0130) 2015; 120 |
References_xml | – volume: 16 start-page: 1645 year: 2023 end-page: 1660 ident: b0125 article-title: A descriptive study of dust storms and air quality in a semi–arid region of Mexico. Air Quality, Atmos. \\& publication-title: Health – volume: 119 start-page: 397 year: 2006 end-page: 407 ident: b0295 article-title: An improved Mellor Yamada level–3 model: Its numerical stability and application to a regional prediction of advection fog publication-title: Bound.–layer Meteorol. – reference: IPCC (2021) Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press doi: 10.1017/9781009157896. – volume: 29 year: 2002 ident: b0115 article-title: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques publication-title: Geophys. Res. Lett. – volume: 45 start-page: 4611 year: 2011 end-page: 4616 ident: b0240 article-title: Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change publication-title: Atmos. Environ. – volume: 305 year: 2023 ident: b0445 article-title: Estimation of aerosol and cloud radiative effects on terrestrial net primary productivity over northeast Qinghai–Tibet plateau publication-title: Atmos. Environ. – volume: 137 start-page: 991 year: 2009 end-page: 1007 ident: b0285 article-title: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes publication-title: Mon. Weather. Rev. – reference: Bonan, G.B., 1996. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide. Technical Report NCAR/TN–417+STR University Corporation for Atmospheric Research doi: 10.5065/D6DF6P5X. – volume: 739 year: 2020 ident: b0410 article-title: Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China publication-title: Sci. Total Environ. – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: b0150 article-title: The ERA5 global reanalysis publication-title: Q. J. r. Meteorol. Soc. – volume: 72 start-page: 35 year: 1997 end-page: 46 ident: b0370 article-title: Desert climate and its dynamics publication-title: Current Sci. – volume: 13 start-page: 2125 year: 2020 end-page: 2147 ident: b0465 article-title: WRF–Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes publication-title: Geosci. Model Dev. – volume: 209 start-page: 1 year: 2019 end-page: 13 ident: b0470 article-title: Parameterization schemes on dust deposition in northwest China: Model validation and implications for the global dust cycle publication-title: Atmos. Environ. – volume: 409 start-page: 4361 year: 2011 end-page: 4372 ident: b0335 article-title: PM10 composition during an intense Saharan dust transport event over Athens (Greece) publication-title: Sci. Total Environ. – volume: 3 start-page: 43 year: 2010 end-page: 67 ident: b0095 article-title: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART–4) publication-title: Geosci. Model Dev. – volume: 14 year: 2023 ident: b0135 article-title: Investigation of climate change effects on Iraq dust activity using LSTM publication-title: Atmos. Pollut. Res. – volume: 64 start-page: 328 year: 2019 end-page: 334 ident: b0265 article-title: Evaluation of MERRAero PM2.5 over Indian cities publication-title: Adv. Space Res. – volume: 66 start-page: 1062 year: 2023 end-page: 1071 ident: b0065 article-title: Global desert variation under climatic impact during 1982–2020 publication-title: Sci. China Earth Sci. – volume: 52 start-page: 1 year: 2006 end-page: 22 ident: b0350 article-title: A review on East Asian dust storm climate, modelling and monitoring publication-title: Glob. Planet. Chang. – volume: 59 start-page: 461 year: 2002 end-page: 483 ident: b0070 article-title: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements publication-title: J. Atmos. Sci. – volume: 12 start-page: 125 year: 2021 ident: b0140 article-title: Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region publication-title: Atmosphere – volume: 109 year: 2004 ident: b0360 article-title: Simplification of a dust emission scheme and comparison with data publication-title: J. Geophys. Res. Atmos. – volume: 120 start-page: 11215 year: 2015 end-page: 11230 ident: b0400 article-title: Sensitivities of WRF–Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia publication-title: J. Geophys. Res. Atmos. – volume: 728 start-page: 138878 year: 2020 end-page: 1138871 ident: b0365 article-title: Effect of restricted emissions during COVID–19 on air quality in India publication-title: Sci. Total Environ. – volume: 9 year: 2022 ident: b0455 article-title: Why super sandstorm 2021 in North China? publication-title: Natl. Sci. Rev. – volume: 44 year: 2022 ident: b0385 article-title: Estimation of particulate matter pollution using WRF–Chem during dust storm event over India publication-title: Urban Clim. – volume: 739 year: 2020 ident: b0435 article-title: Spatiotemporal changes of surface solar radiation: Implication for air pollution and rice yield in East China publication-title: Sci. Total Environ. – reference: Cirino, G.G., Souza, R.A. F., Adams, D.K., Artaxo, P., 2014. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 14, 6523–6543. doi: 10.5194/acp-14-6523-201410.5194/acpd-13-28819-2013. – volume: 2 start-page: 1259 year: 2022 end-page: 1262 ident: b0250 article-title: Stronger winds increase the sand–dust storm risk in northern China publication-title: Environ. Science: Atmos. – volume: 281 year: 2020 ident: b0055 article-title: An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China publication-title: Agric. for. Meteorol. – volume: 54 start-page: 107 year: 1991 end-page: 136 ident: b0080 article-title: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer publication-title: Agric. for. Meteorol. – year: 2009 ident: b0155 article-title: Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model publication-title: J. Geophys. Res. – volume: 45 start-page: 139 year: 1990 end-page: 145 ident: b0170 article-title: The distribution, regionalization and prospect of china's population publication-title: Acta Geographica Sin. – reference: Janjić, Z.I., 2002. Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. Office Note 437 NCEP Office Washington, DC. – volume: 592 start-page: 729 year: 2017 end-page: 737 ident: b0100 article-title: The dual effect of vegetation green–up date and strong wind on the return period of spring dust storms publication-title: Sci. Total Environ. – volume: 116 year: 2011 ident: b0210 article-title: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem publication-title: J. Geophys. Res. Atmos. – volume: 11 start-page: 13 year: 2017 ident: b0425 article-title: Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review publication-title: Frontiers Environ. Sci. Engineering – volume: 113 year: 2008 ident: b0180 article-title: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models publication-title: J. Geophys. Res. Atmos. – volume: 120 start-page: 10378 year: 2015 end-page: 10398 ident: b0130 article-title: Mineral dust impacts on regional precipitation and summer circulation in East Asia using a regional coupled climate system model publication-title: J. Geophys. Res. Atmos. – volume: 106 start-page: 20255 year: 2001 end-page: 20273 ident: b0110 article-title: Sources and distributions of dust aerosols simulated with the GOCART model publication-title: J. Geophys. Res. Atmos. – volume: 30 start-page: 6823 year: 2017 end-page: 6850 ident: b0330 article-title: The MERRA–2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation publication-title: J. Clim. – volume: 125 start-page: 100 year: 2016 end-page: 111 ident: b0045 article-title: Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States publication-title: Atmos. Environ. – volume: 30 start-page: 6851 year: 2017 end-page: 6872 ident: b0050 article-title: The MERRA–2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies publication-title: J. Clim. – volume: 52 start-page: 88 year: 2006 end-page: 104 ident: b0405 article-title: A numerical study of the contributions of dust source regions to the global dust budget publication-title: Glob. Planet. Chang. – volume: 187 start-page: 42 year: 2017 end-page: 56 ident: b0060 article-title: Model analysis of soil dust impacts on the boundary layer meteorology and air quality over East Asia in April 2015 publication-title: Atmos. Res. – volume: 159 start-page: 11 year: 2017 end-page: 25 ident: b0225 article-title: Development of high–resolution dynamic dust source function – A case study with a strong dust storm in a regional model publication-title: Atmos. Environ. – volume: 14 start-page: 326 year: 2021 ident: b0305 article-title: Causes and effects of sand and dust storms: What has past research taught us? publication-title: A Survey. J. Risk Financial Manag. – volume: 116 year: 2011 ident: b0355 article-title: Parameterization of size–resolved dust emission and validation with measurements publication-title: J. Geophys. Res. – volume: 6 start-page: 247 year: 2010 end-page: 252 ident: b0105 article-title: Interactions between mineral dust, climate, and ocean ecosystems publication-title: Elements – volume: 15 start-page: 11411 year: 2015 end-page: 11432 ident: b0195 article-title: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution publication-title: Atmos. Chem. Phys. – volume: 429 start-page: 86 year: 2017 end-page: 99 ident: b0310 article-title: Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground–based monitoring results from the LUCA project publication-title: Quaternary Int. – volume: 105 start-page: E622 year: 2024 ident: b0035 article-title: The Circumglobal Transport of Massive African Dust and Its Impacts on the Regional Circulation in Remote Atmosphere publication-title: Bull. Am. Meteorol. Soc. – volume: 116 year: 2011 ident: b0300 article-title: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements publication-title: J. Geophys. Res. Atmos. – volume: 6 start-page: 3181 year: 2006 end-page: 3210 ident: b0120 article-title: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) publication-title: Atmos. Chem. Phys. – volume: 89 start-page: 39 year: 2007 end-page: 54 ident: b0280 article-title: The role of aeolian dust in ecosystems publication-title: Geomorphology – volume: 288 year: 2022 ident: b0005 article-title: Accuracy assessment of CAMS and MERRA–2 reanalysis PM2.5 and PM10 concentrations over China publication-title: Atmos. Environ. – volume: 81 start-page: 85 year: 2019 end-page: 97 ident: b0025 article-title: Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought publication-title: Int. J. Appl. Earth Observation Geoinformation – volume: 49 year: 2023 ident: b0160 article-title: A grid independence study to select computational parameters in dust storm prediction models: A sensitive analysis publication-title: Urban Clim. – volume: 5 start-page: 369 year: 2012 end-page: 411 ident: b0235 article-title: CAM–chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model publication-title: Geosci. Model Dev. – volume: 195 start-page: 169 year: 2023 ident: b0245 article-title: Spatiotemporal variations and relationships of absorbing aerosol–radiation–gross primary productivity over China publication-title: Environ. Monitoring Assess. – volume: 9 start-page: 676 year: 1996 end-page: 705 ident: b0345 article-title: A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS publication-title: Part i: Model Formulation. J. Clim. – volume: 69 start-page: 356 year: 2024 end-page: 361 ident: b0200 article-title: Wind speed enhancement as the primary cause of sand–dust days increase in China over recent years publication-title: Chin. Sci. Bull. – volume: 301 year: 2024 ident: b0420 article-title: Impact of a severe dust storm on aerosol properties and their radiative forcing over the Indian subcontinent during winter publication-title: Atmos. Res. – volume: 15 start-page: 199 year: 2015 end-page: 222 ident: b0315 article-title: The impact of dust storms on the Arabian Peninsula and the Red Sea publication-title: Atmos. Chem. Phys. – volume: 104 start-page: 16827 year: 1999 end-page: 16842 ident: b0255 article-title: A new model for dust emission by saltation bombardment publication-title: J. Geophys. Res. Atmos. – volume: 169 start-page: 404 year: 2015 end-page: 417 ident: b0030 article-title: Investigation of aerosol optical, physical, and radiative characteristics of a severe dust storm observed over UAE publication-title: Remote. Sens. Environ. – volume: 12 start-page: 339 year: 2021 ident: b0480 article-title: The indirect impact of surface vegetation improvement on the climate response of sand–dust events in northern China publication-title: Atmosphere – volume: 13 start-page: 516 year: 2021 end-page: 533 ident: b0205 article-title: Potential responses of vegetation to atmospheric aerosols in arid and semi–arid regions of Asia publication-title: J. Arid Land – volume: 11 start-page: 2823 year: 1998 end-page: 2836 ident: b0090 article-title: Interactive Canopies for a Climate Model publication-title: J. Clim. – volume: 185 start-page: 109 year: 2018 end-page: 120 ident: b0220 article-title: Radiative impact of a heavy dust storm over India and surrounding oceanic regions publication-title: Atmos. Environ. – volume: 45 start-page: 3102 year: 1988 end-page: 3136 ident: b0215 article-title: Analysis and Numerical Simulations of the Saharan Air Layer and Its Effect on Easterly Wave Disturbances publication-title: J. Atmos. Sci. – volume: 10 start-page: 135 year: 2019 ident: b0380 article-title: Simulation of an Asian dust storm event in May 2017 publication-title: Atmosphere – volume: 43 start-page: 2835 year: 2016 end-page: 2842 ident: b0290 article-title: Asian dust transport during the last century recorded in Lake Suigetsu sediments publication-title: Geophys. Res. Lett. – volume: 93 start-page: 5 year: 2015 end-page: 48 ident: b0230 article-title: The JRA–55 reanalysis: General specifications and basic characteristics publication-title: J. Meteorol. Soc. Jpn. – volume: 19 start-page: 1301 year: 2019 end-page: 1326 ident: b0270 article-title: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model publication-title: Atmos. Chem. Phys. – volume: 129 start-page: 21 year: 2001 end-page: 30 ident: b0340 article-title: On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation publication-title: Oecologia – volume: 10 start-page: 1595 year: 2018 ident: b0415 article-title: The Implementation of a Mineral Dust Wet Deposition Scheme in the GOCART-AFWA Module of the WRF Model publication-title: Remote. Sens. – volume: 12 start-page: 1350 year: 2021 ident: b0145 article-title: Long–term variability of dust events in southwestern Iran and its relationship with the drought publication-title: Atmosphere – volume: 102 start-page: E1340 year: 2021 end-page: E1356 ident: b0320 article-title: A record–breaking trans–Atlantic African dust plume associated with atmospheric circulation extremes in June 2020 publication-title: Bull. Am. Meteorol. Soc. – year: 2022 ident: b0165 article-title: Understanding the impact of vegetation dynamics on the water cycle in the Noah-MP model publication-title: Frontiers Water – year: 1981 ident: b0325 article-title: Desert dust: origin, characteristics, and effect on man publication-title: Geological Society of America – volume: 19 start-page: 519 year: 1992 end-page: 538 ident: b0085 article-title: Coupled Photosynthesis–Stomatal Conductance Model for Leaves of C publication-title: Functional Plant Biology – volume: 100 start-page: 16415 year: 1995 end-page: 16430 ident: b0275 article-title: Modeling the atmospheric dust cycle: 1. Design of a soil–derived dust emission scheme publication-title: J. Geophys. Res. Atmos. – volume: 14 start-page: 1063 year: 2022 end-page: 1085 ident: b0440 article-title: VODCA2GPP – a new, global, long–term (1988–2020) gross primary production dataset from microwave remote sensing publication-title: Earth Syst. Sci. Data – volume: 7 start-page: 92 year: 2017 end-page: 116 ident: b0460 article-title: Numerical studies on a severe dust storm in East Asia Using WRF–Chem publication-title: Atmos. Clim. Sci. – volume: 18 start-page: 8353 year: 2018 end-page: 8371 ident: b0475 article-title: East Asian dust storm in May 2017: observations, modelling, and its influence on the Asia–Pacific region publication-title: Atmos. Chem. Phys. – volume: 8 start-page: 545 year: 2008 end-page: 553 ident: b0430 article-title: Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust publication-title: Atmos. Chem. Phys. – start-page: 211 year: 1982 end-page: 240 ident: b0390 article-title: Alternating wind cycles of the Quaternary era and their influences on aeolian sedimentation in and around the dune deserts of south eastern Australia – start-page: 23 year: 1995 end-page: 48 ident: b0260 article-title: Theoretical estimation of biologically effective UV radiation at the Earth's surface publication-title: Solar Ultraviolet Radiation – volume: 19 start-page: 815 year: 2018 end-page: 830 ident: b0010 article-title: Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation publication-title: J. Hydrometeorol. – start-page: 221 year: 1987 end-page: 224 ident: b0015 article-title: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions publication-title: Progress in Photosynthesis Research – volume: 4 start-page: 50 year: 2011 end-page: 64 ident: b0395 article-title: Tracking desertification on the Mongolian steppe through NDVI and field–survey data publication-title: Int. J. Digit. Earth – volume: 106 start-page: 18317 year: 2001 end-page: 18330 ident: b0175 article-title: Asian dust events of April 1998 publication-title: J. Geophys. Res. Atmos. – volume: 167 start-page: 511 year: 2017 end-page: 522 ident: b0375 article-title: Simulation and evaluation of dust emissions with WRF-Chem (v3.7.1) and its relationship to the changing climate over East Asia from 1980 to 2015 publication-title: Atmos. Environ. – volume: 38 start-page: 175 year: 2003 end-page: 189 ident: b0450 article-title: The Versatile Integrator of Surface and Atmosphere processes: Part 1 publication-title: Model Description. Glob. Planet. Chang. – volume: 104 start-page: 16827 year: 1999 ident: 10.1016/j.aeolia.2025.100977_b0255 article-title: A new model for dust emission by saltation bombardment publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900169 – volume: 116 year: 2011 ident: 10.1016/j.aeolia.2025.100977_b0355 article-title: Parameterization of size–resolved dust emission and validation with measurements publication-title: J. Geophys. Res. – volume: 301 year: 2024 ident: 10.1016/j.aeolia.2025.100977_b0420 article-title: Impact of a severe dust storm on aerosol properties and their radiative forcing over the Indian subcontinent during winter publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2024.107282 – volume: 3 start-page: 43 year: 2010 ident: 10.1016/j.aeolia.2025.100977_b0095 article-title: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART–4) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-3-43-2010 – volume: 43 start-page: 2835 year: 2016 ident: 10.1016/j.aeolia.2025.100977_b0290 article-title: Asian dust transport during the last century recorded in Lake Suigetsu sediments publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL067589 – year: 2022 ident: 10.1016/j.aeolia.2025.100977_b0165 article-title: Understanding the impact of vegetation dynamics on the water cycle in the Noah-MP model publication-title: Frontiers Water doi: 10.3389/frwa.2022.925852 – volume: 129 start-page: 21 year: 2001 ident: 10.1016/j.aeolia.2025.100977_b0340 article-title: On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation publication-title: Oecologia doi: 10.1007/s004420100760 – ident: 10.1016/j.aeolia.2025.100977_b0190 – volume: 120 start-page: 10378 year: 2015 ident: 10.1016/j.aeolia.2025.100977_b0130 article-title: Mineral dust impacts on regional precipitation and summer circulation in East Asia using a regional coupled climate system model publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023096 – year: 2009 ident: 10.1016/j.aeolia.2025.100977_b0155 article-title: Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model publication-title: J. Geophys. Res. doi: 10.1029/2008JD011249 – volume: 113 year: 2008 ident: 10.1016/j.aeolia.2025.100977_b0180 article-title: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JD009944 – volume: 89 start-page: 39 year: 2007 ident: 10.1016/j.aeolia.2025.100977_b0280 article-title: The role of aeolian dust in ecosystems publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.07.028 – volume: 12 start-page: 339 year: 2021 ident: 10.1016/j.aeolia.2025.100977_b0480 article-title: The indirect impact of surface vegetation improvement on the climate response of sand–dust events in northern China publication-title: Atmosphere doi: 10.3390/atmos12030339 – volume: 14 start-page: 326 year: 2021 ident: 10.1016/j.aeolia.2025.100977_b0305 article-title: Causes and effects of sand and dust storms: What has past research taught us? publication-title: A Survey. J. Risk Financial Manag. doi: 10.3390/jrfm14070326 – volume: 409 start-page: 4361 year: 2011 ident: 10.1016/j.aeolia.2025.100977_b0335 article-title: PM10 composition during an intense Saharan dust transport event over Athens (Greece) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.06.026 – volume: 187 start-page: 42 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0060 article-title: Model analysis of soil dust impacts on the boundary layer meteorology and air quality over East Asia in April 2015 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2016.12.008 – volume: 281 year: 2020 ident: 10.1016/j.aeolia.2025.100977_b0055 article-title: An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China publication-title: Agric. for. Meteorol. doi: 10.1016/j.agrformet.2019.107815 – volume: 93 start-page: 5 year: 2015 ident: 10.1016/j.aeolia.2025.100977_b0230 article-title: The JRA–55 reanalysis: General specifications and basic characteristics publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj.2015-001 – volume: 44 year: 2022 ident: 10.1016/j.aeolia.2025.100977_b0385 article-title: Estimation of particulate matter pollution using WRF–Chem during dust storm event over India publication-title: Urban Clim. doi: 10.1016/j.uclim.2022.101202 – volume: 11 start-page: 2823 year: 1998 ident: 10.1016/j.aeolia.2025.100977_b0090 article-title: Interactive Canopies for a Climate Model publication-title: J. Clim. doi: 10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2 – volume: 195 start-page: 169 year: 2023 ident: 10.1016/j.aeolia.2025.100977_b0245 article-title: Spatiotemporal variations and relationships of absorbing aerosol–radiation–gross primary productivity over China publication-title: Environ. Monitoring Assess. doi: 10.1007/s10661-022-10775-5 – volume: 4 start-page: 50 year: 2011 ident: 10.1016/j.aeolia.2025.100977_b0395 article-title: Tracking desertification on the Mongolian steppe through NDVI and field–survey data publication-title: Int. J. Digit. Earth doi: 10.1080/17538940903506006 – volume: 102 start-page: E1340 year: 2021 ident: 10.1016/j.aeolia.2025.100977_b0320 article-title: A record–breaking trans–Atlantic African dust plume associated with atmospheric circulation extremes in June 2020 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-21-0014.1 – volume: 6 start-page: 3181 year: 2006 ident: 10.1016/j.aeolia.2025.100977_b0120 article-title: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-3181-2006 – volume: 146 start-page: 1999 year: 2020 ident: 10.1016/j.aeolia.2025.100977_b0150 article-title: The ERA5 global reanalysis publication-title: Q. J. r. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 739 year: 2020 ident: 10.1016/j.aeolia.2025.100977_b0435 article-title: Spatiotemporal changes of surface solar radiation: Implication for air pollution and rice yield in East China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140361 – start-page: 221 year: 1987 ident: 10.1016/j.aeolia.2025.100977_b0015 article-title: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions – volume: 106 start-page: 18317 year: 2001 ident: 10.1016/j.aeolia.2025.100977_b0175 article-title: Asian dust events of April 1998 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900788 – volume: 119 start-page: 397 year: 2006 ident: 10.1016/j.aeolia.2025.100977_b0295 article-title: An improved Mellor Yamada level–3 model: Its numerical stability and application to a regional prediction of advection fog publication-title: Bound.–layer Meteorol. doi: 10.1007/s10546-005-9030-8 – volume: 9 start-page: 676 year: 1996 ident: 10.1016/j.aeolia.2025.100977_b0345 article-title: A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS publication-title: Part i: Model Formulation. J. Clim. – volume: 19 start-page: 815 year: 2018 ident: 10.1016/j.aeolia.2025.100977_b0010 article-title: Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation publication-title: J. Hydrometeorol. doi: 10.1175/jhm-d-17-0205.1 – volume: 169 start-page: 404 year: 2015 ident: 10.1016/j.aeolia.2025.100977_b0030 article-title: Investigation of aerosol optical, physical, and radiative characteristics of a severe dust storm observed over UAE publication-title: Remote. Sens. Environ. doi: 10.1016/j.rse.2015.08.033 – volume: 29 year: 2002 ident: 10.1016/j.aeolia.2025.100977_b0115 article-title: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL015311 – volume: 13 start-page: 2125 year: 2020 ident: 10.1016/j.aeolia.2025.100977_b0465 article-title: WRF–Chem v3.9 simulations of the East Asian dust storm in May 2017: modeling sensitivities to dust emission and dry deposition schemes publication-title: Geosci. Model Dev. doi: 10.5194/gmd-13-2125-2020 – ident: 10.1016/j.aeolia.2025.100977_b0040 – volume: 6 start-page: 247 year: 2010 ident: 10.1016/j.aeolia.2025.100977_b0105 article-title: Interactions between mineral dust, climate, and ocean ecosystems publication-title: Elements doi: 10.2113/gselements.6.4.247 – volume: 16 start-page: 1645 year: 2023 ident: 10.1016/j.aeolia.2025.100977_b0125 article-title: A descriptive study of dust storms and air quality in a semi–arid region of Mexico. Air Quality, Atmos. \\& publication-title: Health – volume: 15 start-page: 199 year: 2015 ident: 10.1016/j.aeolia.2025.100977_b0315 article-title: The impact of dust storms on the Arabian Peninsula and the Red Sea publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-199-2015 – volume: 2 start-page: 1259 year: 2022 ident: 10.1016/j.aeolia.2025.100977_b0250 article-title: Stronger winds increase the sand–dust storm risk in northern China publication-title: Environ. Science: Atmos. – volume: 9 year: 2022 ident: 10.1016/j.aeolia.2025.100977_b0455 article-title: Why super sandstorm 2021 in North China? publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwab165 – volume: 19 start-page: 1301 year: 2019 ident: 10.1016/j.aeolia.2025.100977_b0270 article-title: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-1301-2019 – year: 1981 ident: 10.1016/j.aeolia.2025.100977_b0325 article-title: Desert dust: origin, characteristics, and effect on man publication-title: Geological Society of America – volume: 739 year: 2020 ident: 10.1016/j.aeolia.2025.100977_b0410 article-title: Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139791 – volume: 14 year: 2023 ident: 10.1016/j.aeolia.2025.100977_b0135 article-title: Investigation of climate change effects on Iraq dust activity using LSTM publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101874 – volume: 15 start-page: 11411 year: 2015 ident: 10.1016/j.aeolia.2025.100977_b0195 article-title: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-11411-2015 – volume: 106 start-page: 20255 year: 2001 ident: 10.1016/j.aeolia.2025.100977_b0110 article-title: Sources and distributions of dust aerosols simulated with the GOCART model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD000053 – volume: 5 start-page: 369 year: 2012 ident: 10.1016/j.aeolia.2025.100977_b0235 article-title: CAM–chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model publication-title: Geosci. Model Dev. doi: 10.5194/gmd-5-369-2012 – volume: 12 start-page: 125 year: 2021 ident: 10.1016/j.aeolia.2025.100977_b0140 article-title: Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region publication-title: Atmosphere doi: 10.3390/atmos12010125 – volume: 109 year: 2004 ident: 10.1016/j.aeolia.2025.100977_b0360 article-title: Simplification of a dust emission scheme and comparison with data publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2003JD004372 – volume: 592 start-page: 729 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0100 article-title: The dual effect of vegetation green–up date and strong wind on the return period of spring dust storms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.028 – start-page: 23 year: 1995 ident: 10.1016/j.aeolia.2025.100977_b0260 article-title: Theoretical estimation of biologically effective UV radiation at the Earth's surface publication-title: Solar Ultraviolet Radiation – volume: 14 start-page: 1063 year: 2022 ident: 10.1016/j.aeolia.2025.100977_b0440 article-title: VODCA2GPP – a new, global, long–term (1988–2020) gross primary production dataset from microwave remote sensing publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-14-1063-2022 – volume: 137 start-page: 991 year: 2009 ident: 10.1016/j.aeolia.2025.100977_b0285 article-title: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes publication-title: Mon. Weather. Rev. doi: 10.1175/2008MWR2556.1 – volume: 288 year: 2022 ident: 10.1016/j.aeolia.2025.100977_b0005 article-title: Accuracy assessment of CAMS and MERRA–2 reanalysis PM2.5 and PM10 concentrations over China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119297 – volume: 185 start-page: 109 year: 2018 ident: 10.1016/j.aeolia.2025.100977_b0220 article-title: Radiative impact of a heavy dust storm over India and surrounding oceanic regions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.05.005 – volume: 30 start-page: 6851 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0050 article-title: The MERRA–2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0613.1 – volume: 167 start-page: 511 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0375 article-title: Simulation and evaluation of dust emissions with WRF-Chem (v3.7.1) and its relationship to the changing climate over East Asia from 1980 to 2015 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.08.051 – volume: 305 year: 2023 ident: 10.1016/j.aeolia.2025.100977_b0445 article-title: Estimation of aerosol and cloud radiative effects on terrestrial net primary productivity over northeast Qinghai–Tibet plateau publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119794 – volume: 120 start-page: 11215 year: 2015 ident: 10.1016/j.aeolia.2025.100977_b0400 article-title: Sensitivities of WRF–Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023446 – volume: 105 start-page: E622 issue: E605 year: 2024 ident: 10.1016/j.aeolia.2025.100977_b0035 article-title: The Circumglobal Transport of Massive African Dust and Its Impacts on the Regional Circulation in Remote Atmosphere publication-title: Bull. Am. Meteorol. Soc. – volume: 64 start-page: 328 year: 2019 ident: 10.1016/j.aeolia.2025.100977_b0265 article-title: Evaluation of MERRAero PM2.5 over Indian cities publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.04.026 – volume: 30 start-page: 6823 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0330 article-title: The MERRA–2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0609.1 – volume: 38 start-page: 175 year: 2003 ident: 10.1016/j.aeolia.2025.100977_b0450 article-title: The Versatile Integrator of Surface and Atmosphere processes: Part 1 publication-title: Model Description. Glob. Planet. Chang. doi: 10.1016/S0921-8181(03)00028-6 – volume: 12 start-page: 1350 year: 2021 ident: 10.1016/j.aeolia.2025.100977_b0145 article-title: Long–term variability of dust events in southwestern Iran and its relationship with the drought publication-title: Atmosphere doi: 10.3390/atmos12101350 – volume: 45 start-page: 4611 year: 2011 ident: 10.1016/j.aeolia.2025.100977_b0240 article-title: Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.05.065 – volume: 52 start-page: 1 year: 2006 ident: 10.1016/j.aeolia.2025.100977_b0350 article-title: A review on East Asian dust storm climate, modelling and monitoring publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2006.02.011 – volume: 209 start-page: 1 year: 2019 ident: 10.1016/j.aeolia.2025.100977_b0470 article-title: Parameterization schemes on dust deposition in northwest China: Model validation and implications for the global dust cycle publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.04.017 – volume: 11 start-page: 13 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0425 article-title: Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review publication-title: Frontiers Environ. Sci. Engineering doi: 10.1007/s11783-017-0904-z – volume: 49 year: 2023 ident: 10.1016/j.aeolia.2025.100977_b0160 article-title: A grid independence study to select computational parameters in dust storm prediction models: A sensitive analysis publication-title: Urban Clim. doi: 10.1016/j.uclim.2023.101534 – volume: 116 year: 2011 ident: 10.1016/j.aeolia.2025.100977_b0210 article-title: Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2010JD014649 – volume: 100 start-page: 16415 year: 1995 ident: 10.1016/j.aeolia.2025.100977_b0275 article-title: Modeling the atmospheric dust cycle: 1. Design of a soil–derived dust emission scheme publication-title: J. Geophys. Res. Atmos. doi: 10.1029/95JD00690 – volume: 125 start-page: 100 year: 2016 ident: 10.1016/j.aeolia.2025.100977_b0045 article-title: Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.11.004 – volume: 72 start-page: 35 year: 1997 ident: 10.1016/j.aeolia.2025.100977_b0370 article-title: Desert climate and its dynamics publication-title: Current Sci. – volume: 8 start-page: 545 year: 2008 ident: 10.1016/j.aeolia.2025.100977_b0430 article-title: Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-8-545-2008 – volume: 59 start-page: 461 year: 2002 ident: 10.1016/j.aeolia.2025.100977_b0070 article-title: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 – start-page: 211 year: 1982 ident: 10.1016/j.aeolia.2025.100977_b0390 – volume: 52 start-page: 88 year: 2006 ident: 10.1016/j.aeolia.2025.100977_b0405 article-title: A numerical study of the contributions of dust source regions to the global dust budget publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2006.02.002 – volume: 19 start-page: 519 year: 1992 ident: 10.1016/j.aeolia.2025.100977_b0085 article-title: Coupled Photosynthesis–Stomatal Conductance Model for Leaves of C4 Plants publication-title: Functional Plant Biology doi: 10.1071/PP9920519 – volume: 13 start-page: 516 year: 2021 ident: 10.1016/j.aeolia.2025.100977_b0205 article-title: Potential responses of vegetation to atmospheric aerosols in arid and semi–arid regions of Asia publication-title: J. Arid Land doi: 10.1007/s40333-021-0005-5 – ident: 10.1016/j.aeolia.2025.100977_b0185 doi: 10.1017/9781009157896 – volume: 10 start-page: 1595 year: 2018 ident: 10.1016/j.aeolia.2025.100977_b0415 article-title: The Implementation of a Mineral Dust Wet Deposition Scheme in the GOCART-AFWA Module of the WRF Model publication-title: Remote. Sens. doi: 10.3390/rs10101595 – volume: 54 start-page: 107 year: 1991 ident: 10.1016/j.aeolia.2025.100977_b0080 article-title: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer publication-title: Agric. for. Meteorol. doi: 10.1016/0168-1923(91)90002-8 – volume: 45 start-page: 3102 year: 1988 ident: 10.1016/j.aeolia.2025.100977_b0215 article-title: Analysis and Numerical Simulations of the Saharan Air Layer and Its Effect on Easterly Wave Disturbances publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2 – volume: 7 start-page: 92 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0460 article-title: Numerical studies on a severe dust storm in East Asia Using WRF–Chem publication-title: Atmos. Clim. Sci. – volume: 81 start-page: 85 year: 2019 ident: 10.1016/j.aeolia.2025.100977_b0025 article-title: Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought publication-title: Int. J. Appl. Earth Observation Geoinformation doi: 10.1016/j.jag.2019.05.009 – ident: 10.1016/j.aeolia.2025.100977_b0075 doi: 10.5194/acp-14-6523-2014 – volume: 116 year: 2011 ident: 10.1016/j.aeolia.2025.100977_b0300 article-title: The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2010JD015139 – volume: 728 start-page: 138878 year: 2020 ident: 10.1016/j.aeolia.2025.100977_b0365 article-title: Effect of restricted emissions during COVID–19 on air quality in India publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138878 – volume: 66 start-page: 1062 year: 2023 ident: 10.1016/j.aeolia.2025.100977_b0065 article-title: Global desert variation under climatic impact during 1982–2020 publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-022-1052-1 – volume: 69 start-page: 356 year: 2024 ident: 10.1016/j.aeolia.2025.100977_b0200 article-title: Wind speed enhancement as the primary cause of sand–dust days increase in China over recent years publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2023-0311 – volume: 159 start-page: 11 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0225 article-title: Development of high–resolution dynamic dust source function – A case study with a strong dust storm in a regional model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.03.045 – volume: 18 start-page: 8353 year: 2018 ident: 10.1016/j.aeolia.2025.100977_b0475 article-title: East Asian dust storm in May 2017: observations, modelling, and its influence on the Asia–Pacific region publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-8353-2018 – volume: 45 start-page: 139 year: 1990 ident: 10.1016/j.aeolia.2025.100977_b0170 article-title: The distribution, regionalization and prospect of china's population publication-title: Acta Geographica Sin. – volume: 10 start-page: 135 year: 2019 ident: 10.1016/j.aeolia.2025.100977_b0380 article-title: Simulation of an Asian dust storm event in May 2017 publication-title: Atmosphere doi: 10.3390/atmos10030135 – volume: 429 start-page: 86 year: 2017 ident: 10.1016/j.aeolia.2025.100977_b0310 article-title: Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground–based monitoring results from the LUCA project publication-title: Quaternary Int. doi: 10.1016/j.quaint.2015.12.103 |
SSID | ssj0070031 |
Score | 2.3537261 |
Snippet | •A severe dust event was simulated by the WRF–Chem model.•Dust aerosols generally had a negative impact on GPP.•Dust aerosols reduced GPP exceeding 10% in some... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 100977 |
SubjectTerms | Dust aerosol Ecological effect GPP WRF–Chem |
Title | Exploring the atmospheric and ecological impacts of a major dust storm: Insights from WRF–Chem simulations |
URI | https://dx.doi.org/10.1016/j.aeolia.2025.100977 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqIiQWxFOUR-WB1TRJ7bhhqypKC6IDUNEtsh1bStUkVVMGFsR_4B_yS_DlgUBCDIxObCk6n8_fRd99h9C529O-NsIl1lkooVI5RCpDiSepQwVlihf_Ie8m_mhKb2Zs1kCDuhYGaJVV7C9jehGtqyedypqdZRx3HlwLta37cA80_e0AKtgpBy-_eP2ieXDwWki67GQCs-vyuYLjJXS2iEF9yGNAF7BY6Pfr6duVM9xB2xVWxP3yc3ZRQ6d7aPO66MX7so8WX_w5bFEcFusky0EkIFZYpBHWqo5ruCyFzHFmsMCJmGcrDA07MDAjk0s8TnNI0XMMtSb46X748fYOQgI4j5Oqu1d-gKbDq8fBiFTNE4iyp3BN_B4znuKBsBmLiAzl0tDA5hra4dpzla-EYEoEkX3LAFQFTIFosfJAb91o1T1EzTRL9RHCjiO553cjKiSnwkJG5squQyO3ZzizG9tCpLZZuCw1MsKaPDYPSxuHYOOwtHEL8dqw4Y-9Dm0Y_3Pl8b9XnqAtGJUkr1PUXK-e9ZmFE2vZLvyljTb649vR5BPxvcrr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKEYIF8RTl6YHVNEntuGFDFaWFtgO0olvkOI6UqkmqJgwsiP_AP-SX4MujAgkxMCa2peh8Pn8XffcdQpdmW9kqECbRzkIJ9aRBPBlQYnnUoIIyyfP_kMOR3ZvQ-ymb1lCnqoUBWmUZ-4uYnkfr8k2ztGZzEYbNJ1NDbe0-3AJNf_2whtapPr7QxuDqbcXz4OC2kHXp2QSmV_VzOclLqGQegvyQxYAvoMHQ7_fTtzunu4O2S7CIb4rv2UU1Fe-hjbu8Ge_rPpqvCHRYwzgssihJQSUglFjEPlayCmy4qIVMcRJggSMxS5YYOnZgoEZG17gfp5CjpxiKTfDzY_fz_QOUBHAaRmV7r_QATbq3406PlN0TiNTHMCN2mwWW5I7QKYvwA8q9gDo62VAGV5YpbSkEk8Lx9SgDVOUwCarF0gLB9UDJ1iGqx0msjhA2DI9bdsunwuNUaMzITK9lUN9sB5zpnW0gUtnMXRQiGW7FHpu5hY1dsLFb2LiBeGVY98dmuzqO_7ny-N8rL9BmbzwcuIP-6OEEbcFIwfg6RfVs-aLONLbIvPPcd74AyAfMeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+atmospheric+and+ecological+impacts+of+a+major+dust+storm%3A+Insights+from+WRF%E2%80%93Chem+simulations&rft.jtitle=Aeolian+research&rft.au=Yang%2C+Hongwei&rft.au=Fu%2C+Wenxuan&rft.date=2025-06-01&rft.pub=Elsevier+B.V&rft.issn=1875-9637&rft.volume=73&rft_id=info:doi/10.1016%2Fj.aeolia.2025.100977&rft.externalDocID=S1875963725000187 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-9637&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-9637&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-9637&client=summon |