Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors
Mid-wave infrared, nBn detectors remain limited by diffusion current generated in the absorber region even when defect concentrations are elevated. In contrast, defect-limited conventional pn-junction based photodiodes are subject to Shockley-Read-Hall generation in the depletion region and subseque...
Saved in:
Published in | Applied physics letters Vol. 106; no. 17 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
27.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mid-wave infrared, nBn detectors remain limited by diffusion current generated in the absorber region even when defect concentrations are elevated. In contrast, defect-limited conventional pn-junction based photodiodes are subject to Shockley-Read-Hall generation in the depletion region and subsequent carrier drift. Ideal nBn-architecture devices would be limited by Auger 1 generation; however, typical nBn detectors exhibit defect-dominated performance associated with Shockley-Read-Hall generation in the quasi-neutral absorbing region. Reverse saturation current density characteristics for defect-limited devices depend on the minority carrier diffusion length, absorbing layer thickness, and the dominant minority carrier generation mechanism. Unlike pn-based photodiodes, changes in nBn dark current due to elevated defect concentrations do not manifest at small biases, thus, the zero bias resistance area product, RoA, is not a useful parameter for characterizing nBn-architecture photodetector performance. |
---|---|
AbstractList | Mid-wave infrared, nBn detectors remain limited by diffusion current generated in the absorber region even when defect concentrations are elevated. In contrast, defect-limited conventional pn-junction based photodiodes are subject to Shockley-Read-Hall generation in the depletion region and subsequent carrier drift. Ideal nBn-architecture devices would be limited by Auger 1 generation; however, typical nBn detectors exhibit defect-dominated performance associated with Shockley-Read-Hall generation in the quasi-neutral absorbing region. Reverse saturation current density characteristics for defect-limited devices depend on the minority carrier diffusion length, absorbing layer thickness, and the dominant minority carrier generation mechanism. Unlike pn-based photodiodes, changes in nBn dark current due to elevated defect concentrations do not manifest at small biases, thus, the zero bias resistance area product, RoA, is not a useful parameter for characterizing nBn-architecture photodetector performance. |
Author | Morath, C. P. Sidor, D. E. Wicks, G. W. Savich, G. R. Cowan, V. M. Du, X. |
Author_xml | – sequence: 1 givenname: G. R. surname: Savich fullname: Savich, G. R. – sequence: 2 givenname: D. E. surname: Sidor fullname: Sidor, D. E. – sequence: 3 givenname: X. surname: Du fullname: Du, X. – sequence: 4 givenname: C. P. surname: Morath fullname: Morath, C. P. – sequence: 5 givenname: V. M. surname: Cowan fullname: Cowan, V. M. – sequence: 6 givenname: G. W. surname: Wicks fullname: Wicks, G. W. |
BookMark | eNptkE1LAzEQhoNUsK0e_AcBTx62zWw2u8lR6ycUPKjnJeYDU7ZJTbKK_95IexJPwzs87ww8MzTxwRuEzoEsgLR0CYtGgGgYOUJTIF1XUQA-QVNCCK1aweAEzVLalMhqSqfo-cZZOyYXPFZjjMZnrN5llCqb6FJ2KuFgsTbWqFwNbuuy0dhfe7x1uvqSnwY7b6OMZatNLlCI6RQdWzkkc3aYc_R6d_uyeqjWT_ePq6t1pWrW5YopqoTRrZYUNONacMuJlVbUdUe5aImR1jayU5LpNwGt5YrS0umUMqzQdI4u9nd3MXyMJuV-E8boy8u-hrrhAC3QQl3uKRVDStHYfhfdVsbvHkj_66yH_uCssMs_rHJZ5mInR-mGfxo_wKhwdA |
CitedBy_id | crossref_primary_10_1016_j_infrared_2018_12_033 crossref_primary_10_1063_1_5027637 crossref_primary_10_1021_acsami_3c01008 crossref_primary_10_1088_1361_6641_aa60a5 crossref_primary_10_1116_1_4975340 crossref_primary_10_1116_1_4977780 crossref_primary_10_1364_OME_8_001419 crossref_primary_10_1002_adfm_202407629 crossref_primary_10_1007_s11664_022_09664_x crossref_primary_10_1002_advs_202413844 crossref_primary_10_1007_s11664_017_5753_9 crossref_primary_10_1134_S1063785020020285 crossref_primary_10_1063_1_5020532 crossref_primary_10_1063_5_0013553 crossref_primary_10_1016_j_rio_2023_100425 |
Cites_doi | 10.1063/1.4772543 10.1063/1.2337995 10.1007/s11664-008-0426-3 10.1063/1.362849 10.1117/1.OE.53.10.106105 10.1103/PhysRev.87.835 10.1109/JRPROC.1957.278528 |
ContentType | Journal Article |
Copyright | 2015 AIP Publishing LLC. |
Copyright_xml | – notice: 2015 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4919450 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Architecture |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_4919450 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UPT WH7 XJE YZZ ~02 8FD H8D L7M |
ID | FETCH-LOGICAL-c257t-5c3c9ed6da31d58d98f80faf922738960eaff4a7ca5db916f8c33c3c7cce5d983 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 07:13:11 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Tue Jul 01 04:19:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c257t-5c3c9ed6da31d58d98f80faf922738960eaff4a7ca5db916f8c33c3c7cce5d983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2124811613 |
PQPubID | 2050678 |
ParticipantIDs | proquest_journals_2124811613 crossref_primary_10_1063_1_4919450 crossref_citationtrail_10_1063_1_4919450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-27 20150427 |
PublicationDateYYYYMMDD | 2015-04-27 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2015 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023061716163009800_c4) 1952; 87 (2023061716163009800_c3) 1996; 80 (2023061716163009800_c2) 2012; 101 (2023061716163009800_c7) 2014; 53 (2023061716163009800_c8) 1976 (2023061716163009800_c5) 1957; 45 (2023061716163009800_c9) 2000 (2023061716163009800_c1) 2014 (2023061716163009800_c6) 2008; 37 (2023061716163009800_c10) 2006; 89 |
References_xml | – volume: 101 start-page: 251108 issue: 25 year: 2012 ident: 2023061716163009800_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4772543 – start-page: 438 volume-title: Narrow-Gap Semiconductor Photodiodes year: 2000 ident: 2023061716163009800_c9 – volume: 89 start-page: 083512 issue: 8 year: 2006 ident: 2023061716163009800_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2337995 – volume: 37 start-page: 1406 issue: 9 year: 2008 ident: 2023061716163009800_c6 publication-title: J. Electron. Mater. doi: 10.1007/s11664-008-0426-3 – year: 1976 ident: 2023061716163009800_c8 article-title: Solid state imaging – volume: 80 start-page: 1116 year: 1996 ident: 2023061716163009800_c3 publication-title: J. Appl. Phys. doi: 10.1063/1.362849 – volume: 53 start-page: 106105 issue: 10 year: 2014 ident: 2023061716163009800_c7 publication-title: Opt. Eng. doi: 10.1117/1.OE.53.10.106105 – volume: 87 start-page: 835 issue: 5 year: 1952 ident: 2023061716163009800_c4 publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.835 – start-page: 907011 year: 2014 ident: 2023061716163009800_c1 – volume: 45 start-page: 1228 issue: 9 year: 1957 ident: 2023061716163009800_c5 publication-title: Proc. IRE doi: 10.1109/JRPROC.1957.278528 |
SSID | ssj0005233 |
Score | 2.3315818 |
Snippet | Mid-wave infrared, nBn detectors remain limited by diffusion current generated in the absorber region even when defect concentrations are elevated. In... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Applied physics Architecture Augers Dark current Defects Diffusion layers Diffusion length Infrared detectors Minority carriers Photodiodes Sensors Thickness |
Title | Diffusion current characteristics of defect-limited nBn mid-wave infrared detectors |
URI | https://www.proquest.com/docview/2124811613 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZbymAbjC3bWNd2iLGHgVEXW7ZsPaZLuzLSbpAE8mZk_YBA5o7GYbC_fidLduwSRrcXExzFCN2X893pvk8IfcgMCwujY8JFKgi8bzkR6cgqI4qisFRHIWxB_-qaXS7ir8tkuTvuqGaXVMWp_L2XV_I_VoV7YFfLkv0Hy7YPhRvwGewLV7AwXO9l48nKmK0tdwXSyyzJO_rLEAoqbTs2yNoxmYLyrAx-rBT5ZY8dgknc1h3oSld1-X7TDVabCNVVPzbBuqb-tEH4TICXqasyX3Zth7OVcgWAyY7jMNkGy9awFnJuW8dTy3zJIUzs7olj8He6_EXZ72f47ubSc7aUMO71ZLXzr6PUlkW9y20c8Ih1kZbu9ewQStkiw2nMQx47rdq-evb1t_xiMZ3m8_Pl_CE6iCBtiAboYDy5ms46TT-UNmco2qk1WlOMfmof3Y9Q-i_oOuqYP0fPfLqAx872L9ADXQ7R03Fn92eInnQ0JYfokV-hl2jWwgN7eOA78MA3BvfhgQEeuIEHbuCBW3i8QouL8_nnS-LP0CASnHFFEkkl14opQUOVZIpnJhsZYXhkOVmQvmphTCxSKRJVQKpgMkkp_CaVUicwmr5Gg_Km1G8QFlLxpDAi1IrGLNQZK5JCRMxqySoRmUP0sVm3XHqBeXvOyTqvGx0YzcPcL_Ehet8O_elUVfYNOm4WP_d_uk0OkVachZCm0Ld___oIPd5B9xgNqtutPoH4sSreeVD8Acdjc9c |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+current+characteristics+of+defect-limited+nBn+mid-wave+infrared+detectors&rft.jtitle=Applied+physics+letters&rft.au=Savich%2C+G+R&rft.au=Sidor%2C+D+E&rft.au=Du+X&rft.au=Morath%2C+C+P&rft.date=2015-04-27&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=106&rft.issue=17&rft_id=info:doi/10.1063%2F1.4919450&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |