Modulation of carcinoembryonic antigen release by glucosylceramide--implications for HT29 cell differentiation

Previous work suggested that glucosylceramide (GlcCer) plays a role in the regulation of cell differentiation of HT29 human colon tumor cells. In the present study, we investigated the role of GlcCer in the cellular release of carcinoembryonic antigen (CEA), a marker for cell differentiation. This w...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of biochemistry Vol. 258; no. 1; pp. 233 - 242
Main Authors Babia, T, Veldman, R J, Hoekstra, D, Kok, J W
Format Journal Article
LanguageEnglish
Published England 15.11.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous work suggested that glucosylceramide (GlcCer) plays a role in the regulation of cell differentiation of HT29 human colon tumor cells. In the present study, we investigated the role of GlcCer in the cellular release of carcinoembryonic antigen (CEA), a marker for cell differentiation. This was done by modulating the intracellular level of the glycolipid, according to two different approaches. The cells were treated with D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which resulted in a specific lowering of the cellular GlcCer pool. Alternatively, by exogenous addition of a short-chain analog of the lipid, hexanoyl(C6)-GlcCer, the cellular pool was enhanced. The results demonstrate that PDMP causes an increase in the release of CEA, while exogenous C6-GlcCer suppresses its release. Furthermore, the enhanced release of CEA in the presence of PDMP, could be completely reversed upon exogenous addition of C6-GlcCer. Control experiments reveal that a potential interference of the well-known modulator of cell physiology, ceramide (Cer), can be excluded. Long-term depletion of GlcCer resulted in a change in a morphological feature of differentiation of the cells, i.e. an increase in apical membrane surface with microvilli brush borders, accompanied by an enhanced expression of the cytoskeletal protein villin. These results, together with the observations on modulation of the differentiation marker CEA by GlcCer, provide support for the conclusion that GlcCer interferes with the differentiation of HT29 cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-2956
1432-1033
DOI:10.1046/j.1432-1327.1998.2580233.x