Local Schrödinger flow into Kähler manifolds

In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrödinger flow for maps from a compact Riemannian manifold into a complete Kähler manifold, or from a Euclidean space Rm into a compact Kähler manifold. As a consequence, we prove that Heisenberg s...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 44; no. 11; pp. 1446 - 1464
Main Authors Ding, Weiyue, Wang, Youde
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.11.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrödinger flow for maps from a compact Riemannian manifold into a complete Kähler manifold, or from a Euclidean space Rm into a compact Kähler manifold. As a consequence, we prove that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces.
AbstractList In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrödinger flow for maps from a compact Riemannian manifold into a complete Kähler manifold, or from a Euclidean space Rm into a compact Kähler manifold. As a consequence, we prove that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces.
Author Wang, Youde
Ding, Weiyue
Author_xml – sequence: 1
  givenname: Weiyue
  surname: Ding
  fullname: Ding, Weiyue
– sequence: 2
  givenname: Youde
  surname: Wang
  fullname: Wang, Youde
BookMark eNptkM1KAzEUhYNUsGo3PsGAO2HqnZuZ_Cy1WBULLtT1kMkkNjJNajJFfB-fwRfoizlSQRBX93D5zjlwDsnIB28IOSlgWgDw88s5oOAceLlHxoVgmCNndDRoAJZLFPSATFJyDVSUypJxOSbTRdCqyx70Mm4_W-efTcxsF94y5_uQ3W0_lt3wWSnvbOjadEz2reqSmfzcI_I0v3qc3eSL--vb2cUi11jxPmdYSLBKASpqy8YKA9KgrESLvDFMUSpaQ9GilShZI0G0ulCiaVFCY62mR-R0l7uO4XVjUl-_hE30Q2WNXDBJS1bhQMGO0jGkFI2ttetV74Lvo3JdXUD9PUz9O8xgOftjWUe3UvH9P_gLqrNklw
CitedBy_id crossref_primary_10_2140_pjm_2023_326_187
crossref_primary_10_1080_03605300600910332
crossref_primary_10_1007_s11425_017_9146_x
crossref_primary_10_1002_cpa_20143
crossref_primary_10_1016_j_jfa_2013_08_009
crossref_primary_10_1137_16M1094907
crossref_primary_10_1063_1_3218848
crossref_primary_10_1137_120878847
crossref_primary_10_1002_mma_8657
crossref_primary_10_1016_j_aml_2022_108410
crossref_primary_10_1007_s11425_014_4862_7
crossref_primary_10_1007_s40304_020_00214_7
crossref_primary_10_1002_cpa_22012
crossref_primary_10_1515_crelle_2021_0023
crossref_primary_10_1093_imrn_rnv343
crossref_primary_10_1007_s00220_023_04730_9
crossref_primary_10_1080_03605300801895225
crossref_primary_10_1142_S0219199717500900
crossref_primary_10_1007_s10114_011_0229_y
crossref_primary_10_1088_0951_7715_18_5_007
crossref_primary_10_1002_cpa_20338
crossref_primary_10_1007_s00526_017_1182_0
crossref_primary_10_1016_j_aim_2007_04_009
crossref_primary_10_1007_s00220_022_04368_z
crossref_primary_10_1002_cpa_20021
crossref_primary_10_1142_S0129167X19400056
crossref_primary_10_1016_j_jde_2024_01_002
crossref_primary_10_1016_j_jfa_2024_110704
crossref_primary_10_1360_02ys9060
crossref_primary_10_2140_apde_2013_6_601
crossref_primary_10_1007_s12220_021_00787_x
crossref_primary_10_1016_j_physleta_2011_02_035
crossref_primary_10_3934_dcdss_2016074
crossref_primary_10_1016_j_na_2005_01_078
crossref_primary_10_1002_mma_9894
crossref_primary_10_1007_s00220_005_1490_7
crossref_primary_10_1007_s11425_012_4484_x
crossref_primary_10_1137_22M1531038
crossref_primary_10_1137_22M1531555
crossref_primary_10_1142_S0129167X11007276
crossref_primary_10_1215_00127094_2008_058
crossref_primary_10_1007_s10114_013_2122_3
crossref_primary_10_2140_apde_2009_2_187
crossref_primary_10_4007_annals_2011_173_3_5
crossref_primary_10_1007_s11464_019_0803_7
crossref_primary_10_1007_s00526_008_0198_x
crossref_primary_10_1016_j_difgeo_2019_101560
crossref_primary_10_1007_s10114_024_1623_6
crossref_primary_10_1007_s11401_005_0101_4
crossref_primary_10_1016_j_anihpc_2013_08_007
crossref_primary_10_1002_cpa_10054
crossref_primary_10_1016_j_jfa_2021_109093
crossref_primary_10_1007_s10255_023_1029_8
crossref_primary_10_1080_03605300600856758
crossref_primary_10_1007_s00220_006_0180_4
crossref_primary_10_1016_j_jmaa_2024_128490
crossref_primary_10_1007_s00209_005_0922_6
crossref_primary_10_1007_s10114_003_0263_5
crossref_primary_10_1007_s11464_021_0209_1
crossref_primary_10_1007_s10114_019_8303_y
crossref_primary_10_1007_s00526_021_01921_x
crossref_primary_10_1007_s11464_019_0745_0
crossref_primary_10_1016_j_jde_2019_08_034
crossref_primary_10_1016_j_jde_2008_06_003
crossref_primary_10_1007_s00526_005_0362_5
Cites_doi 10.1007/978-3-540-69969-9
10.1007/BF02901957
10.1142/S0129167X00000568
10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
10.1063/1.532335
10.1007/978-1-4612-5734-9
10.1007/BF01220998
10.1112/blms/20.5.385
10.1007/s101140000060
10.1142/S0129167X95000079
10.1016/0375-9601(74)90447-2
ContentType Journal Article
Copyright Science in China Press 2001.
Copyright_xml – notice: Science in China Press 2001.
DBID AAYXX
CITATION
DOI 10.1007/BF02877074
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1862-2763
1869-1862
EndPage 1464
ExternalDocumentID 10_1007_BF02877074
GroupedDBID .86
06D
2JN
2LR
4.4
406
408
40E
6NX
8UJ
95-
95.
96X
AABHQ
AAYXX
ADHHG
AEGNC
AEXYK
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMYQR
B-.
BA0
BGNMA
CAG
CITATION
COF
CW9
EBS
EJD
FNLPD
HF~
IHE
I~Z
KOV
M4Y
MA-
NB0
NU0
PF0
QOS
ROL
RPX
RSV
S27
SAP
SDH
SMT
SNX
SOJ
T13
TR2
U2A
VC2
W48
~A9
-SA
-S~
-Y2
.VR
0R~
0VY
2J2
2JY
2KG
2KM
30V
5VR
5VS
5XA
5XB
8TC
92E
92I
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACSNA
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEGAL
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHPBZ
AHYZX
AIAKS
AILAN
AITGF
AJBLW
AJZVZ
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
BAPOH
BDATZ
BSONS
CAJEA
CCEZO
CCVFK
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FINBP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
J-C
JBSCW
LLZTM
NPVJJ
NQJWS
O9J
P9R
PT4
Q--
R89
S16
S3B
SCL
SHX
SJYHP
SNE
SNPRN
SOHCF
SPISZ
SRMVM
SSLCW
SZN
TCJ
TGP
TSG
TUC
U1G
U5K
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
ZMTXR
ID FETCH-LOGICAL-c257t-62190faa02a3f4bf8e09e2958d27be6a338de32f2f9296b908dc1a8bd290bffc3
ISSN 1006-9283
1674-7283
IngestDate Wed Aug 13 07:07:35 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Tue Jul 01 03:54:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-62190faa02a3f4bf8e09e2958d27be6a338de32f2f9296b908dc1a8bd290bffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2786934652
PQPubID 2043629
PageCount 19
ParticipantIDs proquest_journals_2786934652
crossref_citationtrail_10_1007_BF02877074
crossref_primary_10_1007_BF02877074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-11-01
PublicationDateYYYYMMDD 2001-11-01
PublicationDate_xml – month: 11
  year: 2001
  text: 2001-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationYear 2001
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References P. Pang (BF02877074_CR8) 2000; 16
N. Chang (BF02877074_CR10) 2000; 53
K. Nakamura (BF02877074_CR4) 1974; 48
W. Y. Ding (BF02877074_CR1) 1998; 41
L. D. Landau (BF02877074_CR2) 1935; 8
I. Eells (BF02877074_CR15) 1988; 20
BF02877074_CR9
BF02877074_CR6
Y. D. Wang (BF02877074_CR11) 1995; 6
L. Faddeev (BF02877074_CR3) 1987
H. Wang (BF02877074_CR7) 2000; 11
T. Aubin (BF02877074_CR14) 1982
Y. Zhou (BF02877074_CR5) 1991; 34
Y. D. Wang (BF02877074_CR12) 1998; 39
P. Sulem (BF02877074_CR13) 1986; 107
References_xml – volume-title: Hamiltonian Methods in the Theory of Solitons
  year: 1987
  ident: BF02877074_CR3
  doi: 10.1007/978-3-540-69969-9
– volume: 8
  start-page: 153
  year: 1935
  ident: BF02877074_CR2
  publication-title: Phys. Z. Sowj.
– volume: 41
  start-page: 746
  issue: 7
  year: 1998
  ident: BF02877074_CR1
  publication-title: Science in China, Ser. A
  doi: 10.1007/BF02901957
– volume: 11
  start-page: 1079
  year: 2000
  ident: BF02877074_CR7
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X00000568
– volume: 53
  start-page: 157
  year: 2000
  ident: BF02877074_CR10
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
– ident: BF02877074_CR6
– volume: 39
  start-page: 363
  issue: 1
  year: 1998
  ident: BF02877074_CR12
  publication-title: J. Math. Phys.
  doi: 10.1063/1.532335
– volume-title: Nonlinear Analysis on Manifolds, Monge-Ampère Equations
  year: 1982
  ident: BF02877074_CR14
  doi: 10.1007/978-1-4612-5734-9
– volume: 107
  start-page: 431
  year: 1986
  ident: BF02877074_CR13
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01220998
– volume: 34
  start-page: 257
  issue: 3
  year: 1991
  ident: BF02877074_CR5
  publication-title: Science in China, Ser. A
– volume: 20
  start-page: 385
  year: 1988
  ident: BF02877074_CR15
  publication-title: Bull. London Math. Soc.
  doi: 10.1112/blms/20.5.385
– volume: 16
  start-page: 487
  year: 2000
  ident: BF02877074_CR8
  publication-title: Acta Math. Sinica, English Series
  doi: 10.1007/s101140000060
– ident: BF02877074_CR9
– volume: 6
  start-page: 93
  year: 1995
  ident: BF02877074_CR11
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X95000079
– volume: 48
  start-page: 321
  year: 1974
  ident: BF02877074_CR4
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(74)90447-2
SSID ssib053394679
ssib014149344
ssj0039546
ssj0000390473
Score 1.8703882
Snippet In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrödinger flow for maps from a compact Riemannian...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1446
SubjectTerms Cauchy problems
Euclidean geometry
Flow mapping
Riemann manifold
Sobolev space
Title Local Schrödinger flow into Kähler manifolds
URI https://www.proquest.com/docview/2786934652
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELZgubQHRFuq0gKKVC4VysqxEyc-LgiKugu97KrbU2THtoS02q3aRQiep8_AC_BizMT52VQr1PZiRY5lJf7s8Yw98w0hR6ZQPJbWhMJEYKAkSRJKTk2oDdNgEhWpsRicfHklLibxl2kybRPeldElS90v7tfGlfwPqlAHuGKU7D8g23QKFfAM-EIJCEP5VxiPcCNCIs3yvvtEGM8q6GaLW-SBWBwPy3vwGDMco5_qtVvMfGBvrY_WS7tMo90_vmxIXNt883iW8M1e3920tzgKqkBMGNs5M4iq4Lk_zwzRIRqvKZqYllIECvTQZD69TN_6ukzIEIqO3PS8jfX8iFakINqYKzsqCON4rbSmtQ86mG0p9dl6upTYV1_z88lolI_PpuNNssXAFmA9sjX4_H3YHqVRLmlc-hI0394loq2676oe3Z23VCfGO2S7sgOCgQf1Fdmw89fk5cr4vyH9Et4A4X188NAGCG2A0AbDx98Ia9DAuksm52fj04uwSm8RFiAnl6GAzYI6pShT3MXaZZZKy2SSGZZqKxTnmbGcOeZAhRVa0swUkcpgFUmqnSv4W9KbL-b2HQnA9kipigTVYLCr1GY0donkiUhTRyPj9sin-s_zouJ-xxQks7xmrW5HaY98bNr-8Iwna1vt1wOYVyviV85SmCc8Fgl7__zrD-RFOy33SW_588YegHK31IcVuIdkc8IGT0HLTfk
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Schr%C3%B6dinger+flow+into+K%C3%A4hler+manifolds&rft.jtitle=Science+China.+Mathematics&rft.au=Ding+Weiyue&rft.au=Wang+Youde&rft.date=2001-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=44&rft.issue=11&rft.spage=1446&rft.epage=1464&rft_id=info:doi/10.1007%2FBF02877074&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1006-9283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1006-9283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1006-9283&client=summon